Biblio

Export results:
Author Title Type [ Year(Asc)]
Filters: Author is Cristina Alcaraz and First Letter Of Title is M  [Clear All Filters]
A. Garcia, C. Alcaraz, and J. Lopez, "MAS para la convergencia de opiniones y detección de anomalías en sistemas ciberfísicos distribuidos",
VIII Jornadas Nacionales de Investigación en Ciberseguridad (JNIC), 06/2023, In Press.
C. Alcaraz, E. Etcheves Miciolino, and S. Wolthusen, "Multi-Round Attacks on Structural Controllability Properties for Non-Complete Random Graphs",
The 16th Information Security Conference (ISC), vol. 7807, Springer, pp. 140–151, 09/2015. DOI More..

Abstract

 The notion of controllability, informally the ability to force a system into a desired state in a finite time or number of steps, is most closely associated with control systems such as those used to maintain power networks and other critical infrastructures, but has wider relevance in distributed systems. It is clearly highly desirable to understand under which conditions attackers may be able to disrupt legitimate control, or to force overriding controllability themselves. Following recent results by Liu et al., there has been considerable interest also in graph-theoretical interpretation of Kalman controllability originally introduced by Lin, structural controllability. This permits the identification of sets of driver nodes with the desired state-forcing property, but determining such nodes is aW[2]-hard problem. To extract these nodes and represent the control relation, here we apply the POWER DOMINATING SET problem and investigate the effects of targeted iterative multiple-vertex removal. We report the impact that different attack strategies with multiple edge and vertex removal will have, based on underlying non-complete graphs, with an emphasis on power-law random graphs with different degree sequences.

PDF icon alcaraz2013controla.pdf (169.18 KB)
C. Alcaraz, I. Agudo, D. Nuñez, and J. Lopez, "Managing Incidents in Smart Grids à la Cloud",
IEEE CloudCom 2011, IEEE Computer Society, pp. 527-531, Nov-Dec 2011. DOI More..

Abstract

During the last decade, the Cloud Computing paradigm has emerged as a panacea for many problems in traditional IT infrastructures. Much has been said about the potential of Cloud Computing in the Smart Grid context, but unfortunately it is still relegated to a second layer when it comes to critical systems. Although the advantages of outsourcing those kind of applications to the cloud is clear, data confidentiality and operational privacy stand as mayor drawbacks. In this paper, we try to give some hints on which security mechanisms and more specific, which cryptographic schemes, will help a better integration of Smart Grids and Clouds. We propose the use of Virtual SCADA in the Cloud (VS-Cloud) as a mean to improve reliability and efficiency whilst maintaining the same protection level as in traditional SCADA architectures.

 

PDF icon 1643.pdf (272.71 KB)
Modify or remove your filters and try again.