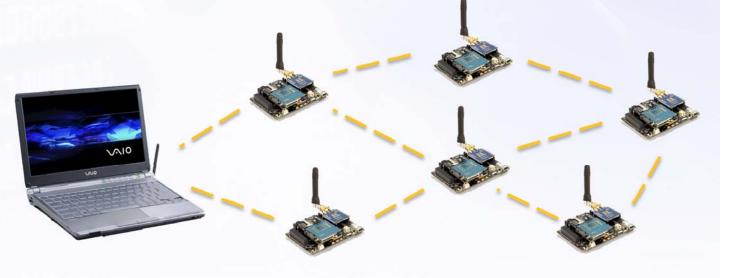
Robust Probabilistic Fake Packet Injection for Receiver-Location Privacy

Ruben Rios¹, Jorge Cuellar², Javier Lopez¹ ¹NICS Lab – University of Málaga ²Siemens AG, Munich

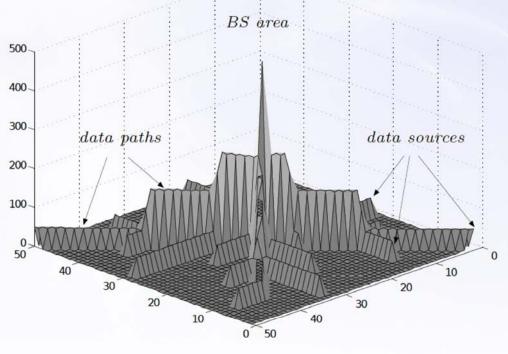
ESORICS 2012 – 10-14 Sept. Pisa (Italy)

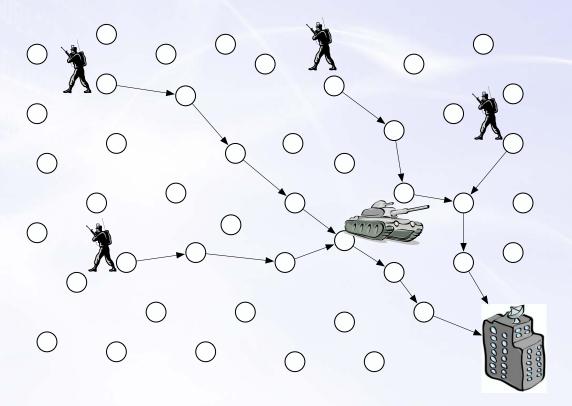


- Introduction
- Related Work
- Problem Statement
- Homogeneous Injection for Sink Privacy
- Protocol Analysis
- Conclusion

- Wireless Sensor Networks (WSN) are ad hoc networks:
 - <u>Sensor nodes</u>: battery-powered devices with limited capabilities
 - measure physical phenomena
 - communicate with nearby nodes using radio interfaces
 - provide routing capabilities
 - <u>Base station</u>: resourceful data sink
 - collects and analyses all data from sensors
 - communication interface to the network

- WSNs are used in applications where sensor nodes are unobtrusively embedded into systems:
 - Monitoring
 - Tracking
 - Collecting
 - Reporting
- By sectors, WSNs are used in:
 - Environmental, agriculture, farming,
 - Industrial, critical Infrastructure,
 - Logistics, retailing,
 - Home automation, smart metering, e-health,
 - Homeland security, battlefield monitoring





- WSN solutions are designed to maximize the lifetime of the network
 - Data is transmitted using shortest-path routing algorithms
- Routing protocols introduce pronounced traffic patterns, which reveal the location of relevant network nodes
 - Source-location privacy
 - Receiver-location privacy

The criticality of location privacy is evident in the following scenario

- Motivation
 - Physical protection
 - Strategic information

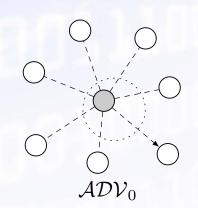
 These problems are extensible to any WSN scenario because they are caused by a network design

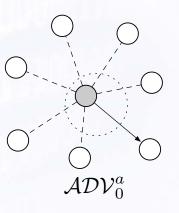
- Introduction
- Related Work
- Problem Statement
- Homogeneous Injection for Sink Privacy
- Protocol Analysis
- Conclusion

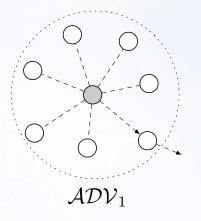
Related Work

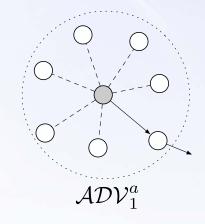
- Deng et al. (2006) proposed multi-parent routing which selects the next hop randomly from neighbours closer
 - Always in the direction of the base station
- Fractal Propagation (2006) and Malestrom (2011) create hot-stops to attract adversaries
 - Once reached they can be discarded
- Ying et al. (2011) propose to make every node transmits the same amount of traffic
 - Best protection but at the maximum cost
- Jian et al. (2008) send packets towards the sink with a biased probability and inject fake traffic in the opposite direction
 - Fake traffic is always sent in the opposite direction

- Introduction
- Related Work
- Problem Statement
- Homogeneous Injection for Sink Privacy
- Protocol Analysis
- Conclusion

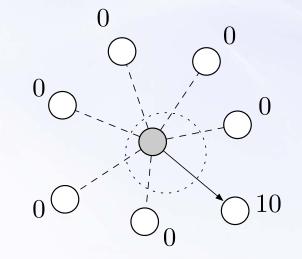

Problem Statement


- We assume a WSN with the following features
 - Sensor nodes are deployed in a vast area
 - The network consists of hundreds of sensor nodes
 - The connectivity of the network is high
 - There is a single base station
 - Event-driven monitoring application
 - Sensor nodes share keys and perform cryptographic operations
 - Real messages are indistinguishable from fake messages



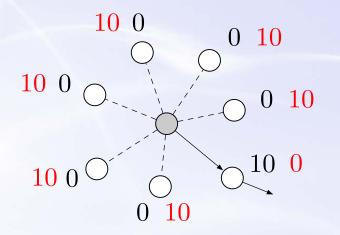

Problem Statement

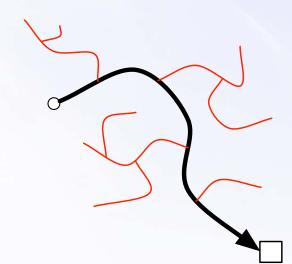
- We assume the adversary
 - Has a partial view of the communications (\mathcal{ADV}_1)
 - Cannot decrypt data packets
 - Can determine the data sender based on features of the signal
 - Can determine the data recipient using header information or the transmission times of nodes
 - Can count the number of packets sent by a particular node
 - Moves according to a particular strategy at a reasonable speed



Problem Statement

- The movement strategy of the adversary is determined by the type of traffic analysis attack performed
 - Time-correlation attack
 - A node transmits shortly after receiving a packet
 - Rate-monitoring attack
 - Nodes closer to the base station receive more packets
 - Less efficient because it requires several observations before moving





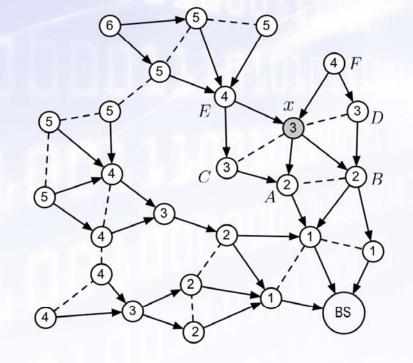
- Introduction
- Related Work
- Problem Statement
- Homogeneous Injection for Sink Privacy
- Protocol Analysis
- Conclusion

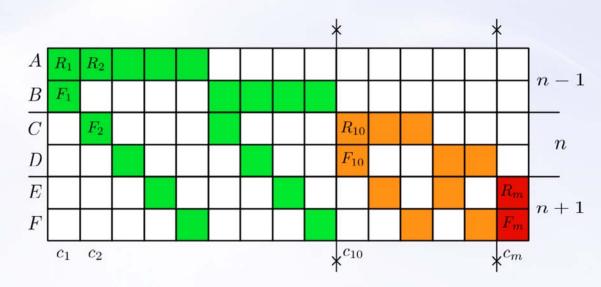
- The HISP idea is to locally homogenise the number of packets sent by a node to its neighbours
 - Fake traffic hides the flow of real packets
 - Two messages (real, fake)
 - Controlled by a parameter
 - 2. Real packets are sent using a biased random walk
 - More likely to reach the BS
 - Static path + fake branches are eventually discarded by the adversary

- We require three properties during data transmission
 - <u>Prop 1:</u> Convergence

E(dist(x', BS)) < E(dist(x, BS))

- <u>Prop 2</u>: Homogeneity


 $\forall y, z \in neigh(x) \; Frec_m(x, y) \simeq Frec_m(x, z)$


- <u>Prop 3</u>: Exclusion

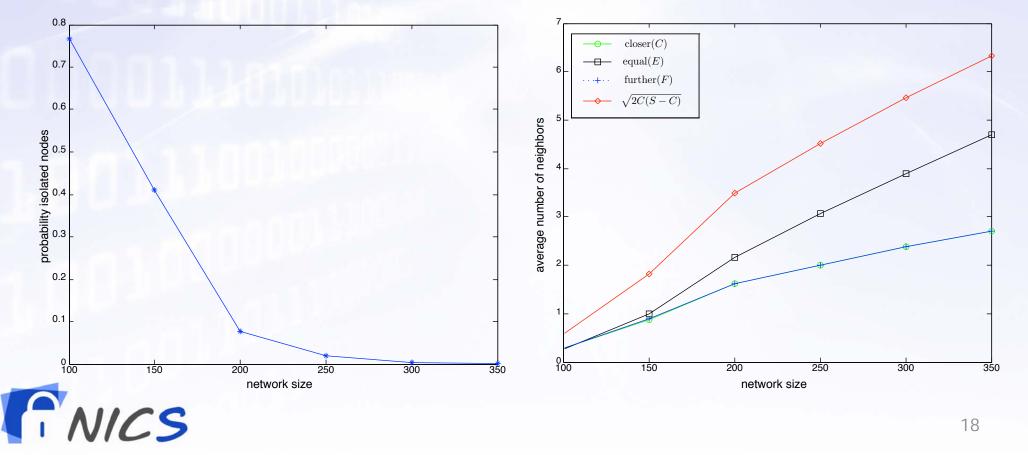
 $\forall m, m', x, y, t \quad send(m, x, y, t) \land m \neq m' \\ \Rightarrow \neg send(m', x, y, t)$

- A computationally inexpensive approach ensures the previous properties
 - Sorted combinations without repetition of two neighbours
 - Select one of the combinations randomly

The proposed algorithm introduces a network parameter to control the amount of fake traffic

- Depends on the hearing range of the adversary

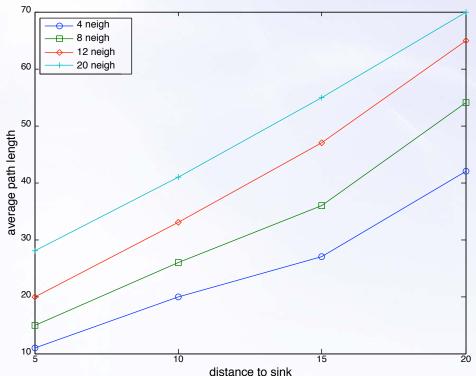
Algorithm 1 Transmission strategy **Input:** $packet \leftarrow receive()$ **Input:** $combs \leftarrow combinations(sort(neighs), 2)$ Input: MAX_TTL 1: $\{neigh1, neigh2\} \leftarrow select_random(combs)$ 2: if *isreal*(*packet*) then $send_random(neigh1, packet, neigh2, fake(MAX_TTL))$ 3: 4: else $TTL \leftarrow get_time_to_live(packet) - 1$ 5:if TTL > 0 then 6: $send_random(neigh1, fake(TTL), neigh2, fake(TTL))$ 7: end if 8: 9: end if



Agenda

- Introduction
- Related Work
- Problem Statement
- Homogeneous Injection for Sink Privacy
- Protocol Analysis
- Conclusion

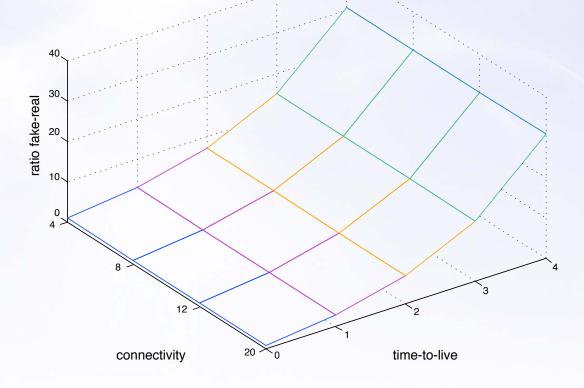
- The topology of the network might negatively impact the convergence of real packets
 - Theorem: Real messages reach the base station if $F < \sqrt{2C(S-C)}$
- Validation on randomly deployed networks



 Message delivery time is affected by the probabilistic nature of the protocol

 $x_n = 1 + px_{n-1} + qx_n + rx_{n+1}$

The values of p,q,r might differ for each node due to the network configuration


The speed decreases as the packet approaches the sink

- The use of fake traffic impacts the lifetime of the network
- The durability of fake traffic is controlled by a parameter, MAX_TTL , which is dependent on the hearing range of the adversary (ADV_n)

Ratio $\mathcal{O}(2^{n+1})$ can be reduced by half

We analyse the privacy protection against a local adversary

Time-correlation

- Packets flow in any direction
- Fake and real packets are indistinguishable
- Rate-monitoring
 - Evenly distributes packets among neighbours
 - Random walk blurs the band of fake messages

Agenda

- Introduction
- Related Work
- Problem Statement
- Homogeneous Injection for Sink Privacy
- Protocol Analysis
- Conclusion

Conclusion

 We present a new receiver-location privacy solution called HISP based on fake traffic and biased random walks

HISP has been validated analytically and experimentally

Future work

- Reduce fake traffic
- More powerful adversaries
- Node compromise attacks
- Topology discovery process

Thanks for your attention!

Ruben Rios¹, Jorge Cuellar², Javier Lopez¹ ¹NICS Lab – University of Málaga ²Siemens AG, Munich

ESORICS 2012 - 10-14 Sept. Pisa (Italy)