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ABSTRACT
The use of alternative foundations for constructing more se-
cure and efficient cryptographic schemes is a topic worth
exploring. In the case of proxy re-encryption, the vast ma-
jority of schemes are based on number theoretic problems
such as the discrete logarithm. In this paper we present
NTRUReEncrypt, a new bidirectional and multihop proxy re-
encryption scheme based on NTRU, a widely known lattice-
based cryptosystem. We provide two versions of our scheme:
the first one is based on the conventional NTRU encryption
scheme and, although it lacks a security proof, remains as
efficient as its predecessor; the second one is based on a
variant of NTRU proposed by Stehlé and Steinfeld, which
is proven CPA-secure under the hardness of the Ring-LWE
problem. To the best of our knowledge, our proposals are the
first proxy re-encryption schemes to be based on the NTRU
primitive. In addition, we provide experimental results to
show the efficiency of our proposal, as well as a comparison
with previous proxy re-encryption schemes, which confirms
that our first scheme outperforms the rest by an order of
magnitude.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public Key Cryptosystems

1. INTRODUCTION
Proxy re-encryption is a type of public-key cryptographic

scheme that enables a user to delegate her decryption rights
to other users. From a high-level viewpoint, a proxy re-
encryption scheme is an asymmetric encryption scheme that
permits a proxy to transform ciphertexts under Alice’s pub-
lic key pkA into ciphertexts decryptable by Bob’s secret
key skB . In order to do this, the proxy is given a re-
encryption key rkA→B , which makes this process possible.
So, besides defining traditional encryption and decryption
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functions, a proxy re-encryption scheme also defines a re-
encryption function for executing the transformation.

Since the introduction of proxy re-encryption by Blaze
et al. in 1998 [11], many proxy re-encryption schemes have
been proposed. The vast majority of these schemes are based
on bilinear pairings, which have several drawbacks. For in-
stance, pairings are known to be computationally intensive
operations. With respect to security, pairing-based proxy re-
encryption schemes ultimately rely on the hardness of the
discrete logarithm problem. This poses a problem in the
case that efficient cryptanalytic attacks against the discrete
logarithm problem are developed or quantum computation
becomes practical. This problem is also applicable to other
schemes not based on pairings but that also depend on the
discrete logarithm or on integer factorization assumptions.

Apart from bilinear pairings, the use of other founda-
tions for constructing proxy re-encryption schemes has re-
ceived little attention. Recently, some lattice-based proxy
re-encryption schemes have been proposed [29, 4]. Lattice-
based cryptography is a promising field, chiefly because of
its role in post-quantum cryptography, but in some par-
ticular cases, also for its efficiency. As a prime example
of widely-accepted and efficient lattice-based cryptosystem
we find NTRU, which was introduced in 1996 by Hoffstein,
Pipher and Silverman [20]. Since then, it has remained as
the most practical lattice-based public-key cryptosystem, at
the point of being standardized by IEEE Std 1363.1-2008
[28] and ANSI X9.98-2010 [2]. One of the main reasons of
NTRU’s popularity is its overwhelming performance with re-
spect to traditional public-key cryptosystems. For instance,
optimized versions of NTRU executed on a GPU proved to
be up to 1000 times faster than RSA and 100 times faster
than ECC [19]. The results behind the efficiency of NTRU
are explained by the simplicity of its basic underlying op-
eration, which is the convolution, i.e., the polynomial mul-
tiplication. NTRU uses polynomials with relatively small
coefficients, so multiplications can be efficiently performed,
even in constrained devices [8]. Another implication of this
is that the size of the keys is relatively compact, when com-
pared to other lattice-based schemes. In addition, the con-
volution operation can even be parallelized, which is very
convenient as multicore and GPU processors are becoming
more relevant nowadays.

One of the main drawbacks of NTRU is that it lacks a
formal security proof, so its security stems from the practi-
cality of best known attacks. This has meant that, over the
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years, NTRU has followed a somewhat “break-and-repair”
approach, where advances in attacks have stimulated
changes in the scheme and its set of parameters, although
it has remained essentially the same. In order to advance
towards solving this gap, Stehlé and Steinfeld proposed in
2011 a provable-secure variant of NTRU [25, 26], whose se-
curity is based on the assumed hardness of lattice problems.

Our contribution. In this paper, we propose new bidi-
rectional proxy re-encryption schemes based on NTRU. Our
first result, NTRUReEncrypt, is a slight modification of the
conventional NTRU encryption scheme; this proposal ex-
tends the original scheme in order to support re-encryption,
thus it remains just as efficient. However, it lacks of a for-
mal security proof, as does NTRU. For this reason, we also
present PS-NTRUReEncrypt, a provably-secure version based
on the variant of the NTRU primitive proposed by Stehlé
and Steinfeld in [25, 26]. To the best of our knowledge these
are the first proxy re-encryption schemes based on NTRU,
and one of the first to be based on lattices. In addition, we
complement our proposal with an experimental comparison
of the performance of several proxy re-encryption schemes,
which confirms that our first scheme outperforms the rest
by an order of magnitude.

Related work. The notion of proxy re-encryption was
introduced in 1998 by Blaze et al. [11]; their proposal, which
is usually referred to as the BBS scheme, is bidirectional
(it is trivial to obtain rkB→A from rkA→B) and multihop
(the re-encryption process can be repeated multiple times),
but not resistant to collusions between the proxy and one
of the users. Ateniese, Fu, Green and Hohenberger pro-
posed in [6] new proxy re-encryption schemes based on bi-
linear pairings. Their schemes are unidirectional, unihop
and resistant to collusions. Green and Ateniese propose
an identity-based proxy re-encryption scheme in [18]; how-
ever, this scheme is not resistant to collusions. An improved
proposal that is secure against chosen-ciphertext attacks
(CCA) is presented in [13], but again, it is not collusion-
resistant. In [12], Canetti and Hohenberger present a CCA-
secure bidirectional scheme; based on this security model,
Libert and Vergnaud propose in [21] a unidirectional scheme
with chosen-ciphertext security in the standard model. An-
other interesting proposal is presented in [5], where the au-
thors define the notion of key privacy in the context of proxy
re-encryption, which prevents the proxy to derive the iden-
tities of both sender and receiver from a re-encryption key.

As mentioned, the security in these schemes is based on
number theoretic assumptions, such as the hardness of the
discrete logarithm problem, but the use of other founda-
tions for constructing proxy re-encryption schemes has been
much less explored. In [29], Xagawa and Tanaka present the
first lattice-based proxy re-encryption sheme, which relies
on the Learning With Errors (LWE) problem; this scheme is
bidirectional, multihop and CPA-secure. After this seminal
work, Aono et al [4] proposed a unidirectional and multihop
scheme, also based on the LWE problem.

With regard to the NTRU primitive, it has already been
used as the basis for constructing other cryptographic
schemes, such as multikey fully homomorphic encryption
[22], private information retrieval [3], and public key traitor
tracing scheme [23].

Organization. The rest of this paper is organized as fol-
lows: In Section 2, we provide some basic definitions for
bidirectional proxy re-encryption schemes. In Section 3,

we describe the NTRU encryption scheme and, based on
it, we present our bidirectional proxy re-encryption scheme
NTRUReEncrypt. In Section 4, we describe the provably-
secure version of NTRU from Stehlé and Steinfeld and
present our second scheme, PS-NTRUReEncrypt. In Sec-
tion 5, we describe the experimental results from a prototype
implementation of our proposals, as well as a comparison
with previous proxy re-encryption schemes. Finally, Sec-
tion 6 concludes the paper and future work is outlined.

2. DEFINITIONS
In this section, we provide some basic definitions relevant

to bidirectional proxy re-encryption schemes. We first de-
fine the specification of a bidirectional CPA-secure proxy
re-encryption scheme, based on the one given by Canetti
and Hohenberger [12].

Definition 1. Bidirectional PRE. A bidirectional proxy re-
encryption scheme is a tuple of algorithms (Setup,KeyGen,
ReKeyGen,Enc,ReEnc,Dec):

• Setup(1k) → params. On input the security parame-
ter 1k, the setup algorithm Setup outputs the param-
eters params1.

• KeyGen() → (pkA, skA). The key generation algo-
rithm KeyGen outputs a pair of public and secret keys
(pkA, skA) for user A.

• ReKeyGen(skA, skB) → rkA→B . On input the secret
keys skA and skB , the re-encryption key generation al-
gorithm ReKeyGen outputs a re-encryption key rkA→B .

• Enc(pkA,M) → CA. On input the public key pkA
and a message M ∈M, the encryption algorithm Enc
outputs a ciphertext CA ∈ C.

• ReEnc(rkA→B , CA) → CB . On input a re-encryption
key rkA→B and a ciphertext CA ∈ C, the re-encryption
algorithm ReEnc outputs a second ciphertext CB ∈ C.

• Dec(skA, CA)→M . On input the secret key skA and
a ciphertext CA ∈ C, the decryption algorithm Dec
outputs a message M ∈M.

Once we have defined which are the inputs and outputs of
a bidirectional proxy re-encryption scheme, we formulate the
concept of correctness, also based on the one given by [12].
In this case, as these kinds of schemes are usually multihop,
we refer to multihop correctness (i.e., ciphertexts that can
be re-encrypted multiple times).

Definition 2. Multihop Correctness. A bidirectional PRE
scheme (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) is multi-
hop correct with respect to plaintext space M if:

• For all (pkA, skA) output by KeyGen and all messages
M ∈M, it holds that Dec(skA,Enc(pkA,M)) = M .

• For any sequence of pairs (pki, ski) output by KeyGen,
with 0 ≤ i ≤ N , all re-encryption keys rkj→j+1 out-
put by ReKeyGen(skj , skj+1), with j < N , all messages

1In the following, we will assume params is globally known,
so we will omit it in the functions.



M ∈M, and all ciphertexts C1 output by Enc(pk1,M),
it holds that:

Dec(skN ,ReEnc(rkN−1→N , ...ReEnc(rk1→2, C1))) = M

If for any M ∈ M correctness holds only with prob-
ability 1 minus a negligible quantity, we say that the
scheme is correct with respect to M.

Finally, we define the security game we use for bidirec-
tional CPA-secure proxy re-encryption schemes. This defi-
nition is adapted from [12], [29] and [5].

Definition 3. Bidirectional PRE CPA-security game Let
k be the security parameter. Let A be the adversary, and
H, C the sets of indices of honest and corrupt users, respec-
tively. The game consists of an execution of A with the
following oracles, which can be invoked multiple times in
any order, subject to the constraints below:

Phase 0: The challenger takes a security parameter 1k,
obtains global parameters params← Setup(1k) and initial-
izes sets H, C to ∅. The challenger generates the public key
pk∗ of target user i∗, adds i∗ to H, and sends pk∗ to the
adversary.

Phase 1:

• Uncorrupted key generation Ohonest: On input an in-
dex i, where i 6∈ H∪C, the oracle obtains a new keypair
(pki, ski)← KeyGen() and adds index i to H. The ad-
versary receives pki.

• Corrupted key generation Ocorrupt: On input an index
i, where i 6∈ H ∪ C, the oracle obtains a new keypair
(pki, ski) ← KeyGen() and adds index i to C. The
adversary receives (pki, ski).

Phase 2:

• Re-encryption key generation Orkgen: On input (i, j),
where i 6= j, and either i, j ∈ H or i, j ∈ C, the oracle
returns rki→j ← ReKeyGen(ski, skj).

• Challenge oracle Ochallenge: This oracle can be queried
only once. On input (M0,M1), the oracle chooses a bit
b← {0, 1} and returns the challenge ciphertext C∗ ←
Enc(pk∗,Mb), where pk∗ corresponds to the public key
of target user i∗.

Phase 3:

• Decision: Eventually, A outputs guess b′ ∈ {0, 1}. A
wins the game if and only if b′ = b.

As already noted in [5], we only allow queries to Orkgen
where users are either both corrupt or both honest. Other-
wise, in a bidirectional setting these queries would corrupt
honest users and could be used to simulate a decryption or-
acle, which is not considered in CPA security. That is, we
are adopting a static corruption model. Note that we have
not included a re-encryption oracle. On the one hand, in the
case of CPA security and multihop schemes, the addition of
a re-encryption oracle that allows to re-encrypt ciphertexts
from honest to corrupt users could be used to simulate a
decryption oracle, which is by definition out of the scope of
CPA. On the other hand, restricting the re-encryption ora-
cle only to the honest-to-honest and corrupt-to-corrupt cases
would result in a superfluous oracle, since the same capabil-
ities are acheived by means of Orkgen. For these reasons, a
re-encryption oracle is not provided.

3. A PROXY RE-ENCRYPTION SCHEME
BASED ON NTRU

In this section we firstly introduce the conventional NTRU
encryption scheme and describe its operation. Then, we ex-
tend it in order to construct a bidirectional multihop proxy
re-encryption scheme.

3.1 The NTRU Encryption Scheme
The NTRU encryption scheme, originally proposed by

Hoffstein, Pipher and Silverman in [20], is one of the first
public key encryption schemes based on lattices. The main
reason behind the interest in NTRU is its efficiency, which is
much better than other public-key cryptosystems and is even
comparable to symmetric ciphers. In addition, its security
is conjectured to be based on hard problems over lattices,
although it lacks a formal proof.

We now briefly describe the operation of NTRU. The orig-
inal NTRU cryptosystem is defined over the quotient ring
RNTRU = Z[x]/(xn − 1), where n is a prime parameter.
Thus, elements of the ring RNTRU are integer polynomials
of degree less than n; the operators + and · denote addition
and multiplication in RNTRU , respectively. Other param-
eters of NTRU are the integer q, which is a small power
of 2 of the same order of magnitude than n, and the small
polynomial p ∈ RNTRU , which usually takes values p = 3 or
p = x + 2. In general, operations over polynomials will be
performed in RNTRU modulo q or p, which will be denoted
respectively as RNTRU/q and RNTRU/p.

In NTRU, the private key sk consists of a polynomial
f ∈ RNTRU chosen at random, with a determined number
of coefficients equal to 0, -1, and 1. The polynomial f must
have an inverse in RNTRU/q and RNTRU/p, respectively,
f−1
q and f−1

p . For efficiency, f can be chosen to be congruent
to 1 modulo p. The public key pk consists of the polynomial
h = p·g·f−1

q mod q, where g ∈ RNTRU is chosen at random.
The encryption process is very simple: a plaintext M from

message space RNTRU/p is encrypted to ciphertext C =
h · s + M mod q, where s is a small random polynomial
in RNTRU . For decrypting a ciphertext C, one must first
compute C′ = f · C and reduce it modulo q. If the original
polynomial C′ is sufficiently small then the result of the
reduction is pgs + fM ∈ RNTRU/q. Next, C′ is reducted
modulo p, obtaining fM . Finally, this result is multiplied
by f−1

p to extract the original message M ; note that the last
step is redundant if f was selected congruent to 1 modulo p.

3.2 NTRUReEncrypt
Based on the NTRU encryption scheme, we define the

proxy re-encryption scheme NTRUReEncrypt. Our proposal
is essentialy an extension of the scheme that includes the
definition of the re-encryption and re-encryption key gener-
ation algorithms. One of the fundamental differences of our
scheme with respect to the original NTRU is that the se-
cret polynomial f has to be congruent to 1 mod p, not for
efficiency reasons, but because it is necessary to correctly
decrypt re-encrypted ciphertexts.

3.2.1 The scheme
Now we present our scheme NTRUReEncrypt. In the fol-

lowing, the delegator is represented by user A, whereas the
delegatee is user B. Our scheme is specified by the following
algorithms:



• KeyGen(): The output of the key generation algorithm
for user A is a pair of public and secret keys (pkA, skA).
If first chooses a pair of polynomials (fA, gA) ∈ R2

NTRU

at random, with a determined number of coefficients
equal to 0, -1, and 1, as in the conventional NTRU
scheme. The only added requirement is that fA has
to be congruent to 1 modulo p. As in the original
case, fA must have an inverse in RNTRU/q, denoted
by f−1

A . Note that now it is not necessary the inverse
of fA modulo p. The private key skA is the polyno-
mial fA, whereas the public key pkA consists of the
polynomial hA = p · gA · f−1

A mod q.

• ReKeyGen(skA, skB): On input the secret keys skA =
fA and skB = fB , the re-encryption key generation
algorithm ReKeyGen computes the re-encryption key
between users A and B as rkA→B = skA · sk−1

B =
fA · f−1

B . The re-encryption key can be computed by
means of a simple three-party protocol, so neither A,
B nor the proxy learns any secret key. The protocol,
originally proposed in [12], is as follows: A selects a
random r ∈ RNTRU/q and sends r · fA mod q to B
and r to the proxy; next, B sends r ·fA ·f−1

B mod q to
the proxy, who computes rkA→B = fA · f−1

B mod q.

• Enc(pkA,M): On input the public key pkA and a mes-
sage M ∈ RNTRU/p, the encryption algorithm Enc
generates a small random polynomial s ∈ RNTRU , and
outputs the ciphertext CA = hAs+M .

• ReEnc(rkA→B , CA): On input a re-encryption key
rkA→B and a ciphertext CA, the re-encryption algo-
rithm ReEnc samples a random polynomial e ∈ RNTRU
and outputs ciphertext CB = CA · rkA→B + pe.

• Dec(skA, CA): On input the secret key skA = fA and
a ciphertext CA, the decryption algorithm Dec com-
putes C′A = (CA · fA) mod q and outputs the original
message M = (C′A mod p).

Note that if ciphertexts are not re-encrypted, NTRUReEn-
crypt behaves in exactly the same way as the original NTRU
encryption scheme.

3.2.2 Correctness
Now, we informally explain the reason why the re-encryption

process works. Re-encrypted ciphertexts are of the form:

CB = CA · rkA→B + pe

= (pgAf
−1
A s+M) · fAf−1

B + pe

= pgAf
−1
B s+ pe+ fAf

−1
B M

When decrypting a re-encrypted ciphertext, the delegatee
multiplies the ciphertext with the secret key fB :

CB · fB = (pgAf
−1
B s+ pe+ fAf

−1
B M) · fB

= pgAs+ pefB + fAM

Now, taking modulo p, we get rid of the additional terms.
Recall that we require secret key polynomial fA to fulfill
fA = 1 mod p, so (CB ·fB) mod p = (pgAs+pefB+fAM)
mod p = M , which is the original message.

The inclusion of the random term e during the re-encryption
phase is necessary in order to prevent a simple ciphertext-
only attack from the delegatee. Imagine that a re-encrypted
ciphertext is of the form CB = CA · rkA→B = CA · fA · f−1

B ;
that is, without the random term e. Then, the delega-
tee could extract the secret key of the delegator based on
the observation that CB · fB = CA · fA holds, since CB =
CA · rkA→B . Next, assuming that CA is invertible mod-
ulo q, the attacker can extract the secret key by computing
fA = C−1

A · CB · fB .
The scheme is also multihop, that is, it supports multiple

re-encryptions. However, this property is limited, since the
addition of the error term during the re-encryption produces
an increasing error that grows on each hop, until eventually,
decryption fails. Our experiments show that this depends
heavily on the choice of parameters. This issue is discussed
in more detail in Section 5.1.

3.2.3 Analysis
The resulting proxy re-encryption scheme preserves the

performance level of the original NTRU; a detailed exper-
imentation on this matter is presented in Sections 5.1 and
5.2. These experimental results show that NTRUReEncrypt
outperforms other proxy re-encryption schemes by an order
of magnitude.

A theoretical analysis of the computational costs associ-
ated with NTRUReEncrypt shows that the main algorithms,
namely encryption, decryption and re-encryption, only need
a single multiplication (actually, re-encryption takes an ad-
ditional multiplication for computing the term pe, but this
can be computed beforehand and, in addition, the polyno-
mial p is small and known in advance). As already stated
in the introduction, the core operation in NTRU is the mul-
tiplication of polynomials, which can be done in O(n logn)
time using the Fast Fourier Transform (FFT) [19].

Table 1: Space costs of NTRUReEncrypt
Element Size

Keys O(n · log2 q)
Message O(n)

Ciphertext O(n · log2 q)
Ciphertext expansion O(log2 q)

As for the space costs associated to NTRUReEncrypt, Ta-
ble 1 presents a theoretical analysis of the size of the mes-
sages, keys, and ciphertexts, as well as a measure of the
ciphertext expansion it produces. It can be seen that the
expansion is logarithmic in the parameter q, and that the
size of keys is within O(n log2 q). This can be put in con-
trast with other lattice-based cryptosystems, such as the
proxy re-encryption scheme from Aono et al [4], where keys
and messages are tipically matrices whose dimensions grow
linearly with the parameter n. This implies that the size of
these matrices is at least quadratic with respect to n.

Table 2 illustrates this fact by showing a comparison be-
tween Aono’s scheme and ours. The space costs from Aono’s
scheme are determined by the parameters shown in [4] for
the case of 143 bits of security and 128-bit plaintexts, whereas
our figures are calculated using a parameter set that achieves
256 bits of security and supports up to 186-bits plaintexts.
More details about the parameters used are given in Sec-
tion 5.1. It can be seen that our space costs are lower in



Table 2: Comparison of space costs (in KB)
Size Aono et al. [4] NTRUReEncrypt

Public keys 60.00 1.57
Secret key 60.00 1.57

Re-Encryption key 2520.00 1.57
Ciphertext 0.66 1.57

comparison, even considering the difference in bits of secu-
rity. In the case of re-encryption keys, the difference in size
is remarkable as it grows up to 3 orders of magnitude. On
the other hand, our ciphertexts are slightly bigger. Another
interesting fact is that we use the same kind of polynomials
for conveying all the types of keys and ciphertexts, so the
space costs are the same in all cases (1.57 KB).

It is easy to check that our scheme is bidirectional. Given
rkA→B = fAf

−1
B , the proxy can easily compute rkB→A =

(rkA→B)−1 = fBf
−1
A . This property is a consequence of how

re-encryption keys are constructed (rkA→B = skA ·sk−1
B ), in

the same way as in other bidirectional schemes [11, 12, 27].
With respect to the security of the scheme, we cannot

overcome the problem of NTRU lacking a formal security
proof. However, we can study it from a practical way, as
NTRU does. For instance, the time required for a lattice-
based attack to the public key is conjectured to be expo-
nential in n [20]. This is also relevant to the re-encryption
scheme since extracting private keys from the re-encryption
key is at least as hard as attacking NTRU public key, as they
are constructed in the same way: for instance, the public key
of user B is of the form pgBf

−1
B , whereas re-encryption key

rkA→B is of the form fAf
−1
B . In NTRU, the polynomials

f are larger than the polynomials g, i.e., they have more
non-zero terms, so the term fA of a re-encryption key would
be larger than the term pgB of a public key. However, as it
happens to the majority of bidirectional proxy re-encryption
schemes [11, 12, 27], our scheme is not collusion-safe. That
is, it is vulnerable to a collusion of the proxy and the users,
since extracting the delegator’s secret key fA is as simple as
computing rkA→B · fB . The same problem applies to the
delegatee’s secret key.

As a way to provide a formal security proof of our scheme,
we explored how this problem has been addressed in the lit-
erature. An interesting approach is made by Stehlé and Ste-
infeld in [25, 26], where they present a variant of NTRU
which is proven CPA-secure under lattice-based assump-
tions. Based on this solution, we build a second version of
our NTRU-based proxy re-encryption scheme, called
PS-NTRUReEncrypt, which is provably-secure.

4. PROVABLY SECURE NTRUREENCRYPT
In this section we provide a second proxy re-encryption

scheme, called PS-NTRUReEncrypt, that is provable secure
under a hard problem for lattices, namely the Ring-LWE as-
sumption. Before explaining our provably-secure scheme, we
must first establish some background concepts; after that,
we describe the NTRU variant proposed in [25, 26] by Stehlé
and Steinfeld, which serves as a basis for our second scheme.

4.1 Background
Before continuing, we provide some basic definitions and

present the notation that is used throughout this section.
Most of this definitions and notation is taken from [25, 26].

Let Φ(x) = xn + 1, with n a power of 2; that is, Φ(x) is
the 2n-th cyclotomic polynomial. Let q be a prime integer
such that q = 1 mod 2n. Let R be the ring Z[x]/Φ(x),
and Rq = R/q = Zq[x]/Φ(x). We will denote the set of
invertible elements of Rq as R×q . Although elements of R
are polynomials, we often treat them as vectors. We denote
by ‖ · ‖ and ‖ · ‖∞ the Euclidean norm and infinite norm,
respectively. During the proofs in Section 4.3.1 and 4.3.2,
we use the asymptotic notations O(·), ω(·),Ω(·). A function

f(n) is negligible if f(n) = n−ω(1).
The Ring Learning With Errors (Ring-LWE) problem is

a hard decisional problem based on lattices introduced by
Lyubaskevsky et al in [24]. In this paper, we use an adapted
version of this problem found in [25, 26].

Definition 4. The Ring-LWE problem. Let s ∈ Rq and
ψ a distribution over R×q , then we define A×s,ψ as the dis-

tribution that samples pairs of the form (a, b), where a is
chosen uniformly from R×q and b = a · s + e, for some e

sampled from ψ. The distribution A×s,ψ is also called the
Ring-LWE distribution. The Ring-LWE problem is to dis-
tinguish distribution A×s,ψ from a uniform distribution over

R×q ×Rq. The Ring-LWE assumption is that this problem
is computationally infeasible.

This variant of the Ring Learning With Errors problem
is denoted in [25, 26] as the R-LWE×HNF problem; however,
we will not use that notation for simplicity. As in [25, 26],
the error distributions ψ are sampled from a family of dis-
tributions Ψα, with parameter α; for more details of the
definition of these distributions, see [25, 26].

4.2 Provably Secure NTRU
Stehlé and Steinfeld proposed in [25, 26] a variant of the

NTRU primitive which is proven CPA-secure under the hard-
ness assumption of the Ring-LWE problem. This scheme is
defined over the rings R and Rq, determined by parame-
ters n and q, as defined in previous section. The plaintext
spaceM corresponds to the ring R/p, where p ∈ R×q is also
a parameter of the scheme; as conventional NTRU, typical
values for this parameter are p = 3 and p = x+2, but in this
scheme one may choose p = 2, since q is prime. The param-
eter α characterizes the family of distributions Ψα, and the
parameter σ is the standard deviation of the Gaussian dis-
tribution used during the key generation algorithm. Thus,
global parameters are a tuple (n, q, p, α, σ). The algorithms
of this encryption scheme are the following:

• KeyGen(): The output of the key generation algorithm
for user A is the pair of public and secret keys
(pkA, skA) ∈ R×q × R×q . Let DZn,σ be the Gaussian
distribution over Zn with standard deviation σ. The
keys are computed as follows:

1. Sample f ′ from DZn,σ; let fA = 1 + p · f ′; if (fA
mod q) 6∈ R×q , resample.

2. Sample gA from DZn,σ; if (gA mod q) 6∈ R×q , re-
sample.

3. Compute hA = p · gA · f−1
A .

4. Return secret key skA = fA and pkA = hA.

• Enc(pkA,M): On input the public key pkA and a mes-
sage M ∈ M, sample noise polynomials s, e from a



distribution from Ψα, and output ciphertext CA =
hAs+ pe+M ∈ Rq.

• Dec(skA, CA). On input the secret key skA = fA and a
ciphertext CA, the decryption algorithm Dec computes
C′A = CA · fA and outputs the message M = (C′A
mod p) ∈M.

It can be seen that the operation of this scheme is very
similar to the original NTRU, except for the generation of
the keys and the inclusion of a noise term during encryp-
tions. The authors prove that this NTRU variant is CPA-
secure, over the hardness of the Ring-LWE problem. They
also prove the correctness of their proposal, by establishing
the conditions for avoiding decryption failures. Both proofs
will serve as a basis for ours.

4.3 Provably-Secure NTRUReEncrypt
In this section we present the scheme PS-NTRUReEncrypt,

which is based on the provably-secure variant of NTRU de-
scribed in the previous section. This scheme uses the same
global parameters as before, a tuple (n, q, p, α, σ). This
scheme is defined by the following algorithms:

• KeyGen(): The output of the key generation algorithm
for user A is the pair of public and secret keys
(pkA, skA) ∈ R×q × R×q . The keys are computed as
follows:

1. Sample f ′ from DZn,σ; let fA = 1 + p · f ′; if (fA
mod q) 6∈ R×q , resample.

2. Sample gA from DZn,σ; if (gA mod q) 6∈ R×q , re-
sample.

3. Compute hA = p · gA · f−1
A .

4. Return secret key skA = fA and pkA = hA.

• ReKeyGen(skA, skB): On input the secret keys skA =
fA and skB = fB , the re-encryption key generation
algorithm ReKeyGen computes the re-encryption key
between users A and B as rkA→B = skA · sk−1

B =
fA · f−1

B .

• Enc(pkA,M): On input the public key pkA and a mes-
sage M ∈ M, the encryption algorithm Enc samples
noise polynomials s, e from a distribution from Ψα, and
outputs ciphertext CA = hAs+ pe+M ∈ Rq.

• ReEnc(rkA→B , CA): On input a re-encryption key
rkA→B and a ciphertext CA, the re-encryption algo-
rithm ReEnc samples noise polynomial e′ from a dis-
tribution from Ψα and outputs ciphertext CB = CA ·
rkA→B + pe′ ∈ Rq.

• Dec(skA, CA). On input the secret key skA = fA and a
ciphertext CA, the decryption algorithm Dec computes
C′A = CA · fA and outputs the message M = (C′A
mod p) ∈M.

It can be seen that this scheme is an extension of the
one from Stehlé and Steinfeld, by including the definition
of the re-encryption and re-encryption key generation algo-
rithms. Note also that the same three-party protocol for
computing the re-encryption key described in Section 3.2
for NTRUReEncrypt can be applied here.

4.3.1 Correctness
Following the description of the encryption, decryption

and re-encryption algorithms, it is easy to informally check
that the correctness conditions defined in Def. 2 are fulfilled:

• For all (pkA, skA) output by KeyGen and all messages
M ∈M, it holds that Dec(skA,Enc(pkA,M)) = M .

The evaluation of the encryption of an arbitraty mes-
sage M ∈ M gives Dec(psgAf

−1
A + pe + M, skA) as

a result. Next, as described in the decryption algo-
rithm, we take C′ = fA · (psgAf

−1
A + pe + M) =

psgA+pefA+MfA. Finally, since fA = 1 mod p and
psgA = pefA = 0 mod p, we have that C′ mod p =
M .

• For any sequence of pairs (pki, ski) output by KeyGen,
with 0 ≤ i ≤ N , all re-encryption keys rkj→j+1 out-
put by ReKeyGen(skj , skj+1), with j < N , all messages
M ∈M, and all ciphertexts C1 output by Enc(pk1,M),
it holds that:

Dec(skN ,ReEnc(rkN−1→N , ...ReEnc(rk1→2, C1))) = M

If for any M ∈ M correctness holds only with prob-
ability 1 minus a negligible quantity, we say that the
scheme is correct with respect to M.

Let us assume the sequence of secret keys f0, f1, ..., fN .
Since our scheme is multi-hop, a ciphertext re-encrypted
N times will be of the form:

CN = pg0f
−1
N s+ pe0f0f

−1
N + pe1f1f

−1
N + ...

+ peN−1fN−1f
−1
N + peN +Mf0f

−1
N

= pg0f
−1
N s+

[
N−1∑
i=0

peifif
−1
N

]
+ peN +Mf0f

−1
N (1)

where ei denotes the additional error terms added dur-
ing the re-encryptions, and e0 is the error term from
the first (and unique) encryption. When decrypting
CN , and assuming there are no decryption failures,
one obtains:

C′N = CN · fN = pg0s+

[
N∑
i=0

peifi

]
+Mf0 (2)

Since, f0 = 1 mod p and pg0s = peifi = 0 mod p,
for 0 ≥ i ≥ N , then we have that C′N mod p = M .

In the informal proof above, we have not considered the
possibility of decryption failures. This is a recurrent issue
from the first definition of the NTRU cryptosystem. It can
be seen that the re-encryption process produces an increase
in the error terms of the ciphertexts, which can potentially
lead to decryption failures. We will now describe the correct-
ness conditions of NTRUReEncrypt and prove that the de-
cryption algorithm is capable of handling with this increase.
This proof is basically a slight extension of the one given
in [26, Lemma 3.7] and generalizes single encryption as well
as multiple re-encryptions; in this case, single encryption
is a handled as a particular case of multihop re-encryption
(taking the number of re-encryptions N = 0).



Theorem 1. If deg(p) ≤ 1, ω(n0.25 logn)αN‖p‖2σ ≤
1, and n0.75 ≤ αq, then the decryption algorithm of PS-
NTRUReEncrypt succeeds in recovering M with probability
1− n−ω(1) over the choice of s, ei, fi, gi, for 0 ≤ i ≤ N .

Proof. As stated, a ciphertext CN re-encrypted N times
has the form described in Equation 1. When decrypting
CN , the decryption algorithm computes C′N , as described
in Equation 2. This computation is implicitly performed
modulo q, so C′N ∈ Rq. However, let us define C′′N ∈ R,
that is, not modulo q:

C′′N = pg0s+

[
N∑
i=0

peifi

]
+Mf0 ∈ R

In order for the decryption algorithm to succeed ‖C′′N‖∞ ≤
q/2, so C′N = C′′N in R. Since f0 = 1 mod p and pg0s =
peifi = 0 mod p, for 0 ≤ i ≤ N , then we have that C′′N
mod p = C′N mod p = M and the decryption algorithm
succeeds. Then, it is sufficient to give an upper bound on
the probability that ‖C′′N‖∞ ≥ q/2.

From Lemma 1 (see Appendix A), polynomials g0 and fi,
for 0 ≥ i ≥ N , have Euclidean norms ≤ 4

√
n‖p‖σ, with

probability ≥ 1− 2−n+3. From the properties of the ring R
[17], we know that for all u, v ∈ R, ‖u · v‖ ≤

√
n · ‖u‖ · ‖v‖.

As a particular case, since deg(p) ≤ 1, then ‖p · u‖ ≤ 2‖p‖ ·
‖u‖. Hence, it follows that ‖pfi‖, ‖pg0‖ ≤ 8

√
n‖p‖2σ, with

probability ≥ 1−2−n+3. Now, from Lemma 2 (see Appendix

A), if n0.25 ≤ αq we have that with probability ≥ 1−n−ω(1):

‖pfiei‖∞, ‖pg0s‖∞ ≤ 8αqn0.25ω(logn)‖p‖2σ
Apart from this, since ‖M‖ ≤ ‖p‖ [26], we know that:

‖f0M‖∞ ≤ ‖f0M‖ ≤ 4n‖p‖2σ
Hence ‖C′′N‖∞ ≤

[
8(N + 2)αqn0.25ω(logn) + 4n

]
‖p‖2σ,

and taking n0.75 ≤ αq, then:

‖C′′N‖∞ ≤ (8N + 20)αqn0.25ω(logn)‖p‖2σ
As we assumed initially that ω(n0.25 logn)αN‖p‖2σ ≤ 1,

then we have that ‖C′′N‖∞ ≤ q/2, with probability ≥ 1 −
n−ω(1).

It can be seen that for the case of single encryption (N =
0), the determined bounds are the same than in [26, Lemma
3.7].

4.3.2 Security proof
In this section, we proceed to prove that the scheme PS-

NTRUReEncrypt is CPA-secure. This proof is also based on
the one given in [26, Lemma 3.8].

Theorem 2. Suppose that n is a power of 2, and q a
prime number such that q = 1 mod 2n. Let ε ∈ (0, 1

3
), δ >

0, p ∈ R×q and σ ≥ n
√
ln(8nq) · q

1
2

+ε. If there exists and
IND-CPA attack against PS-NTRUReEncrypt with probabil-
ity 1

2
+δ, then there exists an algorithm that solves the Ring-

LWE problem with probability δ
2
− q−Ω(n).

Proof. Let us assume, by contradiction, that we have
an adversary A that breaks PS-NTRUReEncrypt with prob-
ability 1

2
+ δ. We construct an algorithm B against the

Ring-LWE problem as follows:

Let Osample be an oracle that samples tuples (h′, C′) from
either the uniform distribution over R×q × Rq or A×s,ψ. Al-

gorithm B first gets a sample (h′, C′) from Osample. Next,
B generates target public key pk∗ = h∗ = p · h′ and gives
pk∗ to A. Note that, regardless of the input distribution, h′

will be sampled uniformly from R×q , and since p ∈ R×q , then
h∗ = p ·h′ is uniformly random in R×q ; however, by [26, The-

orem 3], h∗ is within negligible statistical distance q−Ω(n) to
public keys generated by KeyGen. B will also generate an
invalid, but correctly distributed, secret key polynomial f∗

as described in the first step of the key generation process,
so target secret key is sk∗ = f∗.

Both honest and corrupted key generation are done as in
the PS-NTRUReEncrypt scheme. Re-encryption key gener-
ation queries are done using the secret keys derived on the
key generation queries. Once A queries the challenge oracle
with inputs M0 and M1, B randomly picks b ← {0, 1}, and
constructs the challenge ciphertext as C∗ = p ·C′+Mb. Ad-
versary A receives C∗ and, eventually, outputs its guess b′;
if b′ = b, then algorithm B outputs 1.

On the one hand, when the input to B is a sample from
A×s,ψ, then it will be of the form (h′, C′ = h′s+ e), for some
s, e← ψ. In this case, the challenge ciphertext C∗ is a cor-
rect encryption of Mb under h∗, since C∗ = p · C′ + Mb =
p(h′s+e)+Mb = h∗s+pe+Mb, and A will succeed in distin-

guishing Mb with probability 1
2

+ δ − q−Ω(n). Hence, B will

determine that the sample was from the A×s,ψ distribution
with the same probability.

On the other hand, when the sample is from the uniform
distribution over R×q ×Rq then C′ is uniformily random in
Rq, and since p ∈ R×q , so is p ·C′. The challenge ciphertext
C∗ = p · C′ +Mb will be then uniformily random in Rq, as
in the original distribution of ciphertexts, and independent
of b. In this case, algorithm B does not have any advantage
in distinguishing the distribution and outputs 1 with prob-
ability 1

2
. Overall, algorithm B succeeds with probability

( 1
2
)( 1

2
+ δ− q−Ω(n)) + ( 1

2
)( 1

2
) = 1

2
+ δ

2
− q−Ω(n). This contra-

dicts the Ring-LWE assumption when δ is non-negligible.

Remark : In this simulation, each re-encryption key that
involves the target public key is invalid, as generating a re-
encryption key implies knowledge of the secret keys of the
users involved. In this case, the target public key is con-
structed from Osample, so the simulator does not know the
corresponding secret key. However, since the secret key of
the target used generated at the beginning of the simula-
tion is correctly distributed, any re-encryption key computed
from this secret key is indistinguishable from a valid one. A
similar argument is made in [18].

4.3.3 Analysis
The properties of PS-NTRUReEncrypt are the same as our

first scheme. These properties are:

• Bidirectional: Given rkA→B = fAf
−1
B , one can easily

compute rkB→A = (rkA→B)−1 = fBf
−1
A .

• Multihop: It supports multiple re-encryptions, as
shown in Section 4.3.1. Note that an error term is
included during the re-encryption process, so the noise
grows on each hop. Nevertheless, the correctness con-
ditions presented before guarantee that the decryption



succeeds with overwhelming probability for proper pa-
rameters (which include the devised maximum num-
ber of hops, N). See also the results presented on
Section 5.3.

• Not collusion-safe: This scheme suffers from the same
vulnerability as NTRUReEncrypt, so secret keys can
be extracted from the re-encryption key if the proxy
colludes with a user involved. This problem is common
in bidirectional proxy re-encryption schemes.

Table 3 shows the computational costs associated to PS-
NTRUReEncrypt. As for our first scheme NTRUReEncrypt,
the main operation here is the multiplication of polynomi-
als, which is denoted by tm. In addition, another potentially
costly operation is sampling from the noise distribution, de-
noted by ts. We distinguish here between on-line and off-line
operations, as the latter can be performed beforehand (e.g.,
sampling noise terms).

Table 3: Time costs of PS-NTRUReEncrypt
Operation On-line Off-line
Encryption tm tm + 2ts

Re-Encryption tm tm + ts
Decryption tm –

With regard to the theoretical space costs, this scheme
shares the same results as NTRUReEncrypt, presented in Ta-
ble 1. However, when considering an experimental instan-
tiation, the parameters used would not be the same, which
implies that the experimental costs vary. In addition, given
that we lack of a formal analysis for quantifying the level of
security that is provided by the scheme, it is not possible to
make a direct comparison. An experimental analysis of the
costs of PS-NTRUReEncrypt is presented in Section 5.3.

5. SOME EXPERIMENTAL RESULTS
In order to validate the viability of the proposed proxy re-

encryption schemes, we have developed and tested an imple-
mentation of our proposals. Since we propose two schemes,
we have two different implementations. NTRUReEncrypt is
implemented on top of an available open-source Java imple-
mentation of NTRU [1]. For PS-NTRUReEncrypt, due to its
non-standard nature, we had to code it from scratch; how-
ever, we made use of the functionalities provided by the Java
Lattice-Based Cryptography (jLBC) library [14]. Our exe-
cution enviroment consists on an Intel Core 2 Duo @ 2.66
GHz. Although this processor has two cores, our implemen-
tation only uses one of them, as it is not parallel.

5.1 Performance of NTRUReEncrypt
The first experiment consisted of measuring the perfor-

mance of the first proposed scheme using different set of pa-
rameters. We have used the parameter sets proposed in [28],
although other parameters could be studied. Besides the ba-
sic implementation, we have made also some optimizations,
such as the possibility of using product-form polynomials
[28], which has a great effect on performance.

In Table 4, we give the execution times for the encryption,
decryption and re-encryption for each parameter set. Pa-
rameters are represented by a tuple (n, prod, k), where prod
is a boolean parameter that indicates the use of product-
form polynomials, and k is the claimed security level (in

bits). Additional parameters are fixed, such as q = 2048
and p = 3.

For each set of parameters, the experiment consisted of a
looped execution, where a random message from the plain-
text space is sequentially encrypted, re-encrypted and de-
crypted, and new keys are used on each iteration. The time
for each operation is computed as the average of 100 itera-
tions. Since sampling random elements is an operation that
can be performed off-line, we decided to exclude it from the
time measurements; thus, times reflected in this experiment
only reflect the operations that must be performed on-line.
This approach was also followed by [19].

Table 4: Computation time (in ms) and number of
hops of NTRUReEncrypt for different parameters

Parameters Enc. Dec. Re-Enc. # Hops
(439, no, 128) 0.64 0.30 0.24 5
(439, yes, 128) 0.16 0.30 0.23 5
(1087, no, 256) 1.39 1.25 1.05 21
(1087, yes, 256) 0.48 1.26 1.07 15
(1171, no, 256) 0.80 1.12 1.14 21
(1171, yes, 256) 0.43 1.22 1.15 14
(1499, no, 256) 0.74 1.78 1.73 50
(1499, yes, 256) 0.32 1.67 1.66 42

For example, the sixth set of parameters was already used
for a previous NTRU benchmark [19], and we can see that
our results are consistent with their study, where they ob-
tained a measure of approximately 0.31 ms for encryption
(3220 encryptions per second).

In addition, Table 4 also shows the average number of
re-encryptions supported by each parameter set. As stated
in Section 3.2.2, the inclusion of the error term pe during
the re-encryption process produces an increasing error that
grows on each hop, causing a decryption failure at some
point. It can be seen that this depends on the choice of
parameters, so increasing the parameters actually decreases
the probability of decryption failure.

5.2 Comparison of NTRUReEncrypt with other
proxy re-encryption schemes

In order to benchmark our proposal with respect to other
proxy re-encryption schemes, we have implemented three
schemes. Two of them share similar properties than ours
(i.e., bidirectional and multihop). One of them is the BBS
scheme [11], which is CPA-secure as ours, while the other is
the one proposed by Weng et al [27], which is proven CCA-
secure; note, however, that the latter scheme achieves a bet-
ter notion of security than ours, and hence, the comparison
is unbalanced in this case. Both of them are implemented
in Java using elliptic curve cryptography over a prime field.
Specifically, we used the NIST P-256 curve, which provides
128 bits of security [10]. In addition, and for the sake of
comparison, we have also implemented a third scheme from
Aono et al [4]; note that in this case, this scheme is not
bidirectional. For our scheme, we have used the ees1171ep1
parameter set from [28], which achieves 256 bits of security.
This parameter set corresponds to the sixth row of Table 4.
We chose this parameter set because it was already used for
a previous NTRU benchmark [19]. With regard to the ex-
perimental setting, we have used the same environment as
before.
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Figure 1: Comparison with other proxy re-
encryption schemes

Figure 1 shows the results of our experiment. It can be
seen that our scheme outperforms the others, as it is between
10 and 20 times faster. The scheme from Aono et al shows a
similar performance in encryption and decryption, but is 20
times slower for re-encryption. The results obtained for our
scheme are consistent with previous benchmarks for NTRU
[19], as we used the same parameters.

For our experiment, we also implemented other unidirec-
tional schemes, specifically, the ones from Ateniese et al [7]
and Libert and Vergnaud [21]. However, we exclude them
from this comparison since they are much slower due to the
use of bilinear pairings; Appendix B presents these omitted
results.

5.3 Performance of PS-NTRUReEncrypt
Table 5 shows the computation time of the main opera-

tions of PS-NTRUReEncrypt. It can be seen that the com-
putation time for the main operations is approximately the
same for each parameter set. This is also shown in Figure 2.
Note that this figure is in logarithm scale, so the growth
in computation time is exponential as n increases. This is
a consequence of requiring that n is a power of 2, which
restricts the choice of parameters.

Table 5: Computation time (in ms) of PS-
NTRUReEncrypt for different parameters

Parameters Enc. Dec. Re-Enc.
n = 32, log2 q = 23 0.93 0.99 1.05
n = 64, log2 q = 28 4.53 4.23 4.32
n = 128, log2 q = 32 17.28 17.32 17.45
n = 256, log2 q = 37 80.64 81.045 86.56
n = 512, log2 q = 41 333.75 334.07 359.54
n = 1024, log2 q = 46 1333.03 1344.10 1461.46
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Figure 2: Performance of PS-NTRUReEncrypt

Unlike the first scheme, we do not provide a comparison of
PS-NTRUReEncrypt to other proxy re-encryption schemes.
We cannot directly compare it to other schemes without
properly analizing the security level it achieves, which is
done indirectly through evaluating the security against the
best known lattice attacks [26].

With regard to the number of hops of this scheme, the
results now are much better than in NTRUReEncrypt, where
we had just up to 50 re-encryptions, with the parameter
sets used. In this case, we were unable to find a maxi-
mum number of hops, having executed more than 10000
re-encryptions for each parameter set, without finding any
decryption failure. This lead us to think that the parame-
ters used in PS-NTRUReEncrypt are actually very conserva-
tive, which explains also that its performance is lower than
NTRUReEncrypt. These parameters are, however, derived
from the theoretic assumptions; it is an open problem to
find ways to decrease them.

Other factor that could impact the results is that the im-
plementation is not as optimized as NTRUReEncrypt, since
we had to code it from scratch. In order to improve our
implementation, we can make use of optimizations such as
faster algorithms for polynomial multiplication, based on the
Fast Fourier Transform (FFT).

Table 6: Space costs (in KB) of PS-
NTRUReEncrypt for different parameters

Parameters Size of polynomials
n = 32, log2 q = 23 0.09
n = 64, log2 q = 28 0.22
n = 128, log2 q = 32 0.50
n = 256, log2 q = 37 1.16
n = 512, log2 q = 41 2.56
n = 1024, log2 q = 46 5.75

As for the space costs, Table 6 shows the size in KB of the
polynomials produced by different parameters. Recall that
in our schemes, all the elements of the cryptosystem (i.e.,
public and secret keys, re-encryption keys, and ciphertexts)
are represented by the same kind of polynomials.



6. CONCLUSIONS
In this paper we describe NTRUReEncrypt, a highly-efficient

proxy re-encryption scheme based on the NTRU cryptosys-
tem. This scheme is bidirectional and multihop, but not
collusion-resistant. The key strength of this scheme is its
performance. Experimental results show that this scheme
outperforms previous proposals by an order of magnitude,
and there is room for even more improvement, for instance
using parallelization techniques, as shown in [19]. We be-
lieve that the level of efficiency shown by NTRUReEncrypt
opens up new practical applications of proxy re-encryption
in constrained environments. In addition to this scheme,
we propose PS-NTRUReEncrypt, a provably-secure variant
that is CPA-secure under the hardness of lattice problems,
namely the Ring-LWE problem.

With regard to future work, there are several areas with
potential for improvement. The most pressing are achiev-
ing CCA-security and the definition of a unidirectional and
collision-resistant scheme. Another subject is improving the
parameters of NTRUReEncrypt, since this could decrease the
probability of decryption failures after multiple
re-encryptions. Additionaly, it would be interesting to come
up with better bounds for the provably-secure version and
an analysis of the selection of parameters based on the best
known attacks. Finally, we want also to extend the exper-
imental analysis to other lattice-based proxy re-encryption
schemes.
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[25] D. Stehlé and R. Steinfeld. Making NTRU as secure as
worst-case problems over ideal lattices. In Advances in
Cryptology–EUROCRYPT 2011, pages 27–47.
Springer, 2011.
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APPENDIX
A. SECONDARY LEMMAS

In this section we present two secondary lemmas, both
presented in [26]. The first lemma provides bounds for the
secret keys generated using the key generation algorithm:

Lemma 1. [26, Lemma 3.6] Let n be a power of 2, q a
prime so that q = 1 mod 2n, and deg(p) ≤ 1. Let σ ≥√
n logn · q1/n. The secret key polynomials f and g returned

by the KeyGen algorithm satisfy ‖f‖ ≤ 4
√
n‖p‖σ and ‖g‖ ≤√

nσ, with probability ≥ 1− 2−n+3.

The second lemma provides bounds to the product of ar-
bitrary polynomials of R with samples from a distribution
from Ψα:

Lemma 2. [26, Lemma 2.10] Let y, r ∈ R, with r fixed
and y sampled from a distribution from Ψα, with αq ≥ n0.25.
Then: Pr

[
‖yr‖∞ ≥ αqn−0.25ω(logn) · ‖r‖

]
≤ n−ω(1)

B. PERFORMANCE EVALUATION OF PROXY
RE-ENCRYPTION SCHEMES

In addition to the schemes shown in the experimental
comparison, we also implemented two more schemes from
Ateniese et al [7] and Libert and Vergnaud [21], both of
them unidirectional and the latter secure against chosen ci-
phertext attacks. However, being based on pairings, these
schemes have proven to be much slower, so we drop them
from our main analysis. Since we are unaware of any previ-
ous work that benchmarks actual implementations of proxy
re-encryption schemes, we decided to include this evaluation
as an appendix.

We implemented these additional schemes using the jPBC
library [15], a pairing-based cryptography library for Java.
As for the cryptographic details, we used a supersingular
curve of the form y2 = x3 + x, with a 256-bit group order

and 3072 bits for the field size, which achieves 128 bits of
security [16][9]. Additionally, we have made extensive use
of exponentiation and pairing preprocessing of frequently-
used elements for efficiency reasons. This is a very useful
functionality of jPBC that allows the preprocessing of expo-
nentiation operations for efficiency reasons, since there are
several elements that are frequently exponentiated, such as
the generators of the groups and the public keys.

Table 7: Computation time of several proxy re-
encryption schemes (in ms)

Scheme Enc. Dec. Re-Enc.
NTRUReEncrypt 0.43 1.22 1.15
Aono et al [4] 1.17 0.47 20.5

BBS [11] 11.07 11.21 11.48
Weng et al [27] 22.52 11.89 22.29

Ateniese et al [7] 22.76 13.76 83.52
Libert and Vergnaud [21] 155.27 443.87 386.93

Table 7 shows the results obtained from our experiments,
including the schemes from Ateniese et al. and from Lib-
ert and Vergnaud. For the particular case of re-encryption,
which is the most common operation for most applications
of proxy re-encryption, it can be seen that NTRUReEncrypt
outperforms the others. Note also that the security level for
the proxy re-encryption schemes is 128 bits, while the pro-
vided by NTRUReEncrypt with the used parameters is 256
bits; if we increase the parameters in the rest of the schemes
in order to achieve 256 bits of security, then these times
would be much higher.


