
LockPic: Privacy Preserving Photo Sharing
in Social Networks

Carlos Pares-Pulido and Isaac Agudo(B)

Network, Information and Computer Security Lab.,
University of Malaga, Malaga, Spain

carlosparespulido@gmail.com, isaac@lcc.uma.es

Abstract. There are many privacy concerns related to the use of social
networks, in particular the posting of pictures and controlling who has
access to them. In this paper we introduce a solution for the distribution
of personal or sensitive pictures. Our aim is to provide a method for
secure and privacy friendly picture sharing through social networks, that
allows users to encrypt sensitive regions in pictures (particularly, faces) in
a reversible, non-intrusive way, leaving the rest of the picture unaltered.
This way, any image can be freely published and distributed on any social
network, and viewed by as many users as the platform allows, while the
protected parts are only accessible with the corresponding key. Once the
key for a particular region has been acquired, the receiver of the picture
can decrypt this region without downloading any additional information.
The core of our proposal is a C library, which efficiently integrates an
encryption/decryption algorithm with the encoding/decoding process.
We have also released an Android application, LockPic, and a companion
key server that showcase all the functionality mentioned in this work.

Keywords: Partial image encryption · Privacy in social networks ·
Reversible image scrambling

1 Introduction

Nowadays social networking is booming; and with it, the public sharing of per-
sonal photographs. From a privacy point of view, as soon as a user publishes a
picture, he or she loses all control over it. Even if that content is later removed
from the servers, other users that have stored it can share it again indefinitely,
even contrary to the wishes of the original owner. The situation worsens when
the picture involves other people who may not wish the content to be shared (or
even be aware of it) or when legal restrictions apply to the subjects, as is the
case for children in most countries; or when some of the subjects have certain
notoriety.

Traditional protection mechanisms do not fit well in this scenario. Instead
of protecting the whole picture only critical parts of it should be protected or
hidden. This will allow other members of the social network to preview the
picture without compromising the privacy of the users in the picture. Usually,
c© Springer International Publishing Switzerland 2016
J. Garcia-Alfaro et al. (Eds.): DPM and QASA 2015, LNCS 9481, pp. 281–290, 2016.
DOI: 10.1007/978-3-319-29883-2 21

C. Pares-Pulido and I. Agudo, “LockPic: Privacy Preserving Photo Sharing in Social Networks ”, Data
Privacy Management, and Security Assurance, pp. 281-290, 2016.
NICS Lab. Publications: https://www.nics.uma.es/publications



282 C. Pares-Pulido and I. Agudo

faces are the target for protection but other elements might need to be hidden
too, e.g. number plates. The advantage of reversible hiding is that authorized
users are able to recover the whole picture while non-authorized users only get
the public parts.

There are three parameters that we need to take into account when proposing
a solution:

– Usability. The hiding technique should be as unobtrusive as possible and
should be lightweight enough to run smoothly in mobile platforms.

– Interoperability. It should be easy to integrate the hiding process with the
photo sharing work flow.

– Security. It should be hard enough to recover the original picture without
knowing the key material used for hiding the critical parts.

The centre of our proposal is a C library, based on OpenSSL and open-source
JPEG codecs, which integrates cryptographically strong encryption (AES) in the
encoding process of JPEG pictures. The LockPic app1 is built upon this C library
an is able to encrypt sensitive parts of a picture and decrypt them afterwards.
We have also implemented a companion Key Server that is used to convey the
cryptographic keys used to protect the pictures.

2 Related Work

There are many proposals for partial or selective encryption of pictures and
videos in the literature [8]. If we focus on still pictures, most of them rely
on the use of the JPEG2000 format [3], that provides a better basis for par-
tial encryption but has a major drawback: it is mostly unsupported by current
social networks and web browsers. In this section we focus on solutions based on
JPEG [5].

In the following paragraph we briefly summarize how JPEG images are
encoded, in order to explain how the encryption mechanism can be integrated.
An image has between 1 and 3 channels: a luminance channel, and up to 2
chrominance channels. Each channel is broken down into square blocks, called
MCU (Minimum Coded Units) upon which encoding is performed separately.
Each MCU undergoes a discrete cosine transformation, and the 64 coefficients
corresponding to the lowest frequencies (the ones which human eyes can dis-
tinguish best) are kept. These values are rounded, to maximize the number of
zeros between them; this step, called quantization, introduces losses. Finally,
this sequence of 64 numbers is compressed without loss, using Huffman encod-
ing. This clearly points to an optimal place where to perform the encryption
process as the set of 64 coefficients obtained after quantization suffer no further
losses beyond this point.

In [2] authors present an approach that could be used for privacy preserving
video surveillance. Later in [7] they adapted their approach to support JPEG
1 https://www.nics.uma.es/lockpic.

https://www.openssl.org/
https://www.nics.uma.es/lockpic


LockPic: Privacy Preserving Photo Sharing in Social Networks 283

and provide a prototype iOS application, Proshare. Their solution is based on
flipping the sign of the coefficient in the encoded image, i.e. using any crypto-
graphically secure pseudo random bit sequence generator, the sign of a coefficient
is changed for a 1, or kept as a 0. Although this scheme works well in general, its
application to high resolution images is limited because the scrambling becomes
less noticeable for all proposed encryption levels, except for the ultra-high level
that encrypts the DC components using a one time pad. Unfortunately, there
is not enough information about what kind of PRNG is used for sign flipping
and one time pad encryption in the ultra-high level in order to evaluate the
real strength of this proposal. Another important aspect is that scrambling and
descrambling on client application and automatic key distribution is not sup-
ported in the prototype at the time of writing.There are some other approaches
[6,11] that also base their encryption algorithm on a pseudo-random shift on the
JPEG coefficients, trying to keep enough information for the whole image to be
“homogeneous” but at the same time trying to limit the chances to recognize
the scrambled portion.

The main security risk of schemes based on flipping/shifting the signs of the
JPEG coefficients based on some random patterns is that brute force attacks
can reconstruct the pattern taking advantage of the characteristics of the image
by looking at the neighbouring pixels of the scrambled area in the first phase
and iterating from the edge to the centre. Furthermore, its visual output is fairly
obtrusive, as seen in Fig. 1a.

To mitigate the visual impact, we can follow the idea described in [11]: always
keeping the most significant coefficient (DC), and pseudorandomly shifting the
remaining 63. The effects of this alteration make the output visually acceptable,
as shown in Fig. 1b. However, this not only makes the algorithm less secure
from a theoretical point of view (by exposing even more information), but also
in practice. Encrypting only the signs of the AC coefficients has been proven
insecure for video contents [4]. The DC, which holds colour information, remains
unaltered. This means that the average colour in any encrypted MCU will be
the same as prior to encryption. For a large enough image, an MCU basically
behaves as a pixel; therefore making the encryption irrelevant to the naked eye
(even if information is altered) as we mentioned before. This is shown in Fig. 1c.
This is roughly the same effect that all encryption levels will suffer from, apart
from the ultra-high in [7].

One of the key aspects of all these proposals is that the scrambled image con-
tains all the information needed to recover the original image given the encryp-
tion key. From a practical perspective, this seemed to be a good starting point,
since the algorithm for encryption and decryption is very simple and efficient. In
[9], the authors present a solution that stores some encrypted information needed
to recover the image in the Cloud. Their solution is based on a proxy that inter-
cepts all the images downloaded from the social network and decrypts them on
the fly, providing a transparent decryption service. Although the authors claim
that their solution only adds minimal photo storage overhead in the Cloud, it is
true that they add a new dependency. Also, the transparent proxy is harmless



284 C. Pares-Pulido and I. Agudo

(a) All coefficients (b) All except DC small (c) All except DC medium

Fig. 1. Pseudorandomly shifted coefficient signs

in HTTP connections but can cause some security and trust issues when using
HTTPS, which is the current standard in social networks.

In [10] they take a different approach, instead of encrypting some parts of the
image they used a JPEG file as a container for an encrypted image. Their focus
is to preserve recoverability of the container JPEG in common social networks,
i.e. resistant to JPEG re-compression. Their solution is based on Javascript,
providing browser side decryption of the image without requiring any server
to store encrypted parts of the image but fails to protect only parts of the
images, their proposal is encrypt all or nothing. As the container JPEG is not
representative of the shared picture this scheme is somewhat equivalent to just
sharing a link to the protected picture.

Another issue that is usually disregarded in most proposals is the usability
of the application. Some applications assume there is a given box in the picture
to be protected but how the coordinates are defined and how the protection is
activated is not mentioned. In [1] the authors propose the use of QR codes as
wearable Tags to activate the protection mechanism. In their approach, users
who wear a Privacy.Tag, i.e. a printed QR code, are recognized when taking a
picture and their face is automatically protected based on their preferences.

3 The Encryption/decryption Module

Our proposal is based on an C library that performs JPEG encoding/decoding at
the same time as encryption/decryption. This core C library requires symmetric
keys for the encoding and decoding of JPEG pictures.

We plan the following requirements for the encryption/decryption process: It
has to be reversible; the output of the encryption must still be a valid image
in a standard format; and the process should be cryptographically secure. We
aim to distort, beyond recognition, any encrypted region in the picture, leaving
the rest fundamentally unaltered. The encryption/decryption procedure should
be lightweight, and produce encrypted files of a manageable size. Furthermore,
ideally, obfuscated regions in the encrypted image should be visually unobtrusive
with respect to the rest of the picture; i.e., colours and the rough outline of the
picture should remain similar to the original. This latter requirement, in a way,
conflicts with the desired distortion. The higher the distortion level gets, the



LockPic: Privacy Preserving Photo Sharing in Social Networks 285

more obtrusive the output becomes. We have tried to find a compromise in the
distortion level, favouring security over aesthetics.

Our first approach was to use an encryption mechanism based on secure
permutations of pixels in the regions to be obfuscated; but that meant relying
on the BMP format, which posed several problems - principally speed and output
size. In Fig. 2a we can see that the randomization of pixels preserve the colours
of the original picture but not the shape of the underlying face. This can be
partially solved by decomposing area of interest in small tiles, applying the
pseudo randomization only in the tiles. In Fig. 2b we can see that the encryption
is less intrusive in this case. As mentioned before the main problem of working
at the bitmap level is the size of the pictures. If we later convert the resulting
images into a compressed format we have some issues with colour distortion,
Fig. 2c that can not be easily solved. After the evaluation of the pros and cons,
we took a completely different approach to encryption, instead of considering
the image as a matrix of pixels, we directly targeted JPEG-encoded images, and
worked on the integration of the encryption process inside the JPEG codec.

(a) Randomization of pixels (b) Using tessellation (c) JPEG decoding halo

Fig. 2. Bitmap level encryption

In our proposal, the sequence of all non-zero coefficients in each MCU is
encrypted using a standard symmetric cipher, specifically we use AES in OFB
mode, resulting in a new set of coefficients. It is important to note that this
scheme does not in any way respect the original distribution of colours. However,
irrespective of the size of the image, the encrypted regions will remain fully
obfuscated. In Appendix B there is a sample encryption output.

We decided to encrypt only the non-zero coefficients in order to preserve the
effectiveness of the compression algorithm. Huffman encoding takes advantage of
long runs of zeros, but those patterns are removed if we encrypt all coefficients.
In practice, encrypting all coefficients resulted in JPEG images which, even if
smaller than their BMP counterparts, were still too big to be conveniently man-
ageable. We admit that this weakens the scheme (as opposed to also encrypting
zeros) because we are openly revealing which coefficients are null and which are
not. Still, this information is largely insufficient to reconstruct an image, and in
exchange, it allows the encrypted images to be the size of a regular JPEG file.

This scheme fulfils most of the requirements we initially planned for the
encryption procedure: it is indeed reversible, completely obfuscates the encrypted



286 C. Pares-Pulido and I. Agudo

regions, and does not affect any other region in the image. The size of
the encrypted files is almost the same as the original file and the encryp-
tion/decryption process is fast and lightweight. There are also some negative
aspects to our proposal. Firstly, it implies some degree of quality loss (unavoid-
able due to the conversion to JPEG, which is always lossy). Secondly, the
encrypted areas are very obtrusive in the picture. It should also be noted that
this implementation is not tolerant to further compression of the image.

The fact that some social networks recompress pictures in order to optimise
storage and network bandwidth may force us to use some external services for
storing protected pictures (e.g. Flickr, ImageShack, Dropbox, etc.), sharing only
the link to the picture instead of the picture itself. This way the social network
will only store the preview of the picture, whereas the original picture can always
be retrieved from the external service. However there are social networks that
do not recompress the pictures and keep the original metadata, (e.g. Google+)
in which we do not need an external service.

4 LockPic Elements and Security Model

We assume pictures are stored by their owner in a service of their choice. It
can be a social network or a photo sharing service, but the user can also share
pictures using email or other means. We assume this server will not alter the
pictures but it might be interested in learning the protected contents.

The key server is queried by the LockPic application using a secure channel,
whenever a picture needs to be decrypted or encrypted. The key server does
not know anything about the contents of the picture, only some metadata and
the encryption keys. This way, pictures and the keys needed to encrypt/decrypt
them, are stored in different trust domains.

The key server and the photo sharing service are considered honest-but-
curious servers. We assume they will not collude to try to compromise the user’s
privacy. The Key Server will only provide keys to authorized users and will
generate keys and IDs for pictures as instructed. The photo sharing service is
trusted not to alter pictures but there are no additional requirements as to whom
is granted access to the encrypted pictures. Other users can interact with both
services using the standard APIs and are not supposed to be trusted. Users can
collude among themselves and can have access to all pictures stored in the photo
sharing service but can only get keys according to the access granted in the Key
Server.

The encryption work flow (Fig. 3a) consists of four steps. It usually starts
when a picture is taken using the LockPic application but users can also select a
picture already stored in their phone. The application will then show the picture
to the users and prompt them to select which areas need protection and who
is going to be able to access them. After that, the Key Server is queried by
the application using a secure channel, in order to get the encryption key for
each area of interest. The application sends the name and the dimensions of the
picture as well as the list of coordinates for each of the boxes that need to be

https://www.flickr.com
https://imageshack.us
https://www.dropbox.com
https://plus.google.com/


LockPic: Privacy Preserving Photo Sharing in Social Networks 287

encrypted together with the list of users that are granted access to them. The
Key Server generates a random ID for the picture and stores the information
about the protected boxes in the database. Then, the server sends back the ID
and the list of encryption keys corresponding to each of the boxes requested, one
key per box. We explain the details of the key generation in Appendix A.

The application passes the encryption keys, coordinates and ID to our modi-
fied JPEG encoding library that will encrypt the boxes using the corresponding
keys and include the ID in the system of the picture. The ID needs to be present
in the metadata of the picture in order to allow other users to query the decryp-
tion keys. Finally, the application shows the encrypted image and offers the user
some sharing choices.

As shown in Fig. 3b the decryption work flow consists of three main steps and
is triggered each time the user receives an encrypted picture. First, the picture
is loaded by the LockPic application. The ID of the picture is extracted from
the metadata. Second, the application authenticates the user against the Key
Server and submits the picture ID in order to get the keys for the boxes they
have access to. The Key Server gets from the data base the list boxes present
in the picture based on the picture ID. For each box it checks whether the user
has been granted access or not. Then, it returns to the application the list of
boxes that the user has been granted access to, together with the corresponding
decryption keys. Finally, the application passes on the list of boxes and keys to
the modified JPEG decoding library.

Pictures

Keys
2

4
3

1

(a) Encryption Work Flow

Pictures Keys
1 2

3

(b) Decryption Work Flow

Fig. 3. LockPic Encryption and Decryption Work Flows

Access rights can be modified by the owner of the picture at any time. Users
can request from the Key Server the list of picture IDs that has been generated
for them, together with the coordinates of the encrypted boxes and the users that
are currently granted access. They can add new users or delete existing ones from
current boxes, however they cannot create new boxes. With the current API, the
application needs to request a new picture ID when the users want to modify or
delete existing boxes, or create new ones.

The Key Server provides the encryption/decryption keys to the users based
on the picture ID and the user ID, hence the first step is to be able to authenticate
users against the Key Server. We have used Google Accounts for authentication
in order to take full advantage of the Google ecosystems. This way, authentica-
tion of users is transparently managed by the Android operating system and the
Google App Engine where we have deployed an instance of the Key Server.



288 C. Pares-Pulido and I. Agudo

5 Conclusions and Future Work

The LockPic application has been implemented as a prototype to showcase the
functionality of the C library for simultaneous JPEG encryption/decryption and
encoding/decoding. We have released the source code of the application and the
key server in order to demonstrate the feasibility of our approach and help other
built upon our work.

As for future work, we would like to explore other architectures, authentica-
tion flows, and key distribution methods that can work without the need of an
on-line key server and include our functionality in messaging applications (e.g.
Telegram). We can use an hybrid approach where the symmetric keys used to
encrypt each region are encrypted with the public key of the intended recipients.
Challenges in this scenario will be to optimize the size of the metadata needed
to encode the cryptographic keys. We would also like to broaden the reach of
our work - release the encryption module as a standalone C library, and release
the application for other operating systems. Another important issue that is not
tackled in the present paper is how to keep track of who is accessing your pic-
tures. We think our approach can be easily adapted to provide a better view of
who has accessed the pictures based on the release of decryption keys. However,
this will require modifications both on the client - and server - side.

Acknowledgements. The research leading to these results has received funding from
the Junta de Andalućıa through the projects FISICCO (P11-TIC-07223) and PISCIS
(P10-TIC-06334). We also thanks the anonymous reviewers for their valuable com-
ments.

A Managing Encryption/decryption Keys

Apart from providing a proper security level and an efficient implementation,
one relevant challenge is to properly manage all the encryption keys used in
the system. We propose a centralised approach where all keys are stored in the
trusted Key Server.

It is essential that the server is able to uniquely identify images in order
to be able to generate unique keys for each picture and region in it. As we
have mentioned, the Key Server randomly generates a unique identifier for each
protected picture that is sent back to the LockPic application at encryption time.
This unique ID is included in the metadata of the encrypted picture. Another
approach could be to use the hash of the picture as ID. The problem of using the
hash as the ID is that the hash has to be performed in the mobile application,
which might be an expensive operation depending on the size of the picture, and
could present security problems in the case that hash collisions are found. More
importantly, the key server would be able to analyse some usage patterns as it
would be able to recognize if two different users encrypt the same picture.

As mentioned, the key generation process is performed on the server side.
Our initial approach was to generate a separate key for each protected region in

https://telegram.org/


LockPic: Privacy Preserving Photo Sharing in Social Networks 289

every image. This, however, posed some problems because, due to the speed at
which random numbers may be needed, the Random Number Generator (RNG)
might act as a bottleneck. It would also be difficult to estimate the size of the
key store as it would grow in proportion to the number of regions protected.
Since having different keys for different regions is mandatory in order to allow
for fine grain access control to regions, we have taken the following approach.

For each user, U , a master secret, MSU is randomly generated at the first
access. For every region to encrypt, this secret is concatenated with the picture
identifier, ID, and the coordinates of the region, r = {x0, y0, x1, y1}; a secure
hash function is subsequently applied on this string of bits, and its output is
used as the encryption key for the region, i.e.

keyU,ID,r = hash(MSU ‖ ID ‖ x0 ‖ y0 ‖ x1 ‖ y1)

The main advantage of this design is that it only uses the RNG once per
user and that the number of keys managed by the Key Servers is linear on the
number of users, thus independent from the number of pictures or encrypted
boxes.

B The LockPic App

The LockPic App uses a very simple user interface with three different choices:
Encrypt, Decrypt and My Pictures. The first choice triggers the encryption mech-
anisms, users are prompted to choose a picture from the gallery and are required
to select which regions need to be protected. The selection of protected (Fig. 4a)
areas can be performed manually, by placing a box over the desired regions
and scaling it by dragging the lower-right corner. Another option is to rely on
Android face detection APIs in order to get boxes over the detected faces. In
any case, boxes can be easily rearranged and scaled with one finger movement.

(a) Regions selection (b) Encrypted result (c) My Pictures

Fig. 4. LockPic user interface



290 C. Pares-Pulido and I. Agudo

Once the regions have been selected, the user is prompted to select which
contacts are authorized to decrypt each of the regions. This step can be skipped
and new permissions can be set up later on. Then, the encrypted image (Fig. 4b)
that will be stored in the LockPic folder is shown.

Decryption is performed by checking the picture ID included in the meta-
data and requesting from the key server the corresponding decryption keys.
The decrypted image is shown to the user but never stored in the file system.
LockPict also provides users with the opportunity to review their access control
policies (Fig. 4c). It retrieves from the key server all picture IDs created by the
user together with their associated encrypted regions and the list of authorized
users and gives the user the choice to modify (add or remove) the users allowed
to view each of the regions.

References

1. Bo, C., Shen, G., Liu, J., Li, X.-Y., Zhang, Y., Zhao, F.: Privacy.tag: privacy
concern expressed and respected. In: Proceedings of the 12th ACM Conference on
Embedded Network Sensor Systems, SenSys 2014, pp. 163–176 (2014)

2. Dufaux, F., Ouaret, M., Abdeljaoued, Y., Navarro, A., Vergnenègre, F., Ebrahimi,
T.: Privacy enabling technology for video surveillance. In: Defense and Security
Symposium, International Society for Optics and Photonics (2006)

3. Engel, D., Sttz, T., Uhl, A.: A survey on JPEG2000 encryption. Multimedia Syst.
15(4), 243–270 (2009)

4. Hofbauer, H., Unterweger, A., Uhl, A.: Encrypting only AC coefficient signs con-
sidered harmful. In: IEEE International Conference on Image Processing (2015)

5. ITU. Iso/iec 10918–1: (e) ccit recommendation t.81 (1993)
6. Khan, M.I., Jeoti, V., Khan, M.A.: Perceptual encryption of JPEG compressed

images using DCT coefficients and splitting of DC coefficients into bitplanes. In:
International Conference on Intelligent and Advanced Systems (ICIAS ) (2010)

7. Korshunov, P., Ebrahimi, T.: Scrambling-based tool for secure protection of JPEG
images. In: IEEE International Conference on Image Processing (ICIP) (2014)

8. Massoudi, A., Lefebvre, F., De Vleeschouwer, C., Macq, B., Quisquater, J.-J.:
Overview on selective encryption of image and video: challenges and perspectives.
EURASIP J. Inf. Secur. 2008(1), 179290 (2008)

9. Ra, M.-R., Govindan, R., Ortega, A.: P3: toward privacy-preserving photo sharing.
In: Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation, NSDI 2013 (2013)

10. Tierney, M., Spiro, I., Bregler, C., Subramanian, L.: Cryptagram: photo privacy
for online social media. In Proceedings of the First ACM Conference on Online
Social Networks, COSN 2013 (2013)

11. Van Droogenbroeck, M., Benedett, R.: Techniques for a selective encryption of
uncompressed and compressed images. In: Advanced Concepts for Intelligent
Vision Systems (ACIVS) (2002)


	Foreword from the DPM 2015 Program Chairs
	10th International Workshop on Data Privacy Management --- DPM 2015
	Foreword from the QASA 2015 Chairs
	4th International Workshop on Quantitative Aspects in Security Assurance — QASA 2015
	Contents
	Keynote Address
	Data Protection in Cloud Scenarios
	References


	Quantitative Aspects of Security Assurance
	Composable Bounds on Information Flow from Distribution Differences
	1 Introduction
	2 Preliminaries
	2.1 Mutual Information, Capacity, and Min-Leakage
	2.2 Limited Disclosure in the Frame Model
	2.3 Distribution Differences

	3 Problem Statement
	4 Leakage from Distribution Differences
	5 Composing Leakage Bounds
	5.1 Generalized Cut-Blur Principle

	6 Extensions to Our Results
	References

	Quantitative Analysis of Network Security with Abstract Argumentation
	1 Introduction
	2 Background
	2.1 Abstract Argumentation Frameworks
	2.2 C-Semirings

	3 Modelling Security Systems with Argumentation Frameworks
	3.1 Running Example
	3.2 From Topology to AAF
	3.3 Threats
	3.4 Security Controls
	3.5 Methodology

	4 Quantitative Analysis
	5 Related Work
	6 Conclusion
	References

	Security-Based Adaptation of Multi-cloud Applications
	Abstract
	1 Introduction
	2 Background
	2.1 PaaSage's Adaptive Model-Based Application Provisioning Workflow
	2.2 Security Aspects Consideration
	2.3 Security Modelling
	2.4 Reasoning

	3 Deployment Security Monitoring and Adaptation Approach
	3.1 Modelling Extensions
	3.2 Optimisation Function Specification
	3.3 Extended PaaSage Architecture
	3.4 Solution Application Guidelines

	4 Application to Use Case
	5 Related Work
	6 Conclusions and Future Work
	Acknowledgements
	References

	AdIDoS -- Adaptive and Intelligent Fully-Automatic Detection of Denial-of-Service Weaknesses in Web Services
	1 Introduction
	2 Foundations
	2.1 XML and XML Schema
	2.2 Web Services
	2.3 XML-based DoS Attacks
	2.4 Attack Roundtrip Time Ratio (ARTR)
	2.5 WS-Attacker

	3 DoS Complexity
	3.1 Black-Box Tests
	3.2 XML Document Structure

	4 Design
	4.1 Automatic DoS Detection Workflow
	4.2 Automatic Threshold Detection

	5 Implementation
	5.1 AdIDoS for WS-Attacker
	5.2 Attack Configuration and Execution
	5.3 Attack Success and Efficiency Decision
	5.4 Extended ARTR Approach

	6 Practical Evaluation
	7 Related Work
	8 Conclusions and Future Work
	References


	Reputation, Monetization and Data Privacy Management
	An Integrated Reward and Reputation Mechanism for MCS Preserving Users' Privacy
	1 Introduction
	2 State of the Art
	2.1 User Participation
	2.2 Data Sensing Quality
	2.3 User Anonymity

	3 Blockchain Based Cryptocurrencies
	3.1 Cryptocurrencies as a Rewarding Mechanism
	3.2 Cryptocurrencies as a Reputation Annotation Mechanism

	4 PaySense: An Integrated Privacy Preserving Solution for Reward and Reputation
	4.1 PaySense Entities
	4.2 PaySense Interaction Model
	4.3 Transfer Reputation Protocol

	5 Conclusion and Further Research
	References

	Stronger Security for Sanitizable Signatures
	1 Introduction
	2 Preliminaries
	2.1 Sanitizable Signature Schemes

	3 Revisiting the Security Properties
	3.1 Security of Sanitizable Signatures Re-Revisited

	4 Constructions
	5 Conclusion
	References

	Some Remarks and Ideas About Monetization of Sensitive Data
	1 Introduction
	1.1 Paper Organization
	1.2 Related Works

	2 Bilogrevic et al.'s Scheme
	2.1 System Architecture
	2.2 Data Monetization Model

	3 Flaws, Shortcomings and Remarks
	3.1 Information Leakage
	3.2 Pricing via Approximation by Normal Distribution 
	3.3 Sensitivity of the Distributions
	3.4 Other Shortcomings and Remarks
	3.5 To Pay for What?
	3.6 Possible Patches

	4 Conclusion
	References

	A Novel Approach to Data Revocation on the Internet
	1 Introduction
	2 Related Work
	3 System Model
	4 Requirements
	5 Design Rationale
	6 Data Revocation
	6.1 Unique Identifier
	6.2 Data Revocation Service
	6.3 Authentication
	6.4 Protocol

	7 Discussion
	8 Conclusion and Outlook
	References

	PerfectDedup: Secure Data Deduplication
	1 Introduction
	2 Secure Deduplication Based on Popularity
	3 Basic Idea: Popularity Detection Based on Perfect Hashing
	4 Background
	4.1 Convergent Encryption
	4.2 Perfect Hashing

	5 Our Solution
	5.1 Overview
	5.2 Popularity Check (Scenarios 1, 2 and 3)
	5.3 Popularity Transition (Scenarios 1 and 2)
	5.4 Data Upload (Scenarios 1, 2 and 3)

	6 Security Analysis
	7 Performance Evaluation
	7.1 Prototype Implementation
	7.2 Computational Overhead
	7.3 Communication Overhead

	8 Related Work
	9 Conclusion and Future Work
	References


	Biometrics and Privacy Preservation
	Privacy-Preserving Biometric Authentication and Matching via Lattice-Based Encryption
	1 Introduction
	1.1 Contribution of This Work
	1.2 Organization of This Work

	2 Related Work
	2.1 NTRU and Its Variants
	2.2 Privacy-Preserving Biometric Authentication

	3 The Proposed Protocol
	3.1 Main Actors and Desiderata
	3.2 The Protocol
	3.3 Protocol Correctness
	3.4 Security of the Protocol

	4 Experimental Results
	5 Discussion
	6 Application Scenarios
	7 Conclusions
	References

	Comprehensive and Improved Secure Biometric System Using Homomorphic Encryption
	1 Introduction
	1.1 Template Protection and Its Approaches
	1.2 Previous Work using Homomorphic Encryption
	1.3 Our Contributions

	2 Preliminaries
	2.1 Feature Codes and Homomorphic Encryption
	2.2 SHE Scheme Construction
	2.3 Packing Method for Efficient Secure Matching

	3 Improved Security and Privacy
	3.1 Countermeasure Against Replay Attack
	3.2 Countermeasure Against Spoofing Attack
	3.3 Privacy Enhancing Technique

	4 Secure Protocol
	4.1 The Protocol
	4.2 Security Model

	5 Implementation Evaluation
	6 Conclusion and Typical Applications
	References

	On the Privacy of Horizontally Partitioned Binary Data-Based Privacy-Preserving Collaborative Filtering
	1 Introduction
	2 Related Work
	3 Horizontally Partitioned Binary Data-Based Privacy-Preserving Collaborative Filtering
	3.1 Preliminaries
	3.2 HPD-based Privacy-Preserving Schemes

	4 Attack Scenarios
	4.1 Acting as an Active User in Multiple Scenarios
	4.2 Perfect Match Attack
	4.3 knn-based Scenario

	5 Experiments
	5.1 Experiments

	6 Conclusions and Future Work
	References


	Position Papers
	Privacy Threats in E-Shopping (Position Paper)
	1 Introduction
	2 The Process of E-Shopping Transactions
	3 Threats to Privacy in E-Shopping
	4 Proposals for Privacy-Preserving E-Shopping
	5 Discussion
	References

	Comparison-Based Privacy: Nudging Privacy in Social Media (Position Paper)
	1 Introduction
	2 Problem Analysis and Related Work
	3 Comparison-Based Privacy
	4 Proposed System Design
	4.1 Discussion

	5 Preliminary Results
	6 Outlook and Conclusion
	References


	Short Papers
	Can you Really Anonymize the Donors of Genomic Data in Today's Digital World?
	1 Introduction
	2 Genetic Privacy Breaching Strategies
	2.1 Identity Tracing by Meta-Data and Side-Channel Leaks
	2.2 Identity Tracing by Genealogical Triangulation
	2.3 Identity Tracing by Phenotypic Prediction
	2.4 Attribute Disclosure Attacks via DNA (ADAD)
	2.5 Completion Attacks

	3 Mitigation Techniques
	3.1 Identity Tracing by Meta-Data and Side-Channel Leaks
	3.2 Identity Tracing by Genealogical Triangulation
	3.3 Identity Tracing by Phenotypic Prediction
	3.4 Attribute Disclosure Attacks via DNA (ADAD)
	3.5 Completion Attacks

	4 Conclusion
	References

	User-Centric Privacy-Preserving Collection and Analysis of Trajectory Data
	1 Introduction
	2 Problem Definition
	3 Protocol Description
	3.1 Creation of the Anonymization Group
	3.2 Trajectory Anonymization
	3.3 Sub-trajectory Extraction
	3.4 Fake Sub-trajectory Generation
	3.5 Distribution of Sub-trajectories
	3.6 Anonymous Sub-trajectory Retrieval
	3.7 Sub-trajectory Submission and Retrieval
	3.8 Anonymized Trajectory Trimming

	4 Privacy Analysis
	5 Conclusions and Future Work
	References

	The Leaking Battery
	1 Introduction
	2 Related Work
	3 Background
	3.1 Battery Status API
	3.2 Power Information Under Linux

	4 Tracking with the Battery Status API
	4.1 Tracking Across Sites

	5 Detecting Battery Capacity
	5.1 Test Method

	6 Defense
	6.1 Limiting the Precision of Level Readouts
	6.2 Asking for User Permission to Access the Battery Status API

	7 Conclusion
	References

	Secure Refactoring with Java Information Flow
	1 Introduction
	2 Refactoring
	2.1 Example for Extract Method Refactoring
	2.2 Secure Refactoring with Jif

	3 Extract Method Refactoring with Jif
	3.1 Assignments
	3.2 Delegated (Iterated) Extract Method Refactoring
	3.3 Return Label of Extracted Method
	3.4 Wrapping It up

	4 Results and Conclusions
	References

	You Never Surf Alone. Ubiquitous Tracking of Users' Browsing Habits
	1 Introduction
	1.1 Contribution

	2 Background
	3 Modelling the User's Footprint
	3.1 A Metric of Similarity

	4 Experimental Methodology and Results
	5 Conclusions and Future Work
	References

	LockPic: Privacy Preserving Photo Sharing in Social Networks
	1 Introduction
	2 Related Work
	3 The Encryption/decryption Module
	4 LockPic Elements and Security Model
	5 Conclusions and Future Work
	A Managing Encryption/decryption Keys
	B The LockPic App
	References


	Author Index

