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Abstract

The number of threats in industrial ecosystems is increasing, especially in critical sectors, which have become a
particularly lucrative target. These ecosystems have evolved into very complex interconnected systems, driven by
the need to adapt to new digitalization and automation trends which extend their attack surface. In addition, the
criticality of these systems makes them particularly difficult to test.

For these reasons, this paper covers the application of digital twins as the target of Adversary Emulation for the
purpose of improving the security of industrial environments. This is done by involving automated and adaptive
adversaries by means of reinforcement learning. Starting from an offensive strategy, these adversaries are able to
adapt to the context, attacking the most critical parts of industrial systems. Adversarial attacks are driven by
control theory and centrality techniques, providing a safe and efficient way to test critical industrial networks. The
proposed methodology also includes the effective training and validation of adversaries by creating a probabilistic
model from the analysis of digital twins. The paper provides relevant results on the development of adversarial
adversaries and test models, and highlights the importance and opportunities of attack automation in virtualized

environments.

1 Introduction

The current cybersecurity landscape continues to grow,
especially in the management of potential threats to
strategic industrial sectors [I]. This is due to the current
need to create hyper-connected environments in which
different technologies are incorporated to automate op-
erational processes and intensify digitization of systems.
According to Gartner’s radar for 2025, there is a spe-
cific technological trend [2] that puts Artificial Intelli-
gence (AI) and hybrid and operational computing in the
crosshairs of new emerging adversary profiles [3]. All of
this, in turn, leads to the need to invest in the protection
of industrial environments, which is projected at USD
166.51 billion by 2032, with a Compound Annual Growth
Rate (CARG) of 3.67% during the forecast period 2025-
2032 []. In this respect, recent Al-assisted methods in-
volving advanced prediction and detection have proven
to be especially useful for complex and even unclassi-
fied attacks [5]. However, defense systems face problems
such as the lack of automatic (re)training data, the use
of new strategies and technologies by attackers to evade
defense systems, and the strong incentives that the latter
currently have against specific critical sectors. Some real
cases have already witnessed the consequences of possible

attacks, such as the advanced ransomware attack against
Schneider Electric in January 2025 [6], and the attack on
Key Tronic Corporation in May 2024 that caused data
leaks and denial of services in the system’s primary op-
erations [7].

One way of tackling these situations from a proactive
perspective is through Cyber Threat Hunting (CTH).
With the support of Cyber Threat Intelligence (CTI),
CTH is positioned within the field of active cyber-defense
as one of the most relevant areas for dynamic prevention.
This area is so important that it already has an invest-
ment forecast of USD 7.66 Billon by 2030 with 13.27%
CARG for 2025-2030, especially when Al-based analyti-
cal prediction approaches are applied to the field of de-
fense [8]. This is the case of Adversary Emulation (AE)
as an effective cybersecurity assessment method within
CTH to anticipate threat scenarios and provide guaran-
tees of business and operating continuity [9]. This char-
acteristic has also demonstrated in recent studies such as
[10], which applies AE in cyber physical systems, and [9]
where AE is applied in general-purpose systems to detect
potential threats based on offensive techniques, proba-
bly designed with advanced and sophisticated attack ap-
proaches. However, the active automation of these eval-
uation methods and their application in very demanding



environments also forces us to explore the use of simula-
tion technologies to emulate attacks without corrupting
the integrity and functionality of real systems. Among
simulation technologies, the Digital Twin (DT) stands
out for its ability to deploy “machines (physical and/or
virtual) or computer-based models that are simulating,
emulating, mirroring or twinning the life of a physical
entity” [11] with high fidelity abstraction [I]. This sim-
ulation level, under synchronization and automatic bidi-
rectional communication criteria [I2], allows the faithful
recreation of scenarios, behaviors and states of the phys-
ical counterpart being imitated [I], favoring not only the
AFE analysis but also feedback to CTH.

Indeed, a DT can help (i) infer security vulnerabilities
(probably zero-days) [13] 14} [15] [16], (ii) derive emerg-
ing exploits, and (iii) identify new and advanced modus
operandi and attack strategies without infringing the op-
eration and integrity criteria of its real physical counter-
part [I, [I7]. If, in addition, we combine this simulation
capacity with AE techniques to enrich CTH processes,
it is also possible to contribute to the literature with a
new prevention mode, as stated in [I8]. Unfortunately,
there is not enough related work that uses DT for this
purpose, and only [I8] comes close to what is presented
in this study, proving the role of DT for AE and Internet
of Things (ToT) scenarios. However, the relevance of In-
dustrial Internet of Things (IIoT) control elements and
their susceptibility to attack is not explored.

For that reason, the main contribution of this pa-
per is to delve deeper into this particular issue, dynami-
cally attacking and evaluating the main control elements
of IloT-based scenarios. Thus, with the help of a DT,
referred to here as HunTwin, it is possible to illustrate
the behavior of IloT-type control networks and estab-
lish an assessment based on emulated offenders, that will
be able to dynamically derive security breaches in the
control system in an adaptive way. To automate this
process, these adversaries must be equipped with a Re-
inforcement Learning (RL) model that allows them to
autonomously learn the integral nature of the system
and its implicit vulnerabilities, especially of the main el-
ements with greater dominance and control within an
IIoT environment. The RL model is designed to be eas-
ily interpretable, establishing the risk and the most crit-
ical zones according to the weights assigned by the sys-
tem’s experience. To train adversaries, HunTwin also
compiles a significant number of (i) digital models char-
acterizing different IToT control scenarios and (ii) tests
based on offensive games to validate a set of threat sce-
narios (targeted, hybrid and to the network itself or at
node level). To promote efficient learning within the ap-
proach, inspired in part by [19], multiple digital twins
are deployed within HunTwin. These virtual representa-
tions are attacked and analyzed to create a probabilistic
model of the system on which to train the RL algorithm
at an early stage. This model is a simulation which rep-

resents the vulnerability of the systems’s different parts
to adversaries, allowing SW agents to be trained on this
model efficiently and faster. During the AE stage, the
DT is also applied for the validation of this approxima-
tion, testing the knowledge generated by the simulations
in a real IIoT environment. This abstraction allows the
system to execute the RL systems in large simulations,
generating useful results for later risk assessment, intru-
sion impact measurements or to develop adapted early
threat prevention measures.

The paper is organized as follows: Section [2] adds the
related work; Section [3] introduces the DT-assisted AE
architecture IIoT network deployment process, respect-
ing the properties of structural controllability and ex-
tracting maximum control dominance. In Section [4] the
adversarial model is introduced together with the neces-
sary conditions to characterize the DT models. Section
shows the experimental results, all of them performed
at different levels and scales of depth of study in the DT,
prioritizing the AE models under an adaptive approach
in the RL. Section [f] provides the paper’s conclusions
and outlines the future work.

2 Related Work

The increasing sophistication of malicious actors has
led the cybersecurity industry to take a proactive role
in dealing with threats. One of the most popular ap-
proaches has been the AE, where the defensive char-
acteristics of a system are evaluated by skilled adver-
sary attackers. Thanks to these offenders, it is possible
to analyze attacks that are more complex than a sim-
ple vulnerability pentest in order to infer techniques and
avoid future attacks. However, the main challenge this
method has traditionally faced is the large consumption
of resources involved, both computational and human,
especially in terms of time. This is why numerous efforts
have been made to automate the process of emulating
a real adversary as closely as possible. The use of AE
in this context has been demonstrated in recent studies
[10, 20 2T, 22}, 23], which focus on the usefulness of AE in
a simple way, showing an offensive approach in IoT and
generalist environments. Two studies whose approach
is more proximate to this present research are analyzed
below.

In [9], a model of CTH via AE is proposed, showing a
promising proactive approach rather than relying on tra-
ditional ones such as penetration testing, firewalls, and
Security Information and Event Management (SIEM)
systems. This emulation consists of two main phases: an
initial phase in which the system is fed with information
from CTI, as well as threat reports, information from
blogs and forums from which it extracts the Techniques
Tactics and Procedures (TTP); and a second phase com-
prising the execution of the AE, as well as the construc-
tion and validation of a hypothesis with generated data,



which are fundamental parts of a CTH. In a nutshell, the
proposed model is an effective method compared to typi-
cal countermeasures based on known threats, but also an
efficient hunting resource compared to more traditional
and less automated techniques, such as the creation of
red teams.

The AE system presented in [I8] is based on DT as an
offensive target. MITRE Caldera is used for automated
AE tests, where one compromised device attacks another
target. This paper demonstrates how DTs can be a cru-
cial tool for securing IoT networks. However, a system
that takes into account adaptability, and in particular
the structural vulnerabilities of large IIoT systems for
its propagation, lateral movement techniques, and TTP
in general, could further enrich the contribution that has
been made.

In respect to the recent literature shown in Table
1, HunTwin is comparable in terms of external TTP
sources. Furthermore, it presents adaptability to the
context in which it is developed by having Artificial
Intelligence (AI) models that learn from the IIoT net-
work structural controllability characteristics, explained
in Section 322 On the other hand, considering the in-
frastructure used, containers are lighter and more effi-
cient compared to other heavier virtualization systems
such as Virtual Machine (VM), without losing realism in
the simulation, since it is a digital model synchronized
with a cyber-physical environment. Taking advantage
of this computational efficiency, HunTwin simulates ad-
versary emulations over large target networks, assuming
large networks such as topologies with more than 50 tar-
gets. This makes it possible to develop more sophisti-
cated techniques taking advantage of complex network
scenarios and industrial characteristics.

3 DT-Assisted Adversarial Emula-
tion Architecture

Figure [1] illustrates the system architecture discussed in
this section. HunTwin is based on three main Layers (L):
IToT-based physical layer (L1), orchestrator layer (L2),
and DT layer (L3). This division allows to isolate all
layers in different systems, enhancing independent scal-
ability and security by functionality.

3.1 Layered HunTwin for security assess-
ment

L1 comprises all the physical IIoT elements of the real
world, and is in charge of periodically sending synchro-
nization data of current states to L2. This synchroniza-
tion is performed by two components in a bidirectional
flow with L2. The first component is the Network Change
Listener, which listens for changes in the real physical
world and notifies changes through the Synchronization

Bridge in L2. The second component is the Network Up-
dater, which is able to receive updated data from L2 and
update the real world infrastructure accordingly. Addi-
tionally, there is a group called CTI & External Sources
that is not part of L1. It consists of the CTI sources
which serve to feed the TTP of the AE models.

In contrast, L2 is responsible for computing received
data and synchronizing DTs to their respective counter-
parts. To do this, L2 relies on a central component
called Synchronization Bridge, which allows layers to
subscribe and emit changes produced in their models.
The other element of L2 is the AE module, which has
two main responsibilities: the first is to conceptualize the
deployment of a graph characterizing the industrial fea-
tures of real control systems (e.g., controllers, SCADA,
etc). These controllability characteristics define the dom-
inance and control between the different nodes which is a
feature of IIoT. This conceptual model is the Simulated
Control Graph, obtained and synchronized through the
Synchronization Bridge. The second responsibility is to
invoke a set of adversarial software agents (hereinafter
illustrated as set A) to attack the threat scenario and
verify security gaps. These adversaries have two parts:
an RL model acting from L2 as the brain and a real ad-
versary in L3 as the body. The adversary model acts with
the Simulated Control Graph as an interface to the Syn-
chronization Bridge, perturbing the information coming
from the cyber-physical world and adding itself to the
model. This will be reflected in the DT (L3), therefore
enabling the model to attack it. The adversary model
communicates with the DT-adversary in L3 as a Com-
mand and Control system, and reads the response by an-
alyzing the Simulated Control Graph state. This graph
limits the actions that the adversarial model is able to
perform in the DT, preventing it from performing illegal
actions, such as instantiating itself on all nodes simulta-
neously.

Finally, L3 contemplates the virtualization of the DTs,
simulating the properties of the physical world and per-
forming the adversarial tasks. In order to obtain real-
time information on adversarial actions, L3 also incorpo-
rates, in addition to the Synchronization Bridge, a snif-
fer capable of extracting network packets to later enable
subsequent analysis. This allows, in conjunction with the
stats generated by the Simulated Control Graph, build-
ing probabilistic models based on network behavior, as
performed in Section [5.1]

3.2 Control Theory-based Environments

This section introduces DTs as a real time identical copy
of IIoT networks. The main challenge of digital twins
is that their production is technically expensive due to
industrial high fidelity. To solve this, an algorithm for
the generation of industrial control networks that emu-
lates the structure and organization of such networks is
designed. This algorithm also uses images of known sys-



Table 1: Some Adversary Emulation Researches

Ref Year | Industry TTP sources Infrastructure | DT | CTI Al Approach Large
agents Net
[9] 2021 General CTI, Forums, Blogs VM X v X CTH X
[18] 2023 IoT MITRE ATT&ACK VM 4 4 X Offensive X
[10] 2020 CPS Internal Model Mathematical X X 4 Offensive X
[20] 2022 IoT RouterSploit VM X 4 X Offensive X
[21] 2023 General MITRE ATT&ACK Cloud X 4 X CTH X
[22] 2024 General Own Model VM X 4 X Anti-detection X
[23] 2024 General MITRE ATT&CK Cloud X 4 v Deception X
MITRE ATT&CK,
HunTwin | 2025 | Industrial MITRE CVE, Containers v v v CTH v
ExploitDB, VulDB,
Metasploit

tems that have vulnerabilities, which are distributed and
replicated throughout the environment according to their
functionality, e.g. routers, switches or linux systems.

To characterize this type of scenarios and identify at-
tack targets with higher dominance a network topology
that follows a power-law [24] must be first be prepared.
Under this assumption, structural controllability rules
and power dominance must be reinforced. To do this,
it is also necessary to identify among the network ele-
ments, hereinafter shown as graph G(V, E), the nodes
with the most control that satisfy the rules of control
theory [25] and power dominance [26]. These character-
istics are reflected in OR1 and OR2, two types of groups
calculated following the controllability conditions for the
entire G network [20]:

e OR1: A vertex v; of degree D observes itself and all
its neighbors.

e OR2: If a vertex V; of degree D > 2 is observed
and has adjacent (D — 1) observed vertices, the last
vertex becomes observed.

Once the environment and control characteristics have
been calculated, the next step is to identify the vertices
with the highest betweenness centrality, since most of the
control passes through them. To do so, the process classi-
fies vertices into different communities using the Clauset-
Newman-Moore greedy modularity maximization algo-
rithm [27] to find the network’s most modularized parti-
tions. This calculation is then used to analyze the differ-
ent malicious behaviors in small interconnected groups.
This is especially interesting in networks that follow a
power-law distribution, since they do not contain a large
level of interconnection, apart from the zones with the
highest centrality. In addition, a criterion involving con-
trol characteristics and network centrality Vv € V must
be defined as a control requirement. To do so, the be-
tweenness centrality of each vertex is calculated. Then,
we define the Scope of Compromise value for each vertex,
which represents a numerical value of how much impact
it has to lose a vertex v; to an attacker, calculated from
Equation [2] This function mixes betweenness centrality,

where 0,,,,, is the number of shortest paths from node m
to node n, oy (v;) those paths that also pass through v;,
and structural controllability-based vertex weighting w;.
These weights depend on whether v; € OR1, v; € OR2
or v; ¢ OR1 U OR2 as shown in Equation

P1 if v; € ORI1

w; =< po ifv; € OR2 VYv; €V where p; > p2 > ps.

p3  otherwise

(1)
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Once the mathematical framework of the topology has
been established, including the calculations related to
controllability characteristics, the next step is the de-
ployment and digitization of the system. Digital mod-
els are generated for each G node, the main informa-
tion being the copy of the image to be virtually created.
In these experiments, images of vulnerable devices are
also established to be exploited by agents. Furthermore,
some nodes incorporate deception strategies in order to
intensify the security testing. Specifically, the position
and quantity of these nodes are added randomly, never
exceeding a presence of more than 10% of |V in order
to intensify the defense against agents, making topology
learning essential to breach the system. The difference
between standard and deception nodes is that the de-
ception nodes have no value in quantifying the damage
caused to the infrastructure. In other words, these nodes
are ignored by the Scope of Compromise calculation func-
tion in Equation [3]

WP com vV € {Vo € V : (a,0) € M(1)}

Rlat) = Z‘J,V:'O com(v;)Vv; € V 5
3

Finally, for the development of an agent’s intelligence,
the objective function uses the same parameters as the
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Figure 1: HunTwin layered architecture: L1, L2 and L3

Scope of Compromise calculation, but summing the com-
promise index of all vertices. This assumes that the ma-
licious agent has compromised the system by exceeding
a certain threshold calculated by Equation (3| which ag-
gregates the Scope of Compromise of breached vertices
by the attacker, establishing a ratio with respect to the
total network.

4 DT-assisted Adversary Model

To formalize the DT and agents-supported emulation, we
define each match scenario as an undirected multigraph
of type G = (V, E), where V represents the set of vertices
illustrating IToT devices, including those related to con-
trol, and F comprises the edges representing the connec-
tions between IIoT devices without isolation. Edges are
represented as a tuple of two vertices and an index (k),
since between two vertices there can be more than one
edge representing different physical links e = (v;,v;, k).
Notice that Vv € V and V e,, € E there is no static allo-
cation of weights because the DT represents illustrations
that may vary with the update of its physical counter-
part.

4.1 Adversary and Reward Model For-
malization

In the agent execution formal system, training and val-
idation matches comprise the following set of variables,

conditions and rules:

Time: All the games start at instant ¢ = 0 and end at an
instant ¢ defined by the starting conditions. An instant
t is equivalent to executing an action by Va € A.
Players: Agents (a € A) deployed over G are ini-
tially randomly assigned to one v € V. This char-
acteristic makes the assignment (a — v) variables for
each match, increasing the number of scenario combina-
tions and avoiding initial disadvantageous situations for
a same player. The dominance of vertices by agents is
represented by pairs (a,v) € M (t), where ¢ is a moment
and the function M returns a set with all dominance
tuples in the instance t.

Teams: Agents (¢ € A) only belong to a team repre-
sented by the set z, which, in turn, belongs to the set
of teams represented as Z such that Z = z;,...,z; and
z = ai,...a;. This property also follows the conditions
given by Equation [4]

12| 12

A= U zn/\\A|:Z\zn|
n=0 n=0

Node state: This criterion is based on two possible
states. The first state is that an v € V is dominated
by an a € A (regardless of its z) in an instant ¢, which
means that given M (t) there exists the tuple (a,v). The
other state is a neutral state, meaning that the node has
not been dominated by any other agent. Node states also
follow the restrictions shown in Equation [5]

(4)



Vo € V,¥t € Ny : (a,v) € M(t)| € {1,0  (5)

Movement: An agent’s movement is equivalent to an
attempt to join a v € V not dominated by an a € A,
resulting in adding (a,v) to M (¢ + 1). As the action in-
dicates, this is only an attempt within the game, mainly
because the node itself has defensive capabilities against
intrusion; even when an a € A attempts to dominate a
v € V, this may result in a failed move.

Cost: Movements do not have a fixed cost. In case of
failure in the dominance of a v € V| the cost is given by
the loss of the instant ¢ to perform a successful action.
Moreover, the difficulty of dominance of a v € V is not
given by v itself, but by the edge e € E along which the
movement takes place. In other words the difficulty is
given by attacking v; € V through (vj,v;,k) € E.
Objective: The objective is given by a function that
evaluates whether an a € A, for the end of an instant ¢
has violated the system or not. This function takes into
account z; and the dominance state of all (a,v) € M (T).
Each DT has its own target function since the violation
characteristics depend on the physical counterpart it rep-
resents.

Reward: It is processed at the end of each match and
Va € A. There are three types of rewards: Agent reward,
when a € A individually wins the match; Team reward,
when a € A has not achieved its individual goal but
a € z € Z and z is the winning team. Defeat reward,
which involve a defeat of a and the z to which a belongs,
in which case a is negatively rewarded.

The execution rules and updates of the system are
shown in the Algorithm [T This algorithm contains two
nested loops that iterate A and t, leaving its cyclomatic
complexity as shown in Equations ?? and[7} On the other
hand, the complexity of update state and has_won func-
tions are linear to the growth of |V|. The complexity of
the next function grows logarithmically with respect to
|V|, although its spatial complexity is analyzed in more
detail in Section

O(main) = t-|A|-(O(next)+O(update _state)+O(has_won))
(6)

O(main) =t -|A|- 2|V] + Ln(|V])) (7)

4.2 Adversary Learning Process Model-
ing

Taking into account the system’s flexibility to perform
different AI models, this article follows the approach of
launching adversarial attackers under RL criteria, and
particularly under the Q-learning decision policy such as
in Equation [§ In this equation, s is the current state of
the game, b is the action to perform and @ is a function
that returns the learned quality of a b given s.

Algorithm 1 Simulation loop for the agent execution

Input: 1. A graph G(V, E)
Input: 2. A set of Agents A
Input: 3. S;, where S; is the strategy of the agent a;
Input: 4. A function has_won that given an a; and a game state gs
returns whether a; has won
Input: 6. A function next that receives gs, an a;, and S; and returns
a (ai,e;) to attack
Input: 7. A function update_state that receives gs, an a;, and (v;, e;)
and returns the new gs
Input: 8. The initial state of the game game_state
Input: 9. Game run time ¢t
W« 0; it <+ 0
while LENGTH(W) == 0 and it < t do
it <— it 41
for all a; € A do
(v,e) < next(gs,a;,Sa;)
gs < update_state(gs, a;, (v, e))
if has_won(A;, current _state) then
W+ WuU{A;}
end if
end for
end while

return W

When applying @Q-learning policies, a scalability-
related challenge is the need to assess the size of the
case set to be stored. In a typical approach shown by
Equations [8and [9] the possession of each node by a € A
at an instant t is stored as s, and the decision to be
made for each v € V is independently evaluated, leading
to an exponential spatial complexity as shown in Equa-
tion [I0] This type of strategy is valid in small games
such as tic tac toe with fewer possible combinations or
even in HunTwin with small graphs. However, bearing
in mind that the match scenarios considered reach up to
|V | = 100, this complexity is unacceptable, not only be-
cause of memory usage but also because of the number
of matches that have to be played in order to develop an
AT model that has experienced enough casuistry to cover
the whole spectrum of possibilities.

A(s) = arginax Q(s,b) (8)

s=H{(a;,v) |vi €V, a; € 2, a; € z;, (a;,v) € M(t)}]
9)

o(f)=2"1 (10)

This is why the approach has been changed for a sim-
pler one, adapted to the type of context to be executed.
The foundation of the approach of the designed attack
model is inspired by Napoleonic warfare strategies and
Blitzkrieg [28]. Napoleon’s strategy consisted of deep
flanking operations in which the enemy’s rear was en-
veloped, with commands advancing along different routes
to the point of attack. These characteristics make it ideal
for industrial control environments, taking into account
the industrial network characteristics detailed in Section
The main focus of this attack is to avoid battles of
attrition, emphasizing fast and effective moves; specif-
ically, to surround the enemy’s central command area



quickly in order to paralyze it and isolate its defenses
from the outside.

However, the design of this attack model is more so-
phisticated than just applying this strategy, in which case
we would be ignoring the particular characteristics of in-
dustrial network topologies. The idea in this case is to
model the agent’s knowledge so that the former can learn
for itself how to apply it, learning from the network’s
weakness and evaluating the critical points the strategy
talks about.

A(s) = arginax Q(s,b) s={P(a,t),L(a)} (11)

P(a;,t) = {Va; : aj € z Na; € zi AN3(aj,v) € M(t)}]

(12
L(a) =v: (a,v) € M(0) (13)
O(f) =0(P)xO(L) = (V| = 1)*x (]z| = 1) (14)

In order to perform this Napoleonic-based strategy, as
shown in Equation [I1] the policy is decomposed into two
functions, P and L, which correspond to Equations
and respectively. Function L contains the initial po-
sition of each a € A, allowing the model to establish op-
timal attack routes based on each agent’s initial position.
On the other hand, P consists of enumerating the number
of a € A which belong to the same z € Z. This way, ad-
versaries can learn to distribute themselves over different
routes and positions in G. These functions cause agents
to not interfere with each other and can change the at-
tack strategy as z decreases. Validation of whether this
knowledge modeling translates into this type of strategy
is tested in Section Moreover, thanks to the simplifi-
cation of the knowledge system, the spatial complexity of
the algorithm decreases to quadratic, as shown in Equa-

tion [I4]

Qls,0) = Q(s.a)+a | R(s,a) + ymax Q(s'.a') = Q(s,a)|

(15)

The evaluation of victory is based on whether the agent
owns a number of v € V which exceed a certain Scope
of Compromise threshold. This threshold is given by
Scope of Compromise calculations, shown at Equation
B in Section [3:2] This assessment is used to support
the reinforcement policy defined in Equation [I5] apply-
ing a positive reward to opponents when they win and a
negative reward otherwise. This equation allows adver-
saries to learn based on long-term knowledge, optimizing
the decisions that lead to victory. The function updates
the quality values of each movement since the last move-
ment performed, propagating backwards. Furthermore,

some typical RL parameters like learning and exploration
rate are present, and are configured when designing the
agent’s strategy apart from the DT Scope of Compromise
calculation.

5 Experimental cases and discus-
sion

This section comprises three main experimental studies:
(i) Node-level AE (E1), (ii) network-level AE (E2), and
(iii) hybrid (E3, combining E1 and E2). E1 consists in
creating probabilistic models by attacking DTs to cre-
ate simulations on which to train the adversaries. On
the other hand, E2 consists of training the adversaries
in a simulated graph, in which they can learn about the
topology and its weaknesses. Finally, E3 consists of run-
ning the trained agents on the DT to validate that the
generated knowledge is applicable to a real system.

5.1 El1: Node-level AE vectors

E1 consists of studying the network’s nodes individually,
without taking into account the relationships they have
at the network level. In this experiment, attack vectors
are executed against the nodes in order to perform a
probabilistic model that is able to estimate the ability to
breach the system by the adversaries.

The first phase of this attack vector consists of per-
forming a scan of all exposed services and vulnerabilities
that each node has. The variability of this experiment
consists of executing different forms of scanning, such as
TCP SYN, UDP Scan, etc., all present in [29], involv-
ing characteristics such as the method to use, types of
packets to be sent, sizes and intervals of sending, among
others. The second phase consists of cross-checking the
information obtained by the scan with CTI sources, in
which it tries to find vulnerabilities and the correspond-
ing exploits capable of breaching the system. These CTI
sources consist mainly of MITRE CVE [30] and VulDB
[31]. The third phase consists in executing different ex-
ploits from the Exploitdb [32] and Metasploit [33], and
TTPs from MITRE ATT&CK [34] in order to control
the system. Exploits and TTPs are mixed and concate-
nated until the agent is able to perform damage to the
node and can see the rest of the connections and links
to which they propagate. These CTI sources allow to
perform real attacks and execute realistic malicious be-
haviors.

A large number of tests under different conditions
and interfaces are performed per image in order to pre-
pare the automatic generation of the control network
graph. With these statistics, a ratio is established for
each software image approximating the proportion of
how many times these elements are breached by adver-
saries. Thanks to this ratio, fast training of the agents by
means of a control graph with a large number of matches



can be performed, as shown in Experiment E2, without
having to wait for the execution of a real DT.

5.2 E2.1: Net-level AE Vectors

The next experiments are the simulation of massive
matches between different agents to enable them to learn
about the network’s design. An offensive z; is configured
and must take advantage of these elements to attack the
centrality and targets in OR1 and OR2, further exploit-
ing weaknesses in their design. To improve the efficiency
of E2 and to favor the training of agents at an early stage,
a simulated control graph is used instead of attacking the
DT, as shown in the previous experiment. Moreover, E2
addresses two teams, A and B. Both teams are formed,
respectively, of attackers and defenders with the main
purpose of competing against each other and finding the
fastest way to achieve their goal. Team A is based on
an RL model already discussed in Section §] Team B
is based on a deterministic algorithm that handles non-
dominated nodes propagating through the nodes that are
reachable. The idea is that Team B represents a recovery
system with a predefined logic and no learning capabili-
ties.

Experiments are conducted on different G, with 10, 20,
50 and 100 nodes, in order to explore the performance of
RL. Regarding the games, a total of 10 DTs peer node
numbers have been generated, with a total of 100,000
matches for each one. Namely, there is a final total of
1 million matches for each type of scenario, limiting the
number of actions to 500 moves per agent. Figure [2]
depicts the E2 results.

The results obtained on the smallest size graphs, |V| =
10 and |V| = 20, show a limited performance by the at-
tacking team, unable to overcome a winning ratio higher
than that of the defending team. Although there is some
dominance of the attacking team, especially in |V| = 20,
both teams have an approximated winning ratio close to
50%. Based on these results, we conclude the following.
On the one hand, victories tend to rely on the initial ad-
vantage provided by the assigned starting positions due
to the simplicity of the networks. On the other hand, the
deviation produced in favor of the attackers in |[V| = 20
stems from the fact that there is an incipient complex-
ity in the network, which makes the strategic differences
between vertices more pronounced.

The results provided by |V| = 50 lead to the follow-
ing conclusions. There is a clear dominance of Team A
in the distribution of victories. This is because the net-
work’s size is already considerable, with more central and
connected zones and more remote isolated zones. The
anomaly of games with a clear tendency to the absence
of winners is remarkable. This is due to a peculiar net-
work topology with a star-shaped subgraph that has a
large number of vertices compared to the general topog-
raphy. With this interesting topology, there are many
possibilities that both teams start the match at one of

these points. This in turn, translates into a Nash equi-
librium [35] between them to conquer the center, which
is the only means of escape from this star but also the
only one to be defeated if the opponent passes through
it. Moreover, the results obtained by |V| = 100 are the
most promising. Although the distribution of victories is
similar to |V| = 50 in tendency, in this case it has greatly
increased the number of victories of the attacking team,
decreasing victories by the defender team. Complex net-
works represent an advantage for adversarial attackers,
because having more nodes and more connections in the
central zones allows them to learn to evade defenses easily
without wasting time, and at the same time prioritizing
a greater number of critical nodes.

The results of these experiments suggest promising
outcomes. In networks with certain complexity and size,
the adversaries are able to take advantage of network fea-
tures by means of some strategies that will be discussed
in Section Although these results do not accurately
represent that agents will be able to breach the system,
they provide an approximation of how well they will per-
form in this type of environment. They are also useful
to train the AI of agents before running them in a real
environment or DT.

5.3 E2.2 Agent Behavior Analysis

Given the predominance of victories of the attacking
teams, one additional result that can be extracted from
analyzing the previous experiment is the identification of
the nodes most relevant to the RL algorithm. This can be
done by observing node weights, as shown in Figure[3|and
in the Appendix[§]for all topologies. These topologies are
depicted, respectively, with different mathematical rep-
resentations showing how high the normalized qualities
of vertices are through heat graphs. The representation
of Figure [Bla corresponds to the arithmetic mean of the
quality per node. The problem with this image is that
is difficult to translate into an attacking path to see its
short and long-term objectives.

In order to analyze short and long-term thinking, a
normalized decay function shown in Equation is ap-
plied to the different representations. This is based on
the initial node from which agents start. In consequence,
the assigned qualities have a decay, as they are closer
from the initial position, thus pondering especially where
all paths converge. This is shown in Figure [3|b, where
it can be observed that the relevance falls on the nodes
with more centrality, resulting in an initial priority. This
criterion is also applied in reverse, setting a negative «
parameter in order observe the nodes that are farther
from the initial position. This can be seen in the Figure
[Blc, where the objective is clearly to spread to the outer
zones without completely renouncing centrality.

n

1 g
n 2 1+ adg(L(a),v;)

i=1

Q(a,v;) = (16)
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Figure 2: Distribution of percentage of victories by team.

Figure 3: Node weights with different representations

Analyzing the superimposed results of all the experi-
ments in Figure 4] there is a positive tendency to value
the centrality of both OR1 and OR2 within the network
communities. On the other hand, there is no clear differ-
ence between OR1 and O R2 node qualities, as the attack
is performed on both of them. However, when observing
the same analysis on the whole network, a negative ten-
dency is seen towards OR1 nodes with higher between-
ness centrality. This implies that there is a tendency to
attack OR2 nodes, avoiding OR1 nodes with higher cen-
trality, which produces an enveloping effect on them. As
a conclusion of these experiments, RL based agents are
able to learn from the characteristics and weaknesses of
ITIoT networks. Not only have they been able to perform
the strategy described in Section [d] but have also been
able to apply it in the structural controllability context,
demonstrating system adaptability.

Finally, following the results obtained and shown in
Figure [d two individual analyses of performed simula-
tions can be found in Appendix 2. In these figures,
the pattern in which the quality of OR2 is increasing
in centrality while in the case of ORI it is decreasing
can be observed more clearly. Taking into account that
the topology follows the power-law distribution, the en-
veloping effect on OR1 and the prioritization of OR2
is visible. Moreover, non-overlapping results cause the

gradient to be more pronounced, making this conclusion
even clearer.

5.4 E3: DT-assisted Hybrid AE

E3 intends to validate E1 and E2 in a single DT-
supported IIoT environment. This experiment is exe-
cuted on the DT, entailing the assembly of DT with the
IToT structural controllability theory. The most signif-
icant results of the previous experiment are taken for
this test, namely those performed on industrial networks
with |V] = 100. For this purpose, E3 launches agents
and hybrid-target attacks under one topology used in
Section [5.2] The results of the experiments designed for
|V| = 100, with a total of 100 matches, are of 73% for
Team A and 27% for Team B. It should be remembered
that this was an approximation, so a lower result is jus-
tified. However, results are relatively similar to those
obtained in E2. Note that a high multi-node DT exe-
cution combined with a smaller number of experiments
increases the probability of less accurate approximation.
Furthermore, the usage of 100 virtualized nodes with all
communications and agents running over them implies a
large computational burden which may lead to slightly
different results. Despite these setbacks, the results are
clearly close to the target and the modeled evidence,
demonstrating the success of these experiments and of
the methodology.

6 Conclusion

This paper has demonstrated the usefulness of DT tech-
nology to illustrate IloT-based scenarios, making it an
ideal adversarial target without impacting real infras-
tructure. In order to conceptualize virtual scenarios, a
simulated probabilistic model has been defined, delimit-
ing the offensive rules to be applied within the DT and
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adapt AE to reality through simulation. The framework
allows launching a set of attack strategies and adapting
them to the context of the infrastructure using artificial
intelligence, evaluating the most critical parts of the sys-
tem in an autonomous manner. In addition, a methodol-
ogy for the execution of automated AE actions has also
been established. This methodology considers both the
suitability of the performed strategy at the network level,
as well as an initial performance-oriented approach. The
paper describes the development of an innovative AE
methodology that uses a DT combined and adapted to
control theories to improve the security and prevention
of industrial environments. As future improvements, the
proposed approach shows limitations in emulating more
complex strategies or behaviors as Advanced Persistence
Threats that may be the subject of further research.
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8 Appendix

APPENDIX 1: Figure 5 shows the results of all the topologies generated in the experiments of Section [5.2] with
|[V| = 100, as well as the normalized arithmetic mean of all the RL weights.

Figure 5: Topology of the DTs and normalized average RL weights.
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APPENDIX 2: Figures 6 and 7 show a comparative analysis of centrality, median distance, the structural
controllability group to which they belong and a regression with their trend as a function of the quality assigned
by the RL algorithm.
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