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Abstract—The inclusion of identity management in the cloud
computing landscape represents a new business opportunity
for providing what has been called Identity Management as a
Service (IDaaS). Nevertheless, IDaaS introduces the same kind
of problems regarding privacy and data confidentiality as other
cloud services; on top of that, the nature of the outsourced
information (users’ identity) is critical. Traditionally, cloud
services (including IDaaS) rely only on SLAs and security
policies to protect the data, but these measures have proven
insufficient in some cases; recent research has employed ad-
vanced cryptographic mechanisms as an additional safeguard.
Apart from this, there are several identity management schemes
that could be used for realizing IDaaS systems in the cloud;
among them, OpenID has gained crescent popularity because
of its open and decentralized nature, which makes it a prime
candidate for this task. In this paper we demonstrate how
a privacy-preserving IDaaS system can be implemented using
OpenlD Attribute Exchange and a proxy re-encryption scheme.
Our prototype enables an identity provider to serve attributes
to other parties without being able to read their values. This
proposal constitutes a novel contribution to both privacy and
identity management fields. Finally, we discuss the performance
and economical viability of our proposal.

Keywords-identity management; privacy; OpenlD; proxy re-
encryption; cryptography; cloud computing.

I. INTRODUCTION

Identity management is one of the most common services
deployed within companies and organizations because of its
key role in access control, authorization and accountability
processes. However, it introduces an overhead in cost and
time, and in most cases it requires specific applications and
personnel for managing, integrating and maintaining this
service. In the same vein as for other kinds of services,
the cloud offers an innovative opportunity of externaliz-
ing this workload; this is what has been called Identity
Management as a service (IDaaS or IDMaaS) [1]]. IDaaS
allows companies and organizations to outsource the identity
management service from their internal infrastructures and
deploy it on the cloud provider; that is, it permits moving
identity management from an on-premise delivery model
to an on-demand model. Additionally, IDaaS opens up a
new business opportunity for cloud providers and vendors,
broadening their service offering.

However, at the same time, IDaaS introduces a variant
of one of the classic problems of cloud computing: the
loss of control over outsourced data, which in this case is
information about users’ identity. The fact that this kind of
information is protected by specific regulations, such as the
European Data Protection Directive in the case of the EU [2],
demands a strong protection of its storage, processing and
communication. Traditionally, cloud providers have tackled
these problems defining service level agreements (SLAs) and
internal security policies; however, these measures simply
reduce this issue to a trust problem. Nothing actually pre-
vents providers from breaking these agreements and policies;
users simply frust them not do it. In other words, there is
an important trust problem, inherent to cloud computing —
users want to have access to services but, at the same time,
are unwilling to provide their data to entities that they don’t
necessarily trust. For these reasons, it would be desirable
to have at our disposal more advanced security mechanisms
that enable users to benefit from cloud computing and still
preserve their privacy and the control over their information.

In this paper we demonstrate how an IDaaS system that
preserves users’ data privacy can be implemented. Our
prototype implementation uses OpenlID Attribute Exchange
as the underlying identity management protocol, and a proxy
re-encryption scheme for implementing the cryptographic
protection. Our approach enables an identity provider to
serve attributes to other parties without being able to read
their values, preserving in this way users’ privacy with
respect to the identity provider. To our knowledge, this
is the first approach that proposes a functional identity
management system where the identity provider is unable
to access users’ information, which makes it a relevant
contribution to the areas of privacy and identity management.

The rest of this paper is organised as follows: In Section
we discuss related research on identity and privacy man-
agement. In Section[[Tl} we describe the OpenID protocol, as
well as its Attribute Exchange extension. In Section we
explain some proxy re-encryption schemes and in particular,
the one that we use in our prototype. In Section we
explain our proposed model, as well as some details about its
prototype implementation and its evaluation; additionally, an



economic analysis of this proposal is given. Finally, Section
concludes the paper and future work is outlined.

II. RELATED WORK

The problem of privacy in identity management is a
widely studied subject. In particular, much work has been
carried out regarding unlinkability of users with respect to
the other entities involved in the identity management pro-
cesses. For example, in [3]], the authors present PseudoID, a
model for private federated login that achieves unlinkability
of users to visited sites. To this end, a blind signature service
participates during the generation of an access token that is
handed to the identity provider; this access token consists
of a pseudonym and a secret value, that are both used
to anonymously authenticate the user. Although this work
presents an interesting contribution to privacy-enhanced
identity providers, it is centered in the unlinkability aspects
of the authentication of users. Moreover, this model is not
suitable for maintaining users’ information in the identity
providers, since the providers are unable to correlate users
to their pseudonyms.

With regard to the intersection of identity management,
privacy and cloud computing, there has also been some
research done. In [4], the authors propose SPICE, an identity
management system for cloud environments whose main
goal is to preserve users’ privacy. SPICE satisfies a set of
properties that the authors claim an identity management
system in the cloud should fulfill, such as unlinkability
and delegatable authentication. In order to accomplish this,
SPICE uses a re-randomizable group signature scheme.
However, the aim of SPICE is not the same as ours, since
we are not tackling unlinkability, but data confidentiality.
In [S], a privacy-preserving identity management system
for cloud environments is presented; this system is based
on zero-knowledge proofs that allow the user to prove the
knowledge of a set of attributes without revealing their value.
The problem of heterogeneity of attributes representation
is also addressed in this work by using ontology mapping
techniques. However, the authors don’t tackle the privacy
issues that are the concern of our work, since in their setting,
identity providers store in clear the values of the attributes
of the users.

In [6], the authors propose a solution based on the
deployment of active bundles in the cloud provider. An
active bundle is a mobile agent, in this case a virtual
machine, which contains the identity information of the user
and that is protected by cryptographic means. Every time
an operation involves the use of identity information, the
cloud provider interacts with an active bundle to retrieve this
information. However, this approach seems to be impractical
because of the large overhead that introduces the use of
a large container for data, such as a VM. Moreover, the
proposal does not detail any procedure to transport these
active bundles to the cloud in an efficient manner. Another

related approach, presented in [7], uses active bundles,
predicate encryption and multiparty computation to fulfill
the same goal; however, it suffers from the same problems
as the previous work, and introduces new ones, such as the
overhead produced by the use of multiparty computation.

Another proposal, based on the use of sticky policies and
trusted computing, is presented in [8]. This work presents
an interesting approach where information, along with a
specific policy that should be enforced in order to disclose
the data, is obfuscated before leaving users’ domain. In
this approach, a trusted authority is in charge of giving
the receiver the means to de-obfuscate the information,
after verifying that the receiver complies with its associated
policy; trusted computing is used to ensure the integrity of
both software and hardware environments of the receiver.
However, this work is focused on the direct sharing of infor-
mation, which makes it unusable in an identity management
setting, where an identity provider is used as an intermediary
and must somehow manage this information.

III. OPENID

OpenlD is a decentralized model for identity management,
which allows service providers to delegate the authentication
of users to identity providers. In this model, the identity of
a user is represented by a URI, called OpenlD identifier.
Hence, users don’t need to create a separate account for each
site; instead, they just have to use their OpenlD identifier,
and the authentication procedure will be conducted through
the user’s identity provider.

Together with the OpenID 2.0 specification [9], the
OpenlD Attribute Exchange extension (OpenID AX) [10]
was defined. This extension enables the exchange of users’
attributes within the OpenlD protocol flow. Specifically,
it defines a mechanism for fetching user attributes that
permits the service provider to include a petition for a
set of attributes into an authentication request, and the
identity provider to respond with the corresponding attribute
values together with the authentication response. In addition,
OpenlD AX also defines mechanisms for enabling the ser-
vice provider to store attributes in the identity provider.

In the OpenID context, the identity provider is usually
called OpenID provider (OP) and the service provider,
relying party (RP); however, we will adhere to the common
convention, and we will refer to them as identity provider
(IdP) and service provider (SP), respectively.

Next, we will consider the way that OpenID defines
the exchange of identity information. Although OpenlD
is mostly used just for authentication, the OpenlD AX
specification enables the identity provider to convey user
attributes during the authentication phase. The main flow of
OpenlD is shown in Figure |1| and is detailed as follows:

1) The user requests access to a service or resource at the

SP site. At this moment, we assume that the user is not
authenticated.
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Figure 1.

Sequence diagram of the OpenID Authentication protocol

2) The SP requires the authentication of the user and asks
for his OpenID identifier. In order to do so, the SP
shows the user a OpenlD login page, where he can
supply an OpenlD identifier.

3) The user provides an OpenlD identifier. He may have
several identifiers, and he can choose which one to
use. Additionally, OpenID 2.0 allows the user to simply
provide the identifier of his identity provider, enhancing
this way his privacy by reducing the chances of being
traced through his identifier.

4) The SP performs a discovery process using the supplied
identifier to locate the IdP of the user.

5) The SP and the IdP perform an association process,
that is, they generate a shared secret through a Diffie-
Hellman key exchange. This shared secret will be used
to verify subsequent communications.

6) The SP constructs an authentication request and redi-
rects the user to the IdP site through an HTTP redi-
rection. We will assume that the Attribute Exchange
extension is used, so the SP also includes a petition for
a set of attributes into the authentication request.

7) The user gets authenticated by the IdP, for example,
by providing his credentials. OpenID does not define a
method of authentication, but password-based methods
are the most common ones.

8) The IdP constructs an authentication response, which
contains an assertion about the result of the authenti-
cation. In case the SP asks for attributes, the IdP also
includes their values. Additionally, the IdP signs the
request. The user is then redirected back to the SP site
in order to continue with the authentication process.

9) The SP verifies the authentication response and reads
the attribute values included within.

10) The user gets authenticated at the SP site and is able
to access to the requested service.

OpenID is designed as an user-centric identity manage-
ment system; the fact that the users are free to choose the
identity provider, and even to establish their own provider,
proves the user-centric nature of OpenID. However, there
are some weak aspects of OpenlD (some of them extensible
to the rest of identity management systems) that are open to
improvement:

o Identity information assurance, since the service
providers need some mechanism to be confident that
the provided identity information is true and valid.

o Trust, since the decentralized nature of OpenID enables
to operate without requiring a pre-existing trust rela-
tionship between identity providers and other parties.

« Privacy, since the identity provider is in full control of
users’ identity information and is aware of users’ access
patterns.

In this paper we will tackle the privacy concerns respect
to users’ identity information; however, we acknowledge the
importance of all aspects for realizing an integral solution.

IV. PROXY RE-ENCRYPTION SCHEMES

From a high-level viewpoint, a proxy re-encryption
scheme is an asymmetric encryption scheme that permits a
proxy to transform ciphertexts under Alice’s public key into
ciphertexts under Bob’s public key, as shown in Figure [2]
In order to do this, the proxy is given a re-encryption key
ra—p, which makes this process possible.

E4(m) Ep(m)

TA-B

Figure 2. General proxy re-encryption sequence

The notion of proxy re-encryption was introduced in
1998 by Blaze et al. [11]; their proposal, which is usually
referred as BBS scheme, is bidirectional (it is trivial to obtain
rp—a from rs_p) and multihop (the re-encryption process
is transitive), but not resistant to collusions.

Ateniese, Fu, Green and Hohenberger proposed in [12]
new proxy re-encryption schemes based on bilinear pairings.
In particular, they provided an initial basic scheme, which
is subsequently extended throughout the paper to support
additional functionalities. Their scheme is unidirectional,
unihop and resistant to collusions. Because of the simplicity
of this scheme, we will use it in our implementation; we
will explain it in more detail below.

Green and Ateniese proposed an identity-based proxy re-
encryption scheme in [13]]; however, this scheme is not
resistant to collusions. An improved proposal that is secure
against chosen-ciphertext attacks (CCA) is presented in [14],
but again, it is not collusion-resistant.

In [15], Canetti and Hohenberger presented a CCA-secure
bidirectional scheme; based on this security model, Libert



and Vergnaud proposed in [16] an unidirectional scheme
with chosen-ciphertext security in the standard model.

AFGH scheme. As aforementioned, Ateniese et al. de-
fined in [12] an unidirectional, unihop and collusion-resistant
proxy re-encryption scheme. This scheme is based in the
ElGamal cryptosystem. Let G; and G, be two groups of
prime order ¢, with a bilinear map e : G| x Gy — Gy; the
global parameters are g € G| and Z = e(g,g) € G».

o Key Generation (KG): Alice selects a random integer
a € Z4 and generates her pair of secret and public keys,
s4 =a and py = g%

e Re-Encryption Key Generation (RKG): Alice takes
Bob’s public key pp, and together with her secret
key s4, she computes the re-encryption key rq_p =
(pp)'/1 = gb/ € Gy.

o First-level Encryption (E): Anyone is able to encrypt
messages intended only for Alice using her public key
pa. To encrypt a message m € G2, one selects a random
integer k € Z,, and computes ¢ = (e(pa,g~),mZ*) =
(Z“",mZk) € Gy x Gy.

o Second-level Encryption (E;): To create second-level
ciphertexts, which are re-encryptable, one computes ¢ =
(pX,mZF) = (g™ ,;mZF) € Gy x G,.

e Re-Encryption (R): Anyone in possession of the re-
encryption key r4_,p can transform a second-level ci-
phertexts for Alice, ¢4 = (a, ), into a first-level ci-
phertext for Bob, by computing cg = (e(a,ra—p),B) =
(Z”k,mZk) € G2 x Ga.

o First-level Decryption (D1): As in other asymmetric
encryption schemes, Alice uses her secret key sy to
transform a ciphertext c4 = (&, 8) € Gy x G, into the
original message m. In order to do so, Alice computes
Tl T il

o Second-level Decryption (D;): For decrypting a ci-
phertgxt ca = (o, ﬁﬁ) € G1 x Gy, Alices computes m =

e(o,g)/on e(a,g)t/e
This scheme uses two different ciphertext spaces; first-
level ciphertexts are intended for non-delegatable messages,
whereas second-level ciphertexts can be transformed into
first-level ones through re-encryption.
The AFGH scheme has the following properties:

o Unidirectional: The re-encryption key r4_,p cannot be
used to derive the reverse one rp_4. This property is
useful in settings where the trust relationship betwen
Alice and Bob is not symmetrical.

e Resistant to collusions: If the proxy and Bob collude,
they are not able to extract the secret key of Alice; at
most, they can compute the weak secret gl/ ¢, but this
information does not represent any gain to them.

o Unihop: This scheme is not transitive with respect to
re-encryption; the re-encryption process transforms a
ciphertext from one space to another, so this process
cannot be repeated.

V. PRIVACY-PRESERVING IDAAS SYSTEM

In this section we will describe the main contribution of
this work, a privacy-preserving IDaaS system that is able to
provide identity information to other parties without being
able to access the data, preserving in this way users’ privacy.
Our system is based in the use of proxy re-encryption, and
in particular, the AFGH scheme, presented in the previous
section.

We will restrict our work in this paper to a honest-but-
curious provider, which will behave correctly with respect
to fulfillment of the agreed protocol, but has no hindrance to
access users’ data. Hence, we will assume that the identity
provider may have some incentive to read users’ data without
their consent.

A high-level diagram of our proposal is shown in Figure 3}
this diagram depicts the main flow of information in our
system, where the user encrypts his attributes under his
public key py and sends them to the identity provider
in the cloud. The use of a proxy re-encryption scheme
enables the identity provider to transform these ciphertexts
into encrypted attributes under the public key of the service
provider, psp; in order to do so, the identity provider needs a
re-encryption key ry_,sp generated by the user. Our system
enables users to retain the control over the information
and prevents the identity provider from reading users’ data.
Hence, there are three main actors that interact in this model:

e User: The user puts his attributes in the identity
provider, but encrypted with his public key py. Being
a user-centric approach, we can assume that only the
user uploads information; however, since his public key
is used for encrypting, anyone in theory is able to do
so. If we want to prevent this, the user can refrain
from disclosing his public key, as in our proposal it
is only used for encrypting the attribute values and
no other entity needs it. The user is also responsible
for generating the corresponding re-encryption key for
the service providers, since his secret key sy is needed
during this process.

o Identity provider: In this case, the identity provider acts
as a proxy entity, which transforms ciphertexts from
some user to ciphertexts of some service provider. In
order to do so, the proxy needs the proper re-encryption
key ry_sp, which is provided by the user.

e Service provider: The service provider receives ci-
phered attributes that can be decrypted using his secret
key ssp. From his standpoint, the process is transparent;
somewhat simplistically, we could say that there is no
proxy re-encryption for him, as he only has to decrypt
ciphertexts with his own secret key.



Service Provider

Identity Provider

(psp;ssp)

Re-encryption

X
E ,a;
Encrypted |q—p| OpenlD (psp; a:) OpenlD
attributes Provider Consumer
TU—SP
E(pv, @), ... E(pu, az)
s oo O

(pv,sv)

Figure 3. Integration of OpenID and proxy re-encryption

A. Instantiation with OpenlD AX

In order to demonstrate the viability of our proposal, we
decided to instantiate it using the OpenID Attribute Ex-
change 1.0 protocol as the underlying identity management
scheme. Taking into account the steps described in Section
[} the modified protocol is as follows:

When the user accesses the service provider, he is asked
to authenticate himself; additionally, he may be asked to
provide some attributes. The service provider constructs an
OpenlD authentication request, including also an Attribute
Exchange extension header asking for a determinate set
of attributes. This request is sent to the identity provider
through a HTTP redirection on the user browser; the identity
provider receives the request and, upon a successful authen-
tication of the user, constructs an authentication response.
This response will also include the values of the attributes
requested by the service provider; in order to do so, the
identity provider must use the appropriate re-encryption key
(the one that corresponds to the specific user and service
provider) to transform the attribute values encrypted for the
user into ciphertexts for the service provider. Once the re-
encryption is performed, the IdP sends the authentication
response, including the attribute values encrypted under the
public key of the service provider. The final step is for the
service provider to decipher the attribute values using its
secret key.

From a low-level standpoint, our proposed implementa-
tion respects almost entirely the regular OpenID AX protocol
flow since it is extended in just two points, as shown in
Figure [

o Extension I: when the identity provider constructs the
response, since it has to perform the re-encryption of
the attribute values.

o Extension 2: when the service provider receives the
encrypted values in the response, since it has to decrypt
them.
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Figure 4. Sequence diagram of the modified OpenID protocol with proxy
re-encryption

B. Design issues

Global parameters. Since all the cryptographic compu-
tations must be performed under the same system param-
eters, for our prototype we have simply assumed that the
global parameters are previously known by every party; how-
ever, in a real setting these parameters should be somehow
published or distributed to the rest of the parties.

One option is that there is a trusted entity that generates
and publishes the parameters, so this information is public
to the rest of entities that could then compute their public
keys; in this case, these parameters could be even signed by
this entity for verification purposes. Another alternative is
that these parameters are particular to each identity provider;
however, this implies that each user and service provider
must have a different pair of keys for each identity provider,
which could be not feasible.

Encryption of user’s attributes. A fundamental prin-
ciple behind our proposal is that the user must be the
responsible for encrypting his personal information and
managing his keys, since only this way we can fulfill the
primary goal of keeping the control of his data. However,
this is not an easy task in a real setting, where the user
normally interacts through a web browser. The browser
must then be able to perform the encryption process, which
can involve complex operations depending on the proxy
re-encryption scheme used. Nevertheless, the support for
cryptographic libraries in browsers is currently very limited;
a more powerful cryptographic support for the browser could
be very useful to perform this operation on the fly, as
discussed in [3]].

A first alternative to tackle this problem is using
client-side scripting technologies; for example, the identity
provider can include a piece of code in the page used to



upload user information, so the encryption process takes
place in the user side. However, this option introduces the
problem of trusting such code, since it would be offered by
the identity provider; this issue could be addressed through
code signing by a trusted entity, but this introduces more
complexity into the system. Another option is to use a
browser plugin, or directly, a specific application to perform
this operation; however, this alternative complicates the
adoption of this proposal, since it obliges the user to install
additional software. The suitability of these alternatives
depends on the requirements of the specific use case.

Another important issue is that we just encrypt the value
of each attribute, so its name is in clear; this approach
makes our model easily integrable with existing directory
services. In addition, the process of uploading user attributes
to the identity provider is outside the scope of the OpenID
AX specification; for all these reasons, we decided in our
prototype to upload the encrypted attributes off-line. It is also
worth mentioning that we do not directly encrypt attributes
with the proxy re-encryption scheme; instead we use an
hybrid approach. More details are given in Section

The encryption of user attributes is an important point of
our system from the standpoint of security. Nowadays, the
possibility of malware on users’ devices and platforms is
constantly increasing; for this reason, the identity provider
needs to be sure of the integrity of the user’s platform, and
specifically, the application that encrypts the attributes. In
order to tackle this matter, we could use remote attestation
techniques [17]; for instance, in [18]], Trusted Computing
technology is used to enhance OpenlD by providing both
authentication and remote attestation of user’s platform,
enabling this way a link of trust between the identity
provider and the user’s platform. However, although this
issue is relevant to the security of our solution, we consider
it out of the scope of this paper.

Re-encryption keys. The re-encryption key, apart from
making possible the re-encryption of ciphertexts, can also
be seen as an access token, as it is created by the user when
he wants to grant access to his attributes to some service
provider. In the same manner, the re-encryption key can
also be removed from the identity provider for revoking the
access to user’s attributes; we can trust that it will remove the
re-encryption key when asked, as we assume that the identity
provider is a honest-but-curious entity. Ideally, temporary
re-encryption keys would be used, so access would be valid
only for a specific period of time. To date, we have not
seen any proxy re-encryption scheme that deals with re-
encryption keys that are valid for a particular time period. In
[12], a temporary proxy re-encryption scheme is proposed,
which restricts both the re-encryption key generation and
encryption processes to the same time period; however, this
is not what we desire, since in our model the re-encryption
key generation process will probably happen in a later
time period. We leave as an open problem the design of

a proxy re-encryption scheme with support for temporary or
expirable re-encryption keys; our proposal would certainly
benefit from such scheme.

In our prototype, we opted to create the re-encryption keys
beforehand; however, in a real setting this process would be
ideally conducted when a service provider asks for attributes
for the first time. Again, we face the same problem we
have with encryption, since complex operations must be
performed on the user side; thus, the same alternatives can
be applied here.

Recall that the public key of the recipient is needed during
the re-encryption key generation. Thus, it would be advisable
to use some standard mechanism of discovery and publica-
tion of public keys within the OpenID protocol, such as
the one proposed in the draft specification OpenID Service
Key Discovery 1.0 [19]; that way, the service provider can
publish his public key without requiring any mechanism
external to OpenlD.

C. Implementation and performance evaluation

In order to make a quantitative evaluation of our proposal,
we developed a prototype implementation [20], using Java
as coding language. For the implementation of both identity
and service providers we have used the OpenlD4Java library
[21]. We chose this library because it covers most of the
OpenlD specifications, and in particular, the Attribute Ex-
change extension. Our execution environment was an Apple
Macbook Pro laptop, with a 2.66 GHz Intel Core 2 Duo
processor and 4 GB of RAM, running Mac OS X 10.6.8.

With respect to the proxy re-encryption scheme, we have
implemented it using the jPBC library [22], a pairing-based
cryptography library for Java. As for the cryptographic
details, we used a Type A elliptic curve with a 256-bit group
order and 1536 bits for the field size, which achieves a 128-
bit security level. Additionally, we have made extensive use
of exponentiation preprocessing of frequently-used elements
for efficiency reasons.

As previously mentioned, we have used a hybrid approach
for encryption, as recommended when using asymmetric
encryption algorithms. Instead of directly encrypting the
attributes using the proxy re-encryption scheme, we are
encrypting a fresh 128-bit key for each attribute value, which
is then passed to a symmetric encryption algorithm (AES-
128) for encrypting the attribute value. This way, the proxy
encryption primitive is only used to cipher a short input
(a 128-bits key), whilst the symmetric algorithm performs
the bulk of the work. This approach is used not only for
efficiency, but for input length reasons, since attribute values
have a wide range of possible lengths.

The median execution times for the main operations, as
well as an estimate of the number of cycles, are presented
in Table [} Note that although the re-encryption operation
is slower than encryption and decryption, in a real setting
it would be performed by a cloud provider that presumably



Table I
PERFORMANCE RESULTS FOR THE MAIN OPERATIONS

Operation ‘ Time (ms) ‘ Cycles
Generation of global parameters 7279.98 1.94E+10
Generation of a secret key 0.01 1.86E+04
Generation of a public key 20.05 5.33E+07
Generation of re-encryption key 139.66 3.72E+08
Encryption 23.31 6.20E+07
Re-encryption 90.09 2.40E+08
Decryption 14.28 3.80E+07

counts on a much more powerful computing environment.
In a realistic scenario, re-encryption and decryption are the
most frequent operations, since they constitute the equivalent
to a ‘read’” operation. The number of cycles gives an approx-
imation of the workload involved in the main operations,
independently of the frequency of the CPU; this metric will
be of use in the next subsection. In order to estimate the
number of cycles per operation, we simply multiply the time
of execution by the frequency of the CPU of the experimen-
tal machine; however, note that this approach give us an
overestimation of the number of cycles, as it is difficult to
isolate the execution from other environmental interferences
such as multitasking and I/O operations, therefore the actual
figures are probably lower.

D. Assessment from an economic perspective

Cloud computing is currently a hot research topic, and
as such, it is subject of a large quantity of proposals for
enhancing its security, reliability and functionality. However,
in current literature there are almost no critical analyses
about the economic impact that can arise from the imple-
mentation of such proposals. In particular, this is the case
of cryptography-based proposals, as they often imply an
intensive use of computation and communication resources.
Hence, in this paper we will try to give a rough estimation
on the costs caused by our system.

As a basis for our analysis, we will consider the work
presented in [23], where the authors explore the economic
dimension of the outsourcing of computation and storage to
the cloud, and in particular, of common cryptographic opera-
tions, such as AES and RSA. There exist diverse factors that
influence the costs in cloud environments, being hardware,
energy and personnel, the most significant ones; there are,
however, other factors that have an indirect impact on the
costs, such as taxes, credits, and insurances. One of the most
valuable contributions of their work is the quantification
of the costs for several aspects of the cloud. Taking the
picocent (equivalent to 10712 USD cents) as unit of cost, the
authors break down the expenses derived from computation,
storage and network service: in the case of computation, the
prices range from 0.93 and 2.36 picocents per CPU cycle,
depending on the cloud provider; for networking, costs may

Table II
COSTS FOR THE MAIN OPERATIONS

Operation Cost per operation Operations
(in picocents) per cent
Encryption 4.34E+08 2304
Re-encryption 4.79E+08 2087
Decryption 5.70E+08 1755

vary from 800 to 6000 picocents per bit; and for storage,
less than 100 picocents per bit per year. It is important to
note that these costs are probably lower at this moment,
since this work was presented in 2010.

For our analysis we will first consider the computation
costs and assume, on the basis of the figures presented in
[23], that the costs incurred by the cloud provider are 2
picocents per CPU cycle, 7 picocents for a home client
and 15 picocents for a medium size company. Since the
computation in our system is distributed — encryption is done
on the user side, re-encryption at the cloud provider and
decryption is performed by the service provider — the costs
will also be distributed. It is important to mention that we
don’t consider the costs incurred by the OpenID protocol
itself, as we are only evaluating the economic impact of the
additional overhead that results from the protection of users’
information through proxy re-encryption.

As for the communication costs, even assuming a cost of
5000 picocents per transferred bit and that each attribute
value has a length of 1 KB, which are both fairly high
estimations, we are able to transmit almost 20 000 ciphered
attributes per cent. Thus, communication costs are not a
relevant factor to our analysis, since the information rep-
resented in form of attributes is usually short (less than 1
KB). Storage costs are negligible for the same reason, so we
will not take them in consideration either.

Table [lI] presents the results of this analysis. Apart from
the cost in picocents of the main operations, we present
a more tractable figure, the number of operations that can
be performed per cent. As an illustrative example of the
viability of our proposal, consider the border case of an
IDaaS system that receives a million of attribute requests per
day; that is, this cloud provider must perform a million re-
encryptions per day. This represents an expense of 1749.29
USD on a yearly basis, since the cost for a re-encryption is
4.79 E+08 picocents; this additional cost would be passed on
to the company that is externalizing their identity manage-
ment service. We think these figures are reasonable for an
average-sized company, but ultimately it would depend on
the savings from outsourcing their identity services to the
cloud. The costs that the company could incur in case of
some disclosure or security breach are difficult to estimate,
but at the very least it would have a negative impact with
regard to reputation and loss of customers, and even fines
or legal sanctions.



VI. CONCLUSIONS

Identity management as a Service (IDaaS) is a recent
cloud computing paradigm that allows companies and orga-
nizations to benefit from outsourcing one of the most com-
mon and needed services. The reduction of costs and time-
consuming tasks associated to managing identity services are
the main reasons motivating this externalization. However,
cloud computing has raised much concern with regard to the
inversion of the control of the data. Our proposal provides
an identity management service that guarantees user’s pri-
vacy and control even when data storage and processing is
performed by untrusted clouds.

The main contribution of this work is a novel and practical
privacy-preserving IDaaS system based in OpenlD Attribute
Exchange and a proxy re-encryption scheme, proposed by
Ateniese et al. in [12]. In our proposal, the identity provider
is able to transform encrypted attributes from the user into
ciphertexts for the service provider, without the identity
provider being able to read user’s attributes during this
process. Details of the implementation and a performance
evaluation are also given. In addition, we provide an eco-
nomic analysis of our proposal, which proves quantitatively
its viability; this kind of analysis is seldom presented in
other works, so we consider it as a valuable contribution.

In this paper, we intended to tackle user’s privacy issues
with respect to identity provider; however, there are still
other aspects regarding user’s identity information such
as unforgeability and assurance that are not handled by
OpenlD, and thus, not covered in our proposal; addressing
these problems is left as future work. As other future work,
we plan to test our implementation in a real cloud setting,
such as Amazon EC2 or Google AppEngine; in addition,
more recent proxy re-encryption schemes could be used
in order to provide more efficiency or security. A further
possibility to extend our work is to develop another pro-
totype implementation for a different identity management
protocol, such as SAML or Shibboleth.
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