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Abstract. This paper explores the application of the DUCA (Data Usage
Control and Compliance Architecture) framework for privacy management
in Cyber-Physical Systems (CPS). DUCA integrates Privacy-by-Design
(PbD) principles, Privacy-Enhancing Technologies (PETs), and context-
aware policy enforcement to support regulatory compliance and protect
data throughout its lifecycle. A key focus of this work is the integration
of Secure Elements (SEs)—including Trusted Execution Environments
(TEE), Trusted Platform Modules (TPM), and Intel SGX—to enable
privacy protection during data processing, complementing traditional
safeguards for data at rest and in transit. The framework also supports
emerging standards such as DICE and MARS to facilitate scalable trust
management in heterogeneous CPS environments. We present DUCA’s
modular architecture and evaluate its applicability across representative
use cases, including smart grids, eHealth, and AI-enabled infrastructures,
demonstrating its effectiveness in enforcing privacy without compromising
functionality.
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1 Introduction

Cyber-Physical Systems (CPS) are increasingly central to sectors such as energy,
healthcare, transportation, and manufacturing, where the interplay between
digital intelligence and physical processes enables real-time, data-driven decision-
making. However, the dynamic, distributed, and heterogeneous nature of CPS
introduces significant challenges for privacy and security, particularly regarding
the protection of sensitive data throughout its lifecycle. Ensuring robust privacy
in these environments requires not only regulatory compliance—such as adherence
to the General Data Protection Regulation (GDPR)—but also the integration
of security mechanisms that operate effectively at both software and hardware
levels.
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Traditional privacy strategies, rooted in Privacy-by-Design (PbD) princi-
ples, employ Privacy-Enhancing Technologies (PETs) such as anonymization,
pseudonymization, encryption, and differential privacy. While effective for secur-
ing data at rest and in transit, these techniques often fall short when it comes to
safeguarding data during computation—a critical stage in CPS where information
is actively processed and acted upon in real time. This limitation has prompted
interest in Secure Elements (SEs), such as Trusted Execution Environments
(TEEs), Trusted Platform Modules (TPMs), and Intel Software Guard Exten-
sions (SGX), which enable privacy policy enforcement within tamper-resistant
hardware contexts.

This work is conducted within the scope of the DUCA (Data Usage Control
and Compliance Architecture) project, which investigates scalable, policy-driven
approaches to privacy in CPS. DUCA combines PETs, dynamic and context-
aware policy enforcement, and Secure Elements into a modular architecture
that supports compliance and privacy-aware data usage. In this paper, we focus
specifically on the integration and evaluation of Secure Elements within this
framework, analyzing their suitability for runtime enforcement of privacy policies
in heterogeneous CPS scenarios.

The main contribution of this work lies in the detailed examination of how
hardware-based Secure Elements can be employed to extend privacy protection to
data-in-use, addressing a gap in conventional PET-centric frameworks. We provide
a comparative analysis of SE technologies—including TEE, TPM, SGX, SEV,
DICE, and MARS—highlighting their trade-offs in terms of isolation guarantees,
attestation capabilities, performance, and applicability across CPS domains.
Furthermore, we demonstrate the relevance of these technologies through three
representative use cases: smart grids, eHealth, and big data analytics, each with
distinct operational and regulatory constraints.

The remainder of the paper is structured as follows. Section 2 presents
background and related work on privacy management in CPS. Section 3 describes
the DUCA architecture and its privacy-relevant components. Section 4 examines
the integration of Secure Elements and analyzes their capabilities. Section 5
presents representative application scenarios and evaluation insights. Finally,
Section 6 concludes the paper and outlines directions for future work.

2 Background and Related Work

Ensuring privacy in Cyber-Physical Systems (CPS) has become a pressing chal-
lenge as these systems manage vast volumes of sensitive data across interconnected
and dynamic infrastructures. Unlike conventional IT environments, CPS operate
in real-time contexts where continuous data flows introduce complex privacy risks.
These challenges have led to the adoption of Privacy-by-Design (PbD) principles
and Privacy-Enhancing Technologies (PETs), integrating privacy directly into
system architectures.

Historically, privacy evolved from the notion of “the right to be alone” [1]
to the modern concept of information privacy, centered on individuals’ control
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over personal data [2]. The General Data Protection Regulation (GDPR) [3],
enforced since 2018, formalizes these principles, mandating not only protection
measures but also demonstrable compliance. PbD, codified in GDPR Article
25 [4] and conceptualized by Cavoukian [5], promotes the proactive embedding
of privacy throughout the system lifecycle. DUCA adopts PbD not just as a
regulatory response but as a core design principle, embedding protections from the
outset—particularly vital in CPS environments characterized by high-frequency
processing of sensitive data.

CPS tightly integrate computational and physical components [6, 7], and
are deployed in critical sectors such as energy, healthcare, manufacturing, and
transportation [8–10]. Their heterogeneity, inclusion of legacy technologies, and
diverse operational contexts pose privacy and security challenges. For instance,
in healthcare, CPS handle sensitive patient data under strict confidentiality
requirements [11]. DUCA addresses these risks through a distributed, adaptable
framework that ensures consistent enforcement of privacy policies across compo-
nents and stakeholders with distinct obligations. This approach mitigates risks
such as service disruption or public safety threats by embedding privacy within
both data management and decision-making processes.

DUCA operationalizes PbD through the use of PETs including data minimiza-
tion, anonymization, and user-centric privacy controls [12]. These technologies
secure data across its lifecycle—from collection and processing to storage and
sharing—without compromising utility. Complementing this, DUCA incorporates
privacy risk assessment tools that support early vulnerability detection and
continuous monitoring, essential for real-time CPS. Transparent interfaces further
empower users to manage privacy preferences, reinforcing GDPR principles and
supporting DUCA’s sustainable deployment.

PETs such as anonymization and pseudonymization reduce re-identification
risks, while encryption safeguards data at rest and in transit [13]. Differential
privacy enhances analytics by introducing statistical noise, maintaining aggre-
gate utility while protecting individual identities. DUCA integrates these PETs
with dynamic, policy-driven enforcement mechanisms, allowing adaptation to
regulatory and operational demands across domains.

Beyond technical controls, CPS privacy governance requires policy manage-
ment, auditing, and accountability [14]. DUCA supports context-aware privacy
enforcement that adapts controls to data types and operational contexts. Mech-
anisms such as audit trails and secure logging establish transparency, enabling
compliance verification and fostering trust.

The DUCA framework builds upon prior research emphasizing the need for
adaptable and modular privacy management. Approaches using digital twins for
dynamic policy adjustment [15] and privacy architectures such as Sovereign [16]
and Eden [17] demonstrate the viability of embedded privacy in complex environ-
ments. DUCA extends these concepts by combining PbD and PETs throughout
the system lifecycle and across heterogeneous CPS deployments.
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3 DUCA Architecture and Privacy-Oriented Integration

The DUCA (Data Usage Control and Compliance Architecture) framework
is designed to support privacy-preserving, regulation-compliant data usage in
complex CPS environments, including smart grids, healthcare systems, and large-
scale analytics infrastructures. It adopts a modular architecture that integrates
Privacy-Enhancing Technologies (PETs), dynamic usage control, and hardware-
based Secure Elements (SEs) to protect data throughout its lifecycle.

Figure 1 provides an overview of DUCA’s main components. The DSA Lifecy-
cle Infrastructure (DLI) manages the specification and storage of Data Sharing
Agreements (DSAs) through a user interface, a policy authoring tool that converts
high-level rules into controlled natural language (CNL), and a DSA Mapper that
translates these policies into enforceable formats (e.g., U-XACML). The DSA
Store enables persistence and retrieval of DSAs.

The DLI connects to the DSA Enforcement Infrastructure (DEI), which
interprets and enforces usage policies in real time. Supporting this process are
two additional layers: the Common Security Infrastructure (CSI), which provides
identity management, encryption services, and auditing; and the Advanced
Security Infrastructure (ASI), which handles PET integration and anonymization
functions. Together, these components ensure that privacy policies are enforceable,
traceable, and adaptable across distributed CPS components.

To validate the flexibility of the architecture, DUCA has been applied to
several representative use cases. In smart grid systems, anonymization modules
within ASI and enforcement via DEI ensure that real-time consumption data is
protected using Intel SGX enclaves. In big data analytics, DUCA combines PETs
(e.g., differential privacy) with CSI’s auditing and enforcement capabilities to
regulate large-scale query operations. In transportation systems, DUCA supports
the definition of context-aware DSAs through the DLI, while CSI handles identity
abstraction and consent tracking, and ASI ensures anonymization prior to data
release.

A key feature of DUCA is its integration of Secure Elements to support
privacy policy enforcement during computation—an area typically underserved
by software-only approaches. TEEs such as ARM TrustZone and Intel SGX isolate
execution environments, enabling secure analytics. TPMs provide attestation
and secure key storage, while confidential computing platforms such as AMD
SEV facilitate encrypted processing at the virtualization layer. Unlike previous
frameworks relying solely on software controls [14, 18], DUCA embeds hardware-
backed trust anchors that enhance resilience against privileged-level attacks.

This integration of Secure Elements complements existing PETs and rein-
forces DUCA’s capacity to enforce privacy policies across all stages of the data
lifecycle. It specifically addresses the challenge of protecting data during use—a
critical vulnerability in CPS—by executing sensitive operations within hardware-
isolated environments. This prevents privacy policies from being bypassed even
by privileged software components, thereby enhancing compliance assurance and
improving system resilience in real-time settings.
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Fig. 1. DUCA Architecture

4 Secure Elements in DUCA: Comparative Analysis and
Selection Criteria

The DUCA framework incorporates SE such as TEE, TPM, and Intel Software
Guard Extensions (SGX) to ensure robust and tamper-resistant enforcement of
privacy policies, especially during data processing, a well-known gap in traditional
privacy frameworks.

Table 1 presents a technical comparison of common secure elements used in
CPS. It contrasts their isolation levels, latency overhead, memory constraints,
platform compatibility, and typical use cases.

Figure 2 presents a comparative overview of all Secure Elements integrated
or considered within DUCA, namely TPM 2.0, Intel SGX, AMD SEV, TEE
(e.g., TrustZone), DICE, and MARS. Each element is assessed across five critical
dimensions: isolation level, latency overhead (normalized inversely), memory
capacity, platform flexibility, and resistance to side-channel attacks. Values are
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Table 1. Technical Comparison of Secure Elements for CPS Integration

SE Isolation Latency Memory Platform Example
TEE Medium (iso-

lated OS world)
Low (10–30%)
[19]

Moderate (OS
shared)

ARM, Mobile,
IoT

Smart meters, connected
vehicles, medical devices
[20]

TPM 2.0 High (discrete
chip)

Very Low
(sub-ms) [21]

N/A Windows,
Linux, IoT

Device attestation, secure
boot, key management
[22]

Intel SGX Very High
(enclave-based)

Medium–High
(20–60%) [23]

Strict (128MB
pre-SGX2)

Intel CPUs eHealth analytics, en-
crypted ML, smart grid
optimization [24]

AMD SEV High (VM-level
isolation)

Low (VM en-
cryption) [25]

High (full VM
encryption)

AMD EPYC
servers

Secure cloud data pro-
cessing, federated learning
[25]

DICE Low–Medium
(device-level
identity chain-
ing)

Negligible Minimal (low
footprint)

Constrained
IoT, ARM
Cortex-M

Secure identity for IoT,
low-power CPS nodes [26]

MARS High (modular,
attestation-
focused)

Low–Medium
(platform-
dependent)

Flexible (scal-
able)

General-
purpose,
Edge/Cloud

Dynamic trust in hetero-
geneous CPS, fog comput-
ing [27, 28]

normalized on a scale from 1 to 5 to facilitate visual comparison and support
evidence-based selection in Cyber-Physical System (CPS) contexts.

TPM 2.0 excels in device attestation with negligible latency and broad plat-
form compatibility, making it a foundational element for secure bootstrapping and
key management. Intel SGX provides the highest isolation for secure computa-
tion, though it is constrained by limited memory and reduced platform flexibility.
TEEs offer balanced performance for latency-sensitive CPS tasks, particularly
at the edge, while AMD SEV supports scalable virtual machine-level privacy
enforcement in cloud infrastructures.

DICE exhibits minimal overhead and maximal flexibility, making it ideal for
constrained IoT nodes and low-power CPS environments requiring lightweight
identity derivation. MARS contributes enhanced modularity and scalability
for attestation and measurement, addressing the trust management needs of
heterogeneous, cloud-edge CPS deployments. Collectively, this comparison informs
the strategic selection of Secure Elements tailored to specific privacy, performance,
and trust requirements in diverse CPS scenarios.

The integration of secure elements into CPS must be guided by application-
specific requirements such as real-time responsiveness, data sensitivity, and trust
assurance. The selection of the appropriate hardware-based security primitive
depends on the operational context, performance constraints, and the level of
isolation needed to mitigate threats. This subsection outlines key deployment
recommendations tailored to different CPS environments.

Latency-sensitive CPS (e.g., smart grids, autonomous vehicles): Implement
TEE (e.g. TrustZone) to enforce privacy policies on the edge with minimal
overhead. TEEs enable real-time decision making without significant delay, as
demonstrated in privacy-preserving smart metering systems [29].
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Fig. 2. Comparative overview of Secure Elements integrated or considered in DUCA.
The radar chart evaluates TPM 2.0, Intel SGX, AMD SEV, TEE (e.g., TrustZone),
DICE, and MARS across five critical dimensions: isolation level, latency overhead
(inverted), memory capacity, platform flexibility, and side-channel resistance. Scores are
normalized (1–5) for comparative visualization.

Data-intensive environments (e.g., healthcare, big data analytics): Use Intel
SGX or AMD SEV to process sensitive data securely. SGX enclaves are ideal for
the isolated computation of encrypted health data [30]. AMD SEV, by encrypting
entire virtual machines, enables secure analytics in federated learning setups [31].

Device Trust Establishment: TPMs offer hardware-backed attestation and
secure key storage, critical in environments requiring proof of device integrity
(e.g., in smart manufacturing and IoT deployments) [32].

Although secure elements bring significant benefits for CPS integration, each
technology introduces inherent limitations and trade-offs that must be considered
during system design. Factors such as memory constraints, performance overhead,
and vulnerability to specific attack vectors can affect their suitability for certain
applications. This subsection highlights key technical drawbacks associated with
leading secure element architectures.
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– SGX Limitations: Prior to SGX2, enclave memory is limited to 128MB. Paging
induces significant performance penalties. SGX is vulnerable to side-channel
attacks (e.g. Foreshadow [33]), requiring careful mitigation.

– TEE Constraints: TEEs share system resources with the OS, which can pose
risks if the OS is compromised. TrustZone’s limited cryptographic acceleration
restricts complex computation.

– TPM Boundaries: TPMs do not support data processing. Their role is limited
to key storage, attestation, and secure boot, necessitating complementarity
with TEEs/SGX.

DUCA adopts a hybrid Secure Element (SE) integration model in which
TPMs are deployed on all CPS nodes to ensure device integrity and secure
bootstrapping. TEEs are used to enforce local, context-aware privacy policies on
edge devices, such as smart sensors and IoT nodes. In addition, SGX enclaves
are used to protect sensitive data during AI processing or analytics in cloud or
fog computing environments.

This modular approach allows DUCA to scale privacy enforcement while
optimizing for performance and security contextually.

While DUCA currently leverages mainstream Secure Elements (TEE, TPM,
SGX), emerging technologies offer enhanced capabilities for privacy protection in
CPS.

Intel SGX2: SGX2 introduces dynamic memory management, allowing enclave
memory to expand or shrink at runtime. This addresses SGX’s earlier 128MB
limitation and improves performance for large-scale analytics [34].

ARM Realm Management Extension (RME): An evolution of TrustZone,
ARM RME supports finer-grained isolation and improved security management.
RME introduces Realms, isolated from both the OS and the hypervisor, which
improves the privacy enforcement of edge devices [35].

RISC-V Keystone Enclave: Keystone is an open source, flexible TEE designed
for RISC-V platforms. It enables customized enclave security, which is potentially
suitable for low-cost CPS nodes and IoT systems [36].

Confidential AI Accelerators: Hardware such as NVIDIA Confidential GPUs
and Intel TDX (Trusted Domain Extensions) aims to extend enclave-like protec-
tions to GPU and virtualized AI workloads, a promising direction for DUCA’s
secure AI analytics.

DUCA Roadmap: DUCA’s architecture is modular, enabling seamless integra-
tion of these next-generation SEs. Future versions will support SGX2 and RME,
enhancing scalability and security in complex CPS deployments.

In addition to mainstream Secure Elements such as TPM 2.0 and Intel
SGX, the DUCA framework can be extended to incorporate alternative trusted
computing standards, enhancing flexibility and platform compatibility. Trusted
Platform Module (TPM) 2.0 provides secure storage for cryptographic keys and
hardware-backed attestation capabilities, essential for device integrity validation
in Cyber-Physical Systems (CPS) [21]. TPM 2.0 is widely supported across
operating systems and hardware, and has been standardized by the Trusted
Computing Group (TCG) to ensure robust security baselines [22]. We can see how
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DICE and MARS offer lightweight identity derivation and modular attestation
capabilities respectively, complementing traditional SEs for diverse CPS scenarios.

Complementing TPM 2.0, the DICE offers a lightweight and scalable alter-
native. DICE, also standardized by TCG, is designed for constrained devices,
enabling secure device identity derivation and trust establishment without requir-
ing a discrete TPM. Its minimal resource requirements make DICE particularly
suitable for IoT nodes and low-power edge devices in CPS deployments [37].

Moreover, Measurement and Attestation Roots (MARS) represents an emerg-
ing framework that emphasizes flexible attestation mechanisms and trust anchors
tailored for diverse platforms. MARS enables fine-grained measurement of system
states and supports scalable trust establishment across heterogeneous CPS envi-
ronments [37]. Its modular design accommodates dynamic CPS infrastructures,
aligning with DUCA’s goals of real-time, context-aware privacy enforcement.

By supporting TPM 2.0, DICE, and MARS, DUCA can adapt trust en-
forcement mechanisms to diverse operational environments—ranging from high-
resource cloud platforms to resource-constrained edge nodes. This flexibility
enhances DUCA’s ability to manage privacy risks dynamically, ensuring that
data usage policies are enforced securely even in heterogeneous and evolving CPS
landscapes.

4.1 SE-based Policy Enforcement

Secure Elements (SEs) serve as hardware-based anchors for the enforcement of
privacy and security policies in CPS. Unlike frameworks that implement privacy
enforcement exclusively in software [14, 18], DUCA relies on SEs to provide
trusted execution environments that isolate sensitive computations from the rest
of the system stack. This design enhances the enforcement of privacy policies by
mitigating risks of tampering or bypass, especially during the data-in-use phase.

Trusted Platform Modules (TPMs) offer a hardware root of trust and enable
cryptographic attestation, secure boot, and key sealing. While effective for system
integrity verification, TPMs do not provide runtime execution isolation. Trusted
Execution Environments (TEEs), such as ARM TrustZone, allow execution of
code in a secure world that is isolated from the normal world, offering moderate
protection against compromised OS layers but often requiring hardware-specific
integration.

Intel Software Guard Extensions (SGX) provide stronger guarantees by al-
lowing designated code to run within enclaves—isolated memory regions that are
protected even from privileged software, including the OS and hypervisor. This
capability makes SGX particularly suitable for enforcing privacy policies tied to
specific data processing tasks. DUCA leverages this feature to ensure that analyt-
ics or access decisions on sensitive data are carried out within hardware-protected
contexts.

Emerging standards such as DICE (Device Identifier Composition Engine) and
MARS (Measurement and Attestation Roots) extend these principles by enabling
scalable identity management and layered attestation across resource-constrained
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CPS components. Their integration into DUCA supports device-level privacy
assertions and supply-chain trust anchoring.

By embedding enforcement mechanisms within SEs, DUCA enhances the
resilience of CPS against advanced adversaries and complements PETs by securing
data not only at rest or in transit but also during computation. The framework
supports dynamic and context-aware privacy policies that are evaluated and
enforced in real time, tailored to operational context, user roles, and risk posture.

Table 2. Comparison of Secure Elements for CPS Privacy Enforcement

Technology Isolation Attestation Performance Enforcement Scope
TPM None (boot-time

only)
Supported Low impact System integrity verification

ARM TrustZone Medium (dual-
world)

Limited Low to medium Secure execution on mo-
bile/IoT

Intel SGX High (enclaves) Supported High for I/O-bound
tasks

In-enclave policy enforce-
ment

DICE None (identity
derivation)

Supported Minimal overhead Hardware-based device iden-
tity

MARS Not isolation-
based

Supported Minimal overhead Root-of-trust attestation
across platforms

Table 2 summarizes key properties of Secure Elements relevant for privacy
enforcement in CPS, comparing their isolation level, attestation support, perfor-
mance overhead, and scope of enforcement.

5 Application Scenarios and Privacy-Preserving Strategies
in Cyber-Physical Systems

This section provides an in-depth overview of three specific use cases addressed by
the DUCA project. The following scenarios illustrate how TPM 2.0, SGX, SEV,
TEE, and emerging standards such as DICE and MARS are used contextually to
enhance privacy enforcement and trust assurance in diverse CPS applications.

5.1 Use Case 1: Smart Grids and Surveillance Systems

The increasing deployment of smart grids enhances efficiency and reliability in
energy distribution, but also raises significant privacy concerns, particularly with
the integration of surveillance systems that collect data from public environments.
Addressing these concerns requires robust security mechanisms to ensure data
confidentiality, integrity, and compliance with privacy regulations. End-to-end
encryption [38] and real-time pseudonymization techniques such as keyed hash
functions [4] have been proposed to secure data transmission and mitigate
identity linkage risks in IoT-enabled infrastructures. DUCA builds upon these
methodologies by embedding them into a comprehensive data usage control
architecture that enforces policies dynamically across interconnected smart grid
devices.
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A study by [39] explores the privacy challenges in Industry 4.0, emphasizing
the importance of differential privacy, federated learning, and homomorphic
encryption to secure large-scale, AI-driven data operations. DUCA aligns with
these strategies, ensuring privacy-preserving analytics and compliance with GDPR
and CCPA by PbD principles and PETs into its core.

The Sovereign framework [40] offers a decentralized smart home model utilizing
Named Data Networking (NDN) and data-centric security to enable local control
of IoT devices, eliminating reliance on external cloud services. DUCA draws
on this approach for privacy-aware data handling in smart grids, emphasizing
decentralized control and end-to-end encryption.

Further, a comprehensive review [41] categorizes IoT security frameworks into
encryption-based solutions, identity management techniques, and self-protecting
data models. DUCA incorporates homomorphic encryption, k-anonymity, and pol-
icy enforcement mechanisms to ensure regulatory compliance and data protection
even across domain boundaries.

Blockchain’s immutability and secure data-sharing capabilities [42] support
GDPR compliance through pseudonymization and encryption. DUCA adopts
blockchain-based measures to safeguard data throughout its lifecycle. Burnable
pseudo-identities [43] enable anonymous, unlinkable interactions in blockchain
systems, aligning with DUCA’s approach to privacy-centric identity management
in CPS.

GDPR-compliant SIEM frameworks [44] highlight early-stage pseudonymiza-
tion and sanitizable digital signatures for secure and auditable data processing.
DUCA integrates these techniques to maintain data usability for security incident
detection while protecting personal information.

Overall, DUCA systematically addresses privacy and security challenges in
smart grids and surveillance systems through the integration of PETs, decentral-
ized control, and dynamic policy enforcement. Future research includes AI-driven
privacy risk assessment and enhanced real-time adaptation of privacy policies.

Enhancing Smart Grid Privacy with Secure Elements: DUCA strengthens
privacy protections using Secure Elements:

– TPM : Attests the authenticity of smart meters, ensuring trusted data sources.
– Intel SGX : Enables real-time grid optimization within secure enclaves, pro-

tecting sensitive energy data during processing.
– TEE : Enforcement of privacy policies within isolated execution environments,

safeguarding energy consumption patterns.
– DICE : Provides a lightweight, hardware-backed identity derivation for con-

strained IoT nodes, enabling trust establishment with minimal overhead.
– MARS : Facilitates scalable, platform-independent attestation for heteroge-

neous smart grid infrastructures, enhancing dynamic policy enforcement.

5.2 Use Case 2: Usage Control for eHealth: Trust-aware Cooperative
Services in Mobility

The domain of eHealth, particularly in scenarios enabled by cooperative and
cooperative automated mobility (CCAM), presents complex challenges related to
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data integrity, trust, and privacy. The continuous exchange of sensitive medical
and mobility data increases exposure to potential breaches, particularly when data
traverse heterogeneous infrastructures. Distributed ledger technologies (DLTs)
have been used to ensure data authenticity and traceability [45], yet these
solutions often lack integrated pseudonymization and encryption, leaving personal
information vulnerable during transmission.

DUCA addresses this gap by incorporating real-time encryption and pseudonymiza-
tion of IoT device identities, alongside dynamic context aware data sharing policies.
These policies adapt based on factors such as asset location and role, and are
enforced with remote attestation techniques to verify the trustworthiness of
third-party nodes, thereby ensuring end-to-end data integrity and compliance.

A review by [46] identifies the major privacy challenges in blockchain systems,
such as linkage transaction and smart contract vulnerabilities, and proposes
cryptographic solutions including Secure Multi-Party Computation (SMPC),
Zero Knowledge Proofs (ZKP), homomorphic encryption, and differential pri-
vacy. These align with DUCA’s objective of enabling secure, privacy-preserving
analytics and support for Self-Sovereign Identity (SSI) models, which enhance
user control over personal data.

Complementary research by [47] presents a Pseudonym Revocation System
(PRS) for IoT healthcare, utilizing elliptic curve cryptography (ECC) to man-
age pseudonym lifecycles without centralized control. DUCA integrates these
principles to balance patient privacy with regulatory compliance.

In addition, a mobile library [48] to anonymize FHIR-compliant health data
prior to transmission enables local processing and consent-based data sharing, an
approach consistent with DUCA’s emphasis on minimizing raw data exposure.
Similar objectives are reflected in the methods of minimization of offline data
and pseudonymization in real time by [49], further supporting DUCA’s strategy.

The EDEN framework [50], employing federated learning for privacy-preserving
location data management, illustrates the potential to balance data utility with
privacy, informing the approach of DUCA in securing mobility-related eHealth
data.

Enhancing eHealth Privacy with Secure Elements: DUCA strengthens privacy
in mobile healthcare environments through:

– Intel SGX : Enables secure analytics on encrypted patient data within enclaves,
preventing unauthorized access.

– TPM : Verifies the integrity of mobile healthcare and telemedicine devices,
ensuring that only authenticated nodes handle sensitive data.

– ARM TrustZone: Executes privacy policies securely on mobile and IoT
healthcare devices, protecting data at the edge.

– DICE : Supports secure identity chaining for lightweight mobile health devices,
ensuring trusted data collection and transmission.

– MARS : Enables real-time attestation of third-party healthcare nodes, sup-
porting dynamic and context-aware data sharing policies.
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Through these Secure Elements, DUCA ensures robust, context-aware, and
regulation-compliant privacy protection across dynamic and distributed eHealth
ecosystems.

5.3 Use Case 3: Usage Control for Big Data and AI

Big Data and AI applications pose substantial challenges in managing personal
data, especially under stringent privacy regulations such as GDPR. Traditional
data protection techniques—anonymization, differential privacy, and homomor-
phic encryption [51]—provide foundational safeguards but often fall short when
data traverse heterogeneous environments, including local and cloud-based infras-
tructures. DUCA addresses these limitations by enabling flexible, granular data
protection through seamless enforcement of data usage policies across diverse
platforms. Its architecture integrates PETs to ensure compliance and data security
even in evolving threat landscapes.

A comprehensive review by [52] explores privacy risks in Beyond 5G (B5G) and
6G networks, such as unauthorized surveillance and AI-driven re-identification.
The study advocates for decentralized AI, homomorphic encryption, and dif-
ferential privacy—approaches DUCA adopts for privacy-preserving analytics
throughout the data lifecycle.

In addition, [53] examines privacy in location-based services via centralized
and federated frameworks like MOOD and SAFER. These systems assess privacy
risks and enforce protections prior to data publication, supporting DUCA’s
implementation of PbD in AI environments and federated privacy assessments.

Research by [18] on Data-Centric Security (DCS) using Apache Ranger
highlights dynamic data masking and role-based access control, aligning with the
aim of DUCA to embed privacy policies in AI infrastructure. Automation via
REST APIs enhances DUCA’s scalability and interoperability.

Furthermore, [54] presents digital twins in System-of-Systems (SoS) archi-
tectures to dynamically manage pseudonymization and encryption critical to
DUCA’s context-aware privacy enforcement in AI-driven applications. The de-
identification techniques explored by [55], including k-anonymity and l-diversity,
inform the balance of DUCA between data protection and analytic utility.

Lastly, [56] discusses attribute-centric anonymization and synthetic data
generation using Generative Adversarial Networks (GANs). DUCA leverages
these methods to enable privacy-preserving AI model training while minimizing
personal data exposure.

Enhancing Big Data Privacy and AI Security with Secure Elements: DUCA
integrates Secure Elements to ensure privacy-compliant and secure analytics:

– Intel SGX / AMD SEV : Supports privacy-preserving machine learning on
encrypted data within secure enclaves, maintaining model and data integrity.

– TPM : Verifies the authenticity and integrity of the data sources, mitigating
the risks of adversarial data poisoning.

– TEE : Executes privacy-preserving analytics in isolated environments, enabling
dynamic enforcement of privacy policies across cloud and edge infrastructures.



14 A. Muñoz et al.

– MARS : Provides scalable trust attestation across federated AI infrastructures,
ensuring trustworthiness of diverse computing environments during model
training and data exchange.

Through these technologies, DUCA enhances AI-driven decision-making while
ensuring GDPR compliance and scalable big data privacy protection. While
DICE is optimized for constrained environments and is therefore less applicable
in this context, MARS contributes effectively to federated trust management by
enabling scalable and reliable attestation across diverse AI infrastructures.

5.4 Transversal to Three-Use Cases

Beyond the specific use cases presented, several complementary research efforts
contribute transversally to DUCA’s privacy-preserving objectives, particularly
to advance compliance, data security, and the effective integration of PETs. A
comprehensive review [57] of PETs in the automotive sector identifies technological
parallels relevant to smart grids, eHealth, and AI analytics, supporting DUCA’s
adoption of differential privacy, homomorphic encryption, federated learning,
and secure multi-party computation. This review also highlights the complexity
of cross-organizational data sharing—an inherent challenge addressed within
DUCA’s modular and policy-driven architecture.

To illustrate how DUCA operationalizes PbD, PETs, and dynamic policy
enforcement, Figure 3 outlines its privacy management framework. This model
demonstrates DUCA’s embedded privacy protections throughout CPS infras-
tructures, ensuring regulatory compliance while maintaining data utility and
operational efficiency.

In line with this, Privacy Level Agreements (PLAs) [58] formalize user-defined
privacy preferences within Industrial Data Spaces, complementing DUCA’s model-
based enforcement of data minimization and purpose limitation. Additionally,
scalable anonymization techniques, such as clustering-based k-anonymity with
α-deassociation [59], are applicable across DUCA’s healthcare and smart grid
domains.

A dual layer protection strategy combining blowfish encryption with pseudonymiza-
tion [60] aligns with DUCA’s security model for data confidentiality, particularly
during inter-domain sharing. In the IoT context, the categorization of pseudonyms
into short-term, session-based, and location-based types [61] informs DUCA’s
identity management mechanisms, enhancing secure communication in CPS
environments.

Moreover, the application of homomorphic encryption to text mining ser-
vices [5] exemplifies the potential for privacy-preserving analytics, an approach
that DUCA extends to surveillance systems and AI-driven decision-making.

Taken together, these contributions reinforce DUCA’s commitment to robust,
scalable, and regulation-compliant privacy management across diverse CPS ap-
plications. Future research will aim to further enhance DUCA’s capabilities in
privacy-preserving AI, adaptive policy refinement, and real-time privacy risk
assessment, thereby supporting its continued evolution as a comprehensive and
forward-looking privacy framework.
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Cyber-Physical 
Systems (CPS)

Privacy-by-Design 
(PbD)

Privacy-Enhancing-
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Dynamic Privacy 
Policy Enforcement

Anonymization

Encryption

Secure Multiparty 
Computation (SMC)

Fig. 3. DUCA Privacy Management Framework: Integration of PbD, PETs, and Dy-
namic Policy Enforcement

6 Discussion and Conclusions

Designing privacy-aware Cyber-Physical Systems (CPS) remains a complex
challenge due to their dynamic, distributed, and heterogeneous nature. The DUCA
framework addresses these demands through a holistic Privacy-by-Design (PbD)
approach, embedding protection mechanisms across the entire data lifecycle—from
generation to storage and sharing—while supporting real-time CPS functionalities.

At its core, DUCA integrates Privacy-Enhancing Technologies (PETs) to
enable fine-grained control over data processing without compromising analytical
utility. Techniques such as anonymization, pseudonymization, encryption, and
differential privacy are combined with adaptive, context-aware policy enforcement
to ensure continuous alignment with evolving regulations like the GDPR. This
architectural flexibility allows DUCA to accommodate the distinct regulatory and
operational needs of various domains, including energy, healthcare, and mobility.

The practical applicability of DUCA has been demonstrated across diverse
use cases—ranging from smart grids and industrial systems to AI-enabled health-
care—confirming its ability to reconcile robust privacy protection with the
performance constraints inherent to CPS. A key differentiator of DUCA is its
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integration of Secure Elements (SEs), such as Trusted Execution Environments
(TEE), Trusted Platform Modules (TPM), and Intel SGX. These components
enable secure, tamper-resistant execution of privacy policies, enhancing trustwor-
thiness across data in use, in transit, and at rest—surpassing the capabilities of
software-only approaches.

Further extending its capabilities, DUCA incorporates emerging trusted
computing technologies like DICE and MARS. DICE offers lightweight identity
derivation and attestation suited for resource-constrained devices, supporting edge
trust establishment with minimal overhead. MARS provides scalable, modular
attestation mechanisms for heterogeneous infrastructures. DUCA’s modular archi-
tecture supports seamless integration of such components, ensuring adaptability
as new standards and SE technologies evolve.

Despite its strengths, DUCA must address ongoing challenges related to
scalability, interoperability, and dynamic policy orchestration. Large-scale CPS
introduce complexities in achieving low-latency policy enforcement across di-
verse infrastructures. Interoperability is further hindered by varied data formats,
protocols, and legacy components. Moreover, SE integration entails trade-offs
involving system complexity, energy consumption, and performance overhead.

Future work will focus on developing autonomous, adaptive policy orches-
tration mechanisms, potentially leveraging machine learning for real-time pri-
vacy risk assessment and automated policy tuning. The integration of advanced
privacy-preserving AI techniques—such as federated learning, secure multi-party
computation, and homomorphic encryption—can further enable compliant analyt-
ics without compromising confidentiality. Additionally, DUCA’s modular design
should continue evolving to accommodate emerging cryptographic primitives and
SE standards with minimal system disruption.

In summary, DUCA delivers a comprehensive and adaptable solution for
privacy management in CPS. Through its fusion of dynamic policy enforcement,
extensive PET integration, and hardware-backed security, it provides scalable,
regulation-compliant privacy safeguards. Its demonstrated versatility and exten-
sibility position DUCA as a reference architecture for the next generation of
privacy-aware cyber-physical infrastructures.
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