
ICITPM: Integrity Validation of Software
in Iterative Continuous Integration

Through the Use of Trusted Platform
Module (TPM)

Antonio Muñoz1(B), Aristeidis Farao2, Jordy Ryan Casas Correia1,
and Christos Xenakis3

1 Computer Science Department, University of Malaga Campus de Teatinos s/n,
29071 Malaga, Spain

amunoz@lcc.uma.es, ryan@uma.es
2 Neurosoft S.A., Athens, Greece

a.farao@neurosoft.gr
3 Department of Digital Systems, University of Piraeus, Piraeus, Greece

xenakis@unipi.gr

Abstract. Software development has passed from being rigid and not
very flexible, to be automated with constant changes. This happens due
to the creation of continuous integration and delivery environments.
Nevertheless, developers often rely on such environments due to the
large number of amenities they offer. They focus on authentication only,
without taking into consideration other aspects of security such as the
integrity of the source code and of the compiled binaries. The source
code of a software project must not be maliciously modified. Notwith-
standing, there is no safe method to verify that its integrity has not
been violated. Trusted computing technology, in particular, the Trusted
Platform Module (TPM) can be used to implement that secure method.

Keywords: CI/CD pipeline · Code integrity · Trusted computing ·
TPM

1 Introduction

We are witness to the increasing adoption of development tools. These building
tools are the Agile, the Development and Operations (DevOps) and the Con-
tinuous integration/continuous delivery (CI/CD). Automation is a key aspect
in both of them to build, deliver, and test high-frequent increments of features
[11,20,36].

We share the perspective of DevOps practices intended for optimizing times
between change commitment to the system and change implemented in normal
production code. While Agile practice focuses on eliminating processes. Thus,
today CI/CD pipeline is considered among the best practices for delivering code
c© Springer Nature Switzerland AG 2020
I. Boureanu et al. (Eds.): ESORICS 2020 Workshops, LNCS 12580, pp. 147–165, 2020.
https://doi.org/10.1007/978-3-030-66504-3_9

A. Muñoz, A. Farao, J. R. Casas Correia, and C. Xenakis, “ICITPM: Integrity validation of software in
iterative Continuous Integration through the use of Trusted Platform Module (TPM) ”, pp. 147-165, 2020.
http://doi.org/10.1007/978-3-030-66504-3_9
NICS Lab. Publications: https://www.nics.uma.es/publications

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66504-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-66504-3_9

148 A. Muñoz et al.

changes more frequently and reliably in code implementation. Continuous inte-
gration (CI) and continuous delivery (CD) embody a culture, set of operating
principles, and collection of practices that enable application development teams
to deliver code changes more frequently and reliably.

CI/CD is one of the best practices for DevOps teams due to CI/CD auto-
mated enabling software developers to dedicate themselves to collection accurate
requirements, security, and improved codes. The major challenges, which specif-
ically concern security in a CI/CD pipeline are the following:

– Automation is frequently used, withal the most times is not integrated with
security tools; lack of these tools is an event that leads to malicious behaviors
requiring alerts.

– Accountability in CI/CD pipelines is a vital dependency that ensures trans-
parency among developers’ actions, e.g., Man-In-The-Middle, [21].

– Low performance of security tools leads to delay the process of automation;
developer’s daily commitments demand real-time interactions and results.

– Deploying virtual machines leads to a single-point-of-failure, enabling adver-
saries to execute attacks without any trace if they get control over the Hyper-
visor, e.g., “hyperjacking” [33].

Notwithstanding, the CI/CD technique entails the next future consequences
resulting in information leakage in a big corporation DataBase. Based on the
above challenges, this paper presents a solution for an identified gap to grant
integrity in the CI/CD process. We proposed a mechanism for integrity vali-
dation of software in iterative continuous integration based on secure hardware
elements. Our solution uses the Trusted Computing technology, in particular, we
have designed the proposed solution using the Infineon Trusted Platform Module
(TPM) 2.0 version [9]. A gap in the whole process to grant software integrity in
CI/CD process has identified. Particularly between Assembly and Testing Server
communications as we further describe.

It emphasizes in on-demand deployments cases on developer premises. We
have developed a tool that from TPM functionalities assists in the CI/CD pro-
cess to bridge the identified gap granting integrity in the whole process. This
tool enables alerts about any change in the software from the final development
to deployment versions. For this purpose, we provide a review of agile method-
ologies and the importance of security in automation. Then, a description of
security risks in assembly and test server is provided, including current security
threats identified, implementation of a scenario as a proof of concept with some
threats, and our approach as a solution to the considered problem. TPM func-
tionalities are used to grant software and platform integrity as seal-bind key,
remote attestation, and signing functions.

The rest of the paper is organized as follows. In Sect. 2, we present the back-
ground and give a high-level description of the utilized agile methodologies and
their security role in automation. Next, Sect. 3 presents the related work. Next,
Sect. 4 describes the security role in automation. Section 5 presents a proof-of-
concept on a vulnerable Jenkins server. Section 6 is dedicated to describe the code
integrity challenge in the CI/CD pipeline we have afforded. Section 7 presents

ICITPM: Integrity Validation of Software in Iterative Continuous Integration 149

our proposal the Trusted Integrity Platform (TIP), while Sect. 8 demonstrates
the implementation setup, the tested scenario, and the results. Finally, Sect. 9
summarizes the paper and presents future work.

2 Background

CI can be understood as those guided practices that enable continuous surveil-
lance in code repositories allowing development teams to implement changes in
code and their check in. While they require mechanisms for the integration and
validation of code changes derived from multi-platform features from contempo-
rary applications. Technically, we can define CI’s main goal as a set of tools to
build, package and test applications in an automated and consistent way. This
consistency implies teams increase the frequency in code changes commitments
triggering improved team collaborations and increased quality in software.

CD technique binds at the end of CI performing an automation in application
delivery to particular infrastructures. It is widely extended the use of different
environments (i.e. production, development and testing) with code changes sub-
mission between them. CD provides an automated way to actually perform those
changes, keeping stored packaging parameters bound to every delivery. We aimed
to be an automated process since any service calls to databases, web servers, and
any other services to be resumed, restarted, stopped or followed to deploy the
application must be automatically performed.

We have previously mentioned that the objective is delivering quality code
and applications to users, for this reason CI/CD demands constant testing, which
is generally offered as performance, regression and other set of tests done within
CI/CD pipeline. Developers submit their code to commit into the version control
repository. Also it is usual to establish a minimal rate of daily committing code
per team to facilitate tasks in identifying defects and bugs on smaller delta pieces
of code rather than large developments. Also, working on smaller commit cycles
reduces parallelworking on the same code inmultiple developer teams.Many teams
that implement continuous integration often start with version control configura-
tion and practice definitions. Even though checking in code is done frequently, fea-
tures and fixes are implemented on both short and longer time frames.

Different techniques are used to control and filter code for production in CI.
Among the most applied practices is to require developers run regression tests
in their own environments, which implies that only code that passed regres-
sion tests were committed. We notice that it is common that development teams
have at least one development and testing environment. This environment allows
reviewing and testing application changes. A CI/CD tool such as Jenkins1, Cir-
cleCI2, AWS CodeBuild3, Azure DevOps4, Atlassian Bamboo5, or Travis CI6 is
used to automate the steps and provide reporting.
1 https://jenkins.io/.
2 https://circleci.com/.
3 https://aws.amazon.com/es/codebuild/.
4 https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops.
5 https://www.atlassian.com/software/bamboo.
6 https://travis-ci.com/.

https://jenkins.io/
https://circleci.com/
https://aws.amazon.com/es/codebuild/
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://www.atlassian.com/software/bamboo
https://travis-ci.com/

150 A. Muñoz et al.

A typical CD pipeline [20] includes the following stages: (i) built; (ii) test and
(iii) deploy. Nonetheless, improved pipelines include also the following stages:

– Picking code from version control and executing a build.
– Allowing any automated action such as restarting or shutting down both
cloud infrastructure, services or service endpoints.

– Moving code to the target computing environment.
– Setting up and managing environment variables.
– Enabling services as API services, database services or web servers to be
pushed to application components.

– Allowing rollback environments and the execution of continuous tests.
– Alerting on delivery state and data log are provided.

Jenkins provides files to manage records about building, testing and deploy-
ing stages that describe their pipelines. Those files define keys, certificates,
environment variables, and other parameters. The CI/CD technique provides
mechanisms to the misalignment between developers with operations. We notice
that developers push frequent changes in their codes and operations while they
expect stable applications after changes. However, they can push these changes
with automated procedures to achieve stability in their operations. With stan-
dardized environment configurations, rollback procedures are automated and
provide continuous testing in delivery, and separation of environment variables
from applications.

Additionally, there are mechanisms to measure the impact of implementing
the CI/CD pipeline, like as a key performance indicator (KPI). Nevertheless,
we have to consider that KPIs can change the lead time, and the mean time to
recovery (MTTR) from an incident when CI/CD with the implementation of con-
tinuous testing [22]. We have identified a gap of security in the CI/CD pipeline.
In particular, as it is next briefly described, a threat in the code integrity. Also
we have proposed an approach for that based on Trusted Computing advanced
security features.

3 Related Work

Most of tools used in CD pipeline are web-based applications as Jenkins. Several
approaches have focused on detecting vulnerabilities. Deepa et al. [15] provide
approaches for Securing web applications from injection and logic vulnerabili-
ties. Other solutions [19] follow approaches based on static analysis and runtime
Protection and mitigation of vulnerability impact based on security testing tech-
niques [24].

OWASP [29]proposes threat modeling focused on detecting threats and vul-
nerabilities as early as possible. The most widely used threat modeling method
is known as STRIDE [18]. Secure DevOps [28,30] is a set of tools designed to
help organizations implant secure coding in the CD process. Lipke [25] stud-
ied threats in CD pipeline using STRIDE methodology. This work implements

ICITPM: Integrity Validation of Software in Iterative Continuous Integration 151

a proof of concept based on Docker. Some approaches follow detection of vul-
nerabilities in CD pipeline applications as Bird [13]. Schneider [34] proposes a
four-staged dynamic security scanning methodology (pre-authentication scan-
ning, post-authentication scanning, backend scanning and scanning workflows
specific to the targeted application). Also, this author introduces the SecDe-
vOps Maturity Model(SDOMM). This can be considered as instrunctions for
automatically achieve particular security aspects in CI pipeline. Kuusela pro-
poses different testing techniques [23]. There are techniques based on improve
the security of CD pipelines as Bass et al. [10] approach that proposes an engi-
neering process within trusted components embedded in parts of the pipeline,
which is intimately related to our approach although no trusted hardware is
mentioned. In [37] have applied different tactics of security between CD com-
ponents communications with encouraging results. Rimba et al. [31] present an
approach based on the use of composing patterns to address security issues in
CD pipeline.

Regarding the security tools the OWASP Zed Attack Proxy (ZAP) [12] is
an open source security test initially designed as a security application and as a
professional tool for penetration testing. Behaviour Driven Development Secu-
rity [38] is a security framework for self-verifying testing by your own security
specifications using a natural language in terms of “given that”, “when”, “then”,
etc. to describe security requirements in “stories” (specifications) also considered
as executable tests. JFrog [3] is a set of DevOps tools following the approach to
accelerate the delivery of binaries, securely through delivery pipeline, enabling
end-to-end DevOps automation pipeline. Security Monkey [5] is an OpenSource
project from Netflix that enables monitor Amazon EC2 (AWS), OpenStack,
Google Cloud Platform (GCP) and GitHub instances changes for assets. Black
Duck software toolbox [1] provides automatic means to track your code, pro-
viding solutions to mitigate security risks. Finally, Snyk [7] provides tools for
monitoring vulnerabilities and fix them for npm, Maven, NuGet, RubyGems,
PyPI among others. Notwithstanding, all of these methodologies and tools do
not provide a solution to grant source code integrity avoiding a malicious mod-
ification of the code in CI/CD pipeline.

4 Security Role in Automation

A CI/CD environment consists of (i) the Source Code Control Server which is
responsible to manage changes to project’s documents (ii) the Assembly Server
which receives the changes and assembles them; (iii) the Testing Server and
Deployment Server that validates that the project work and then publishes the
latest version. Conceptually every server is located on different premises. Many
developers integrate CI/CD procedures only to Assembly and Testing Servers.
This fact is a consequence of the drastic change in today’s software delivery
way, Source Code Control Server repositories and product development (mostly
manually) are not innovations of CI/CD. Henceforth, our solution uses CI/CD
for Assembly and Testing Servers.

152 A. Muñoz et al.

Prior development environments and project deployments were performed
only on trust premises without presuming the security of the platform but
trusting on software robustness. This case used to occur because security mea-
sures implemented on software to operate against a various number of adver-
sary models. Nowadays, dockerization and virtualization are getting used to
protect against unexpected events. Nevertheless, currently deployed software is
not considered trustworthy. It occurs because, on most occasions, software secu-
rity measures are not carefully considered. It tends to isolate deployment in host
machines, restricting privileges and hardware access at maximum, but only these
measures are questionable. The underlying software that controls these virtual
machines acting as an intermediary layer among every virtual machine and hard-
ware is the Hypervisor. Being dedicated to handling virtual machines, this leads
it to a single-point-of-failure. If an attacker gets control over it, then she will
be able to handle every virtual machine without tracking of the source of this
attack. This technique is known as “hyperjacking” [33], and its most common
implementation is to insert a malicious Hypervisor to forge the original one.

Figure 1 depicts how this attack can be implemented in four steps:
1. Developer implements a new feature and this is uploaded to Source Code

Control Server (Git based server in most cases).
2. Changes finished in Source Code Control Server are sent to Assembly and

Tests Server.
3. Assembly and Tests Server assembles a new software version and conducts

unitary test and linkage prepared for this software.
4. Once recommended tests are passed, a new version of the software is made

public (deployment).

Under the assumption that every communication between every point
described is secure, we have identified several weak points. For this reason, we
have considered the next cases: If developers’ computers are infected, then it
is plausible malicious code modifies the Source Code Control Server could be
infected, but it is even harder to implement uncontrolled changes due to the
incremental control version at the file level, which identifies quickly an unde-
sired change. We consider that the most important vulnerability is identified in
Assembly and Testing Server. By default this is considered as trusted because
its interaction is restricted to insert source code. Notwithstanding, we have iden-
tified a gap in this process described in next example.

We assume that a malicious agent granted access to Assembly and Testing
Server. This pretends to insert a piece of code for detecting every time source code
is generated and files modified. Then that routing replaces some key source code
file opening a backdoor. This case is not trivial to detect as previously described
since source code is assumed that has been checked and then it is valid.

4.1 Security Risks in Assembly and Testing Servers

DigitalOcean [21] published that the proper way to ensure a CI/CD environment
for a company devoted to virtual server deployment under premises is the iso-
lation from external access. Since the CI/CD system has granted access to your

ICITPM: Integrity Validation of Software in Iterative Continuous Integration 153

repository and credentials to deploy in different environments, it is essential to
keep in a safeguard your credentials to guarantee the final product integrity.
However, a CI/CD server protection is not trivial, several alternatives exist as
secure shell (SSH), private key APIs connecting through services as GitHub7
or GitLab8 to our CI/CD environment. It is recommended to have a proper
password and implement 2-factor authentication. Despite this fact Milka [27]
revealed that less than 10% of Google users make use of 2-factor authentication.
A fail in securing those keys could lead into source code filtering or code modifi-
cations by impersonation attacks. Using an intermediate interface, some CI/CD
solutions provide an interface to manage Assembly and testing server (i.e. Jenk-
ins or GitLab) through a web interface. In the case of Jenkins, it is enabled as
credential based access. Thus, the security of access interface is another issue to
consider. We notice that many providers ignore recommendations about CI/CD
server isolation. Indeed, in “Who is Using Jenkins”9 there are projects as KDE10,
Apache11, AngularJS12 and Ubuntu13 that are publicly accessible. We have used
Apache Software Foundations from Jenkins public access.

A huge number of software projects are based on open source tools to stream-
line its development. Among others, the capability to observe, modify and pub-
licly discuss any part of source code provide considerable advantages. Whichever
from all identified risks could take place, especially avoiding recommendations.
An example of this is found in 2003, attacking Linux kernel [17] inserting a
backdoor in a CVS repository as mirror of the main repository. A digital inter-
ruption was performed in the server and then the change was inserted. It is
detailed “that change was never approved and it is not present in the main
repository”. Detected change was the next in wait function 1.1. Although this
threat could seem harmless, it assigns users under execution identifier 0. This
fact grants all privileges over the computer.
1 if ((options == (__WCLONE|__WALL)) && (current ->uid =

0))
2 retval = -EINVAL;

Listing 1.1. Wait function

In [21] authors present “Failures in a CI/CD pipeline are immediately visible
and halt the advancement of the affected release to later stages of the cycle. This
is a gatekeeping mechanism that safeguards the more important environments
from untrusted code”. They physically separate Testing Server and Assembly
Server producing a fake perception of security since the integrity of source code
is not granted. The mere fact of using a CI/CD environment does not prevent
severe security breaches.
7 https://github.com/.
8 https://about.gitlab.com/.
9 https://wiki.jenkins.io/pages/viewpage.action?pageId=58001258.

10 https://kde.org/.
11 https://www.apache.org/.
12 https://angularjs.org/.
13 https://ubuntu.com/.

https://github.com/
https://about.gitlab.com/
https://wiki.jenkins.io/pages/viewpage.action?pageId=58001258
https://kde.org/
https://www.apache.org/
https://angularjs.org/
https://ubuntu.com/

154 A. Muñoz et al.

We have to consider the potential facts of an attacker with administrative
access granted to the server. The computer hosting Assembly and Testing Server
is a precious target for external attackers. In some cases, the use of underlying
hardware for particular benefits in these servers is powerful (able to compile and
execute several proofs quickly to reduce development and deployment possible
delays). In most cases, CI/CD solutions offer the possibility to multimode exe-
cution simultaneously. For instance, for bitcoin mining, in [8] is described a cam-
paign of crypto-jacking in China with more that 50000 infected servers. Other
possibilities as malicious emails, executing DDoS coordinated using botnets as
occurred in 2017 with Mirai [6], or economic data rescue with a ransomware, are
lower probable since data used in this kind of server should be sited in a differ-
ent computer just to manage source code. There are cases of ethical hacking and
vandalism, harms to development computer and intellectual property stored and
damages to final user data.

5 A Proof-of-Concept: Vulnerable Server Launching
Jenkins

Let us introduce an example to show the identified breach in the security of the
CI/CD process. We make use of a simple application with a form for initializing
sessions. This application provides service to dog owners, a gadget bound to the
collar enabling owners to know the precise location of their pets in an emergency.
Such as a case is when users login to the portal to see these data.

The application that evidences the identified weakness is developed using
Nuxt.js and Vue.js for the front-ent and PHP for the back-end. Its functionality
is presented in Fig. 2 through a UML flow diagram. Deployment is done through
a PHP internal server, and Nuxt.js interface is compiled using Web Package.

On the one hand, GitLab was chosen as the Source Code Control Server
for the project and is categorized as private. GitLab allows login sessions to its
platform username/password and supports single sign on through social net-
works. Also, 2-factor authentication mechanisms are available. On the other
hand, Jenkins is chosen as the Assembly and Testing server. This is an open
source automation server enabling developers to reliably build, test, and deploy
their software. The connection between Jenkins and GitLab is done with a mere
configuration, to automate the generation of a new version to test for each new
change in the repository. We can consider this is a comprehensive and mature
CI/CD solution.

Let us assume that the Assembly Server violates the administrator’s privi-
leges after the access granted. The code has been developed in C# simulating a
malware to install in a violated server. This code detects when project files are
written when cloning from GitLab and replaces their contents and is executed
in the background to be unnoticed.

To perpetrate the attack, the dog pictures utilized by the application are
replaced by cat pictures and form text is manipulated during the login session.
Moreover, changes produced by replying to the repository are not undone.

ICITPM: Integrity Validation of Software in Iterative Continuous Integration 155

The workflow is presented below:

– GitLab is properly contacted using the SSH key that is provided
– Folder is updated with changes uploaded to GitLab as initially configured.
Dependencies are downloaded then it audits its correctness.

– Deploy the package.
– A “success message” indicates that CI/CD pipeline was properly completed.

Internal php server is used to deploy the project, we pay attention to every-
thing while assembly is correct, but indeed deployment was not as initially
expected.

This case as a real use-case of CI/CD environment presenting that only by
passing Jenkins tests the project is ready to be published, keeping malicious
modifications without any additional control measures. Inspecting the remote
repository in GitLab, it is not possible to realize any change. It happens due
to the fact that all files are just as uploaded files, even though the change was
done by an authorized developer and it is empty. We facilitate to inject malware
code to open backdoors or tasks. While we fill in the login session form, we
perpetrate a man-in-the-middle attack exposing final client credentials hardly
perceptible in CI/CD pipeline. This process includes source code inspection just
after uploading changes to the Source Code Control Server repository, but the
result after the package assembling is not carefully inspected since it is produced
by a “trustworthy server” Assembly and Testing server.

Fig. 1. Identified risk in continuous integration process

156 A. Muñoz et al.

Fig. 2. UML Flow diagram describing basic functionality of our code

6 Code Integrity in the CI/DP Pipeline

Our challenge is to establish a secure and trustworthy integrity code control
when an assembly code computer is not trusted. This solution is based on TPM.
We have decided to include it, since it provides a set of functionalities related to
software integrity with trust guarantees provided by device design.

TPM is an international standard for a secure crypto-processor (ISO/IEC
11889). TPM is a secure microcontroller designed to issue integrated crypto-
graphic keys. Among its features it is affordable (around e2014), indeed it is
included in a large number of current platforms (not adding additional costs). It
is widely documented allowing its usage for particular users and work purposes.
Also, it is accepted as a trust solution as a cornerstone element for secure booting
in modern computers, file encryption (BitLocker [26]). TPM enables device and
user trust identification, key and certificate issuing, secure key storage, detect-
ing not authorized modification, secure encryption with several algorithms and
producing cryptographic hash values among others.

Our target is to ensure software integrity deployed on premises, such as
developed code and final code remains unchanged. For this purpose, we pro-
pose TPM’s utilization to provide a secure platform.

We have named the Trusted Integrity Platform (TIP) to our solution as is a
new component in CI/CD pipeline. This is a TPM provided server with a trust
software stack for testing software project integrity. TPM provides guarantees
to build a TIP server with a controlled software stack so we can assure that
no malicious code can alter the project code. This is the anchor for integrity
14 https://www.amazon.com/914-4136-105-Module-Infineon-Chip-9665/dp/

B075FBGTG9/ref=sr 1 2?dchild=1&keywords=TPM+Chip+infineon&
qid=1592740968&sr=8-2.

https://www.amazon.com/914-4136-105-Module-Infineon-Chip-9665/dp/B075FBGTG9/ref=sr_1_2?dchild=1&keywords=TPM+Chip+infineon&qid=1592740968&sr=8-2
https://www.amazon.com/914-4136-105-Module-Infineon-Chip-9665/dp/B075FBGTG9/ref=sr_1_2?dchild=1&keywords=TPM+Chip+infineon&qid=1592740968&sr=8-2
https://www.amazon.com/914-4136-105-Module-Infineon-Chip-9665/dp/B075FBGTG9/ref=sr_1_2?dchild=1&keywords=TPM+Chip+infineon&qid=1592740968&sr=8-2

ICITPM: Integrity Validation of Software in Iterative Continuous Integration 157

validation comparisons. TPM public key is used to control TIP server integrity
because TIP server trusted boot is bound to TPM sealed key.

Git provides data integrity in the sense that those repositories that store
source code have integrity measures, in [14] “this functionality is implemented
in lower stages in Git as part of its philosophy”. A list with all hash values
from every project file is created and an ensemble hash for every commit record
change (using git commit).

Each commit is bound to an associated hash issued from file tree data. When
a commit is requested, as a file change, this change is propagated by hashes in the
tree and commit. This enables Git repository to detect any change produced. We
assume that information from a Git server is trusted and therefore data integrity
is achieved. Next step describes security measures for a TIP server as an element
dedicated to integrity verification. TIP containing the TPM conducts integrity
verification.

Given that software under execution in a TIP server is predictable, this allows
implementing secure booting protocol as a TPM functionality to check and verify
that software stack remains unchanged. This is useful for securing TIP server
using TPM functionalities. We consider that 3-factor integrity proof [16,32] is
needed in the whole CI/CD pipeline. This is the cornerstone contribution of
this approach, it is based on checking source code integrity from three different
sources for detecting a possible code manipulation:

– The first integrity proof measure: is taken before installing all dependencies
required for the project; this guarantees that source code from the assembly
and testing server is identical to Source Code Control Server.

– The second integrity proof measure: it guarantees that source code under
assembly remains unchanged from external agents in assembly and testing
servers.

– The third integrity proof measure: it guarantees that the whole process was
successfully completed without undesired modifications after the project was
assembled.

Every integrity proof measure is taken following particular steps we have
categorized in three phases:

– Suspicious code reception: Assembly and testing server forwards to TIP
server a compress file with source code, this is considered as “suspicious.zip”.
If the uncompressing phase is not successful, this file is discarded and integrity
proof given as invalid.

– Trust code reception: TIP server retrieves source code from Git repository
considered as trusted.

– BigHashes proofs: TIP server verifies, using TPM functionalities, that “sus-
picious.zip” content and source code from repository are identical. This is
conducted consulting every hash file from Git server. These Git registered
metadata are linked as a unique chain named bigHash and TPM hash func-
tionalities are used to verify bigHash values. Therefore, when both bigHash
values (project bigHash and suspicious.zip bigHash) are identical, integrity
proof is considered successful.

158 A. Muñoz et al.

Fig. 3. Integrity proof verification UML flow diagram

Figure 4 shows a sequence diagram with TIP process communications in
CI/CD pipeline. This shows the 3-factor verification described as well as the
point of check of every integrity proof checking. Retrieving source code by TIP
server is conducted in every integrity check, but it has been simplified in the
diagram (likewise assembly and testing commands from every project).

7 Our Proposal: Trusted Integrity Platform

We have presented a solution based on three integrity proofs. The first one is
taken before installing and guarantees integrity between code instances from
the assembly and testing server and Source Code Control Server. The second
integrity validation compares code from an external agent and assembly and
testing server remain unchanged. And the third validation checks that the whole
process was successfully completed and code in unchanged after the assembling
(Fig. 3).

This section describes a TIP server implementation for testing its feasibility
and as a proof of concept. We have implement a solution based on Windows
10 1809. We have implemented a component written in C# that relies on TPM
functionality to access code. The TIP server has been implemented with Pow-
erShell scripts and receives PHP script as input. The internal PHP server may

ICITPM: Integrity Validation of Software in Iterative Continuous Integration 159

Fig. 4. Sequence diagram CI/CD pipeline within TIP server

attend requests from both Assembly and Testing Servers for this implementa-
tion. The algorithm that enables communication with the TIP server actually
implements project integrity validation. This script is based on PowerShell and it
is tested on Jenkins. The procedure script is included as part of CI/CD pipeline
testing batches. Also, we have included the TIP server script communication
from Jenkins in PowerShell. A comprehensive description of the full procedure
is following described.

Suspicious code reception: Firstly, setting uploading parameters are required.
Hence, a temporal folder within the TIP Server is created to contain every Jenk-
ins work-space file. Next, all files from Jenkins work-space are compressed into a
file. Once the compression step is completed files from selected folder are taken

160 A. Muñoz et al.

and filtered. These are filtered and those included in label ToExclude list are
removed, preserving work-space.

Once file is sent to the TIP server we have a variable $tipServer as a script
input parameter. TIP server is implemented in PHP, then a gateway.php file is
the main file in charge of TIP server with some configurable variables. Most of
those variables are HTTP control headers, to allow remotely TIP server deploy-
ment. Once all settings are done the ZIP file is uncompressed if it has been
successfully uploaded.

At this point the file is uncompressed in a suspect ’s labeled folder. Communi-
cations between the Source Code Control Server repository and the TIP server
are performed through POST requests. The first factor of the code integrity is
fulfilled.

Trust code reception and BigHashes proofs: the trustworthy repository
cloning takes place. Once it is successfully cloned the BigHash values are com-
puted with PowerShell script and then retrieves the trusted repository’s TPM
hashes. Suspicious integrity repository hash value is retrieved to validate its
integrity checking the matching. Finally, the whole integrity validation proce-
dure bigHash values are compared and result of validity is obtained. This process
fulfills the second and the third factor of the code integrity validation.

Our solution implements TPM functionalities to compute the hash values.
We notice that to compute a complete Git folder hash, every file has to be
accessed to link every hash values to file. For better performance results, we
have decided to reduce hash computations and instead of computing every hash
(for each file) to reuse Git hash values. Once, folder integrity validation is done
whether content is suspicious, we make use of git hash-object. This command
gets dynamically the object hash value since Git cache content could not be
object hash value. Once linked hash values are ready, TPM hash functionalities
are used to compute values. In particular, we have used SHA-256 (SHA-1 security
vulnerabilities [35]). We pay attention to the hash of a variable size not exceeding
TPM input buffer limitation. It is important to mention as we aimed TPM buffer
is limited to 32 bytes [2], therefore addition manual control is required.

7.1 Utilization of TPM Public Keys in TIP Server

We have proposed an additional security measure on the TIP server that rep-
resented the third integrity code validation. TPM equipped computers can use
TPM functionalities for key generation and encryption with the particularity
that decryption can only be performed by the TPM (binding key) protecting
created key from disclosure. TPM works with a particular key hierarchy that
starts with endorsement root key that is unique for each TPM chipset and is
assigned while manufacturing. We highlight that endorsement key private part
will not be exposed as we have used in TIP server.

This step consists of each change submitted to Git server carrying a com-
plete copy of the project is signed using the Developer private key considered
as trusted. TIP server stores the project copy accessed when an integrity proof
is required, that is decrypted using Developer public key (previously loaded).

ICITPM: Integrity Validation of Software in Iterative Continuous Integration 161

Therefore, three copies are taken as input (Developer version, Git stored version
and suspicious from Assembly and testing server version) integration proofs are
computed, then three versions should be identical (Fig. 5).

Fig. 5. Third integration verification step - developer verification

Creating a private key inside TPM is a trivial process, while extracting this
key to a hard disk is not. Indeed, until 2016 a Microsoft functionality to extract
public keys in XML format was used, but this was deprecated.

1 var rsaParams = (RsaParms)keyPublic.parameters;
2 var exponent = rsaParams.exponent != 0
3 ? Globs.HostToNet(rsaParams.exponent)
4 : RsaParms.DefaultExponent;
5

6 var modulus = (keyPublic.unique as Tpm2bPublicKeyRsa).
buffer;

7 // RFC 4716
8 var pemKey = Combine(
9 new byte[] {0x00 , 0x00 , 0x00 , 0x07},

10 new byte[] {0x73 , 0x73 , 0x68 , 0x2d , 0x72 , 0x73 , 0x61},
11 new byte[] {0x00 , 0x00 , 0x00 , 0x03},
12 exponent ,
13 new byte[] {0x00 , 0x00 , 0x00 , 0x80},
14 modulus
15);

162 A. Muñoz et al.

16

17 Console.WriteLine("---- BEGIN SSH2 PUBLIC KEY ----");
18 uint i = 0;
19 foreach(char c in System.Convert.ToBase64String(pemKey)){
20 Console.Write(c);
21 if(++i == 72){
22 Console.Write("\n");
23 i = 0;
24 }
25 }
26 Console.WriteLine("---- END SSH2 PUBLIC KEY ----");

Listing 1.2. Creation of a private key inside TPM and extract from it

Table 1. Performance evaluation

Examined Phase Software project with 50 MB Time in milliseconds (ms)

Traditional CI/CD pipeline 360000–600000 ms (6–10 min)

Un-compress file (our scheme) +16000–165000 ms

Check un-compress fold (our scheme) +6000–7000 ms

Extract bigHask from compressed file (our
scheme)

+1300–2200 ms

Extract bigHash from downloaded server (our
scheme)

+1100–2100 ms

bigHash comparison (our scheme) +1300–1700 ms

Integrity Proof Verification (our scheme) +31000–38400 ms

We pretended a replica of deprecated functionality computing RSA public key
using its module and index data following RFC 4716 [4] standard specification, as
it is shown in algorithm 1.2. The computation of this code gives us as results the
public key. Hopefully we made use of TPM2 TSS Engine library that implements
functionalities for OpenSSL for TPM 2.0. This library facilitates all tasks using
the tpm2-tss software stack following TCG Specifications.

8 Performance Evaluation

We analyze the computational cost of our approach measuring each new added
process: (i) Extract the compressed file; (ii) Check the correction of the extracted
file; (iii) Extract bigHash from compressed file; (iv) Extract bigHash from down-
loaded server; (v) bigHash comparison and (vi) Total Integrity Proof Verification.
We use Windows 10 1809 with an Intel Core i5-7200K CPU at 2.5GHz, 16GB
RAM. We measure execution time of each stage with a software project with
50 MB on a TPM simulator to present and extrapolate real results on a physi-
cal chipset. Results are shown in Table 1. From the comparisons we can notice

ICITPM: Integrity Validation of Software in Iterative Continuous Integration 163

that our proposed implementation adds maximum 44900ms as delay against the
traditional process without integrity check. This minor delay is worthy of accep-
tance from developers since this leads to a safer CI/CD pipeline. Moreover, check
of code’s integrity provides high security levels to the delivered software project.

9 Conclusions and Future Work

The paper presented an identified security gap in the CI/CD pipeline in terms of
integrity validation. To confront this gap we proposed a solution and delivered
a proof-of-concept implementation of it. The proposed solution achieves i) to
prove code integrity validation in CI/CD pipelines; ii) to develop a lightweight
implementation for secure automation and iii) to deliver a solution in which
the additional cost is much less than the benefit gained by its adoption by
developers. We believe that this solution may contribute to open the way for
a secure CI/CD pipeline ecosystem. As future work, multi-threaded tasks in
the TIP server will be considered. Since tasks are parallelizable such as getting
Trusted Git repository while suspicious.zip received file is uncompressed and
retrieving bigHashes values in parallel can improve the current sequential version
performance. Moreover, we aim to use hard-links (Junctions in Windows) instead
of a mere copy of temporal work-space saving disk-space and time.

Acknowledgment. This research has been funded by the Marie Sk"lodowska-Curie
SealedGRID grant agreement No. 777996 and the H2020-SC1-FA-DTS-2018-1 CUREX
under grant agreement No. 826404.

References

1. Black duck. https://www.blackducksoftware.com/. Accessed 3 July 2020
2. IBM’s TPM 2.0 TSS. https://sourceforge.net/projects/ibmtpm20tss/. Accessed 19

June 2020
3. Jfrog. https://jfrog.com/. Accessed 3 July 2020
4. The secure shell (SSH) public key file format. https://tools.ietf.org/html/rfc4716
5. Security monkey. https://securitymonkey.readthedocs.io/en/latest/quickstart.

html/. Accessed 3 July 2020
6. Servico Antibotnet. https://www.osi.es/es/servicio-antibotnet/info/mirai.

Accessed 19 June 2020
7. Snyk. https://snyk.io/. Accessed 3 July 2020
8. Harpaz, O., Goldberg, D.: The Nanshou Campaign - Hackers Arse-

nal Grows Stronger (2013). https://www.guardicore.com/2019/05/nansh0u-
campaign-hackers-arsenal-grows-stronger/. Accessed 19 June 2020

9. Arthur, W., Challener, D., Goldman, K.: Platform security technologies that use
TPM 2.0. A Practical Guide to TPM 2.0, pp. 331–348. Apress, Berkeley, CA (2015).
https://doi.org/10.1007/978-1-4302-6584-9 22

10. Bass, L., Holz, R., Rimba, P., Tran, A.B., Zhu, L.: Securing a deployment pipeline.
In: 2015 IEEE/ACM 3rd International Workshop on Release Engineering, pp. 4–7.
IEEE (2015)

https://www.blackducksoftware.com/
https://sourceforge.net/projects/ibmtpm20tss/
https://jfrog.com/
https://tools.ietf.org/html/rfc4716
https://securitymonkey.readthedocs.io/en/latest/quickstart.html/
https://securitymonkey.readthedocs.io/en/latest/quickstart.html/
https://www.osi.es/es/servicio-antibotnet/info/mirai
https://snyk.io/
https://www.guardicore.com/2019/05/nansh0u-campaign-hackers-arsenal-grows-stronger/
https://www.guardicore.com/2019/05/nansh0u-campaign-hackers-arsenal-grows-stronger/
https://doi.org/10.1007/978-1-4302-6584-9_22

164 A. Muñoz et al.

11. Bass, L., Weber, I., Zhu, L.: DevOps: a software architect’s perspective. sei
series in software engineering. Addison-Wesley, New York (2015). http://my.
safaribooksonline.com/9780134049847

12. Bennetts, S.: Owasp zed attack proxy. AppSec USA (2013)
13. Bird, J.: DevOpsSec: Securing Software Through Continuous Delivery. O’Reilly

Media, Sebastopol (2016)
14. Chacon, S., Straub, B.: Pro Git. Springer Nature, Switzerland (2014)
15. Deepa, G., Thilagam, P.S.: Securing web applications from injection and logic

vulnerabilities: approaches and challenges. Inf. Softw. Technol. 74, 160–180 (2016)
16. Dheerendra, M., Sourav, M., Saru, K., Khurram, K.M., Ankita, C.: Security

enhancement of a biometric based authentication scheme for telecare medicine
information systems with nonce. J. Med. Syst. 38(5), 41 (2014)

17. Felten, E: The Linux Backdoor Attempt of 2003. https://freedom-to-tinker.com/
2013/10/09/the-linux-backdoor-attempt-of-2003/

18. Guan, H., Chen, W.R., Li, H., Wang, J.: Stride-based risk assessment for web
application. In: Applied Mechanics and Materials, vol. 58, pp. 1323–1328. Trans
Tech Publ (2011)

19. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web
application code by static analysis and runtime protection. In: Proceedings of the
13th International Conference on World Wide Web, pp. 40–52 (2004)

20. Humble, J., Farley, D.G.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley, Upper Saddle River
(2010). http://my.safaribooksonline.com/9780321601919

21. Ellingwood, J.: An Introduction to CI/CD Best Practices (2013). https://www.
digitalocean.com/community/tutorials/an-introduction-to-ci-cd-best-practices.
Accessed 19 June 2020

22. Krusche, S., Lichter, H., Riehle, D., Steffens, A.: Report of the 2nd workshop on
continuous software engineering. In: CSE@ SE, pp. 1–6 (2017)

23. Kuusela, J., et al.: Security testing in continuous integration processes (2017)
24. Lee, T., Won, G., Cho, S., Park, N., Won, D.: Detection and mitigation of web

application vulnerabilities based on security testing. In: Park, J.J., Zomaya, A.,
Yeo, S.-S., Sahni, S. (eds.) NPC 2012. LNCS, vol. 7513, pp. 138–144. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35606-3 16

25. Lipke, S.: Building a secure software supply chain (2017)
26. Microsoft: BitLocker most frequenly asked questions. https://docs.microsoft.com/

es-es/windows/security/information-protection/bitlocker/bitlocker-overview-and-
requirements-faq. Accessed 19 June 2020

27. Milka, G.: Anatomy of account takeover. In: Enigma 2018 (Enigma 2018) (2018)
28. Mohan, V., Othmane, L.B.: Secdevops: is it a marketing buzzword?-mapping

research on security in devops. In: 2016 11th International Conference on Avail-
ability, Reliability and Security (ARES), pp. 542–547. IEEE (2016)

29. OWASP: pen web application security project (OWASP) howpublished = https://
www.owasp.org/. Accessed 2 July 2020

30. Rahman, A.A.U., Williams, L.: Software security in devops: synthesizing practi-
tioners’ perceptions and practices. In: 2016 IEEE/ACM International Workshop
on Continuous Software Evolution and Delivery (CSED), pp. 70–76. IEEE (2016)

31. Rimba, P., Zhu, L., Bass, L., Kuz, I., Reeves, S.: Composing patterns to con-
struct secure systems. In: 2015 11th European Dependable Computing Conference
(EDCC), pp. 213–224. IEEE (2015)

http://my.safaribooksonline.com/9780134049847
http://my.safaribooksonline.com/9780134049847
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/
http://my.safaribooksonline.com/9780321601919
https://www.digitalocean.com/community/tutorials/an-introduction-to-ci-cd-best-practices
https://www.digitalocean.com/community/tutorials/an-introduction-to-ci-cd-best-practices
https://doi.org/10.1007/978-3-642-35606-3_16
https://docs.microsoft.com/es-es/windows/security/information-protection/bitlocker/bitlocker-overview-and-requirements-faq
https://docs.microsoft.com/es-es/windows/security/information-protection/bitlocker/bitlocker-overview-and-requirements-faq
https://docs.microsoft.com/es-es/windows/security/information-protection/bitlocker/bitlocker-overview-and-requirements-faq
https://www.owasp.org/
https://www.owasp.org/

ICITPM: Integrity Validation of Software in Iterative Continuous Integration 165

32. Kumari, S., Das, A.K., Li, X., Wu, F., Khan, M.K., Jiang, Q., Hafizul Islam, S.K.:
A provably secure biometrics-based authenticated key agreement scheme for multi-
server environments. Multimed. Tools Appl. 77(2), 2359–2389 (2017). https://doi.
org/10.1007/s11042-017-4390-x

33. Sathyanarayanan, N., Nanda, M.N.: Two layer cloud security set architecture on
hypervisor. In: 2018 Second International Conference on Advances in Electronics,
Computers and Communications (ICAECC), pp. 1–5. IEEE (2018)

34. Schneider, C.: Security devops-staying secure in agile projects. OWASP AppSec
Europe (2015)

35. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 19

36. Tichy, M., Goedicke, M., Bosch, J., Fitzgerald, B.: Rapid continuous software engi-
neering. J. Syst. Softw. 133, 159 (2017)

37. Ullah, F., Raft, A.J., Shahin, M., Zahedi, M., Babar, M.A.: Security support in
continuous deployment pipeline. arXiv preprint arXiv:1703.04277 (2017)

38. XebiaLabs: Behaviour driven development security. https://xebialabs.com/
technology/bdd-security/. Accessed 3 July 2020

https://doi.org/10.1007/s11042-017-4390-x
https://doi.org/10.1007/s11042-017-4390-x
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
http://arxiv.org/abs/1703.04277
https://xebialabs.com/technology/bdd-security/
https://xebialabs.com/technology/bdd-security/

	DETIPS 2020 Preface
	DETIPS 2020 Organization
	DeSECSyS 2020 Preface
	DeSECSyS 2020 Organization
	MPS 2020 Preface
	MPS 2020 Organization
	SPOSE 2020 Preface
	SPOSE 2020 Organization
	Sealed-Bid Auctions Without Auctioneers (DeSECSyS 2020 Workshop Keynote)
	Cyber Security Responsibilization of Citizens A Paradigm Mismatch? (SPOSE 2020 Workshop Keynote)
	Contents
	DETIPS 2020
	IMC: A Classification of Identity Management Approaches
	1 Introduction
	2 Related Work
	3 Identity Management Models
	3.1 Analysis of Identity Management Models
	3.2 The Identity Management Cube (IMC)
	3.3 IMC Applied to Current Approaches

	4 Morphology of Identity Management
	4.1 Design of the Morphology
	4.2 Identity Management Morphology
	4.3 Morphology Mapped to Life Cycle
	4.4 Morphology Applied to Current Approaches

	5 Discussion
	6 Conclusion and Future Work
	References

	Keeping it Human: A Focus Group Study of Public Attitudes Towards AI in Banking
	1 Introduction
	2 Methods
	2.1 Sample

	3 Findings
	3.1 Virtual Money Coaches
	3.2 Chatbots
	3.3 Algorithmic Decision-Making
	3.4 Broader Themes

	4 Discussion
	5 Conclusions
	References

	Creative Toolkits for TIPS
	1 Introduction
	2 Survey of Papers
	2.1 Method
	2.2 Review Papers
	2.3 Toolkits
	2.4 Case Study Papers
	2.5 Applied Research Toolkits
	2.6 Conceptual/Methodological Research Toolkit
	2.7 Conceptual Future Application Toolkit

	3 Discussion
	4 Summary and Conclusion
	References

	Post-quantum Certificates for Electronic Travel Documents
	1 Introduction
	2 Security for Electronic Travel Documents
	2.1 Electronic Travel Documents
	2.2 Public Key Infrastructures
	2.3 PKI for Electronic Travel Documents
	2.4 Access to the Contactless Chip
	2.5 Authentication of the Data
	2.6 Authentication of the Contactless Chip

	3 Building a Post-quantum PKI for Electronic Travel Documents
	3.1 Design
	3.2 Algorithm Selection
	3.3 Implementation
	3.4 Overview of Experiments Performed

	4 Challenges
	5 Results
	6 Conclusions and Future Work
	References

	Development of Trust Infrastructures for Virtual Asset Service Providers
	1 Introduction
	2 The Travel Rule and VASP Customer Information
	3 Information Sharing Infrastructure for VASPs
	4 A Trusted Identity Infrastructure for VASPs
	4.1 Extended Validation Certificates for VASP Business Identity
	4.2 VASP Transactions-Signing and Claims-Signing Certificates
	4.3 Consortium-Based VASP Certificate Hierarchy

	5 Customer Identity and Key Management Infrastructure
	5.1 Customer Identities and Digital Identifiers
	5.2 Identifier Resolvers
	5.3 Federation of VASP Identifier Resolver Services
	5.4 Customer Managed Access to Claims

	6 Attestations Infrastructures for Regulated Wallets
	6.1 Attestation Evidence Relevant to VASPs & Asset Insurers
	6.2 On-Boarding and Off-Boarding Customers

	7 Conclusions
	References

	Risk Assessment of Sharing Cyber Threat Intelligence
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Risk Assessment Approach/Background
	3.2 Associated Risk Model (ARM)
	3.3 Dataset Analysis
	3.4 Threat Analysis
	3.5 Total Associated Risk (TAR)

	4 Evaluation
	4.1 Expert Selection
	4.2 Case Studies

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	kUBI: A Framework for Privacy and Transparency in Sensor-Based Business Models for Consumers: A Pay-How-You-Drive Example
	1 Introduction
	2 Related Work
	3 Mobile Application Environment
	3.1 Android Sensor Stack
	3.2 Attacks on Sensor Data

	4 Usage-Based Insurance
	4.1 Stakeholders and Their Respective Interests
	4.2 Workflow

	5 kUBI
	5.1 Potential Strategies
	5.2 Privacy Enhanced Model
	5.3 Components
	5.4 Basic Design Decisions
	5.5 Modified Android Implementation

	6 Evaluation
	6.1 Identification Attack
	6.2 Anonymization
	6.3 Privacy

	7 Conclusion
	References

	Verifiable Contracting
	1 Introduction
	2 Use Case: Contract Offering
	2.1 Proposed Use Case Scenario

	3 Background: eIDAS and SAML SSO
	3.1 EIDAS-based eID
	3.2 SAML SSO
	3.3 EIDAS-compliant Certificates and PSD2

	4 Scenario and Implementation
	4.1 SAML
	4.2 Verifiable Credentials

	5 Related Work
	6 Lessons Learned and Conclusion
	A Listings
	References

	DeSECSyS 2020
	ICITPM: Integrity Validation of Software in Iterative Continuous Integration Through the Use of Trusted Platform Module (TPM)
	1 Introduction
	2 Background
	3 Related Work
	4 Security Role in Automation
	4.1 Security Risks in Assembly and Testing Servers

	5 A Proof-of-Concept: Vulnerable Server Launching Jenkins
	6 Code Integrity in the CI/DP Pipeline
	7 Our Proposal: Trusted Integrity Platform
	7.1 Utilization of TPM Public Keys in TIP Server

	8 Performance Evaluation
	9 Conclusions and Future Work
	References

	Making Picnic Feasible for Embedded Devices
	1 Introduction
	2 Preliminaries
	2.1 Picnic
	2.2 Picnic Structure

	3 Our Optimizations
	3.1 Generation of Seeds and Salt
	3.2 Computation of Challenge
	3.3 Stream Encrypted Temporary Results

	4 Results
	5 Implementation
	References

	Sandboxing the Cyberspace for Cybersecurity Education and Learning
	1 Introduction
	2 Related Work
	3 Virtualization Technologies and Sandboxing
	3.1 Evaluation of Popular Virtualization and Containerization Techniques
	3.2 Sandboxing for Monitoring the Participants’ Actions

	4 Towards a New Model for Cyber Range Deployment
	5 Conclusions and Future Work
	References

	CloudVaults: Integrating Trust Extensions into System Integrity Verification for Cloud-Based Environments
	1 Introduction
	2 Towards Trust-Aware Service Graph Chains (SGCs)
	2.1 Solidifying the s: Inter-trustability of Service Function Slices

	3 System and (Adv)ersarial Model
	4 High-Level Security Properties of CIV
	5 An Architectural Blueprint Towards Unified CIV
	5.1 High-Level Overview
	5.2 CloudVaults Building Blocks

	6 Security Analysis
	7 Experimental Performance Evaluation
	8 Conclusions
	A Appendices
	B Timings and Benchmarks
	C CloudVaults Formal Trust Models
	References

	MPS 2020
	Twizzle - A Multi-purpose Benchmarking Framework for Semantic Comparisons of Multimedia Object Pairs
	1 Introduction
	2 Twizzle Benchmarking
	2.1 Challenge Creation
	2.2 Wrapping an Algorithm
	2.3 Test Runs
	2.4 Analyse Results
	2.5 Twizzle Features

	3 Use Cases
	3.1 Multimedia Forensics
	3.2 Face Recognition

	4 Conclusion
	References

	You've Got Nothing on Me! Privacy Friendly Face Recognition Reloaded
	1 Introduction
	2 Related Work
	3 Towards Privacy Friendly Face Recognition
	3.1 Preprocessing
	3.2 Local Binary Pattern Histograms
	3.3 Quantization
	3.4 Usage of Error Correction Codes
	3.5 Fuzzy Commitment

	4 Experimental Analysis
	4.1 Experiment Setup
	4.2 Face Recognition with Local Binary Patterns
	4.3 The Impact of Quantization on Recognition Performance
	4.4 Quantization Variants
	4.5 Usage of Error Correction
	4.6 The Fuzzy Commitment Approach

	5 Conclusion
	References

	OR-Benchmark: An Open and Reconfigurable Digital Watermarking Benchmarking Framework
	1 Introduction
	2 Related Work
	2.1 StirMark
	2.2 Other Benchmarking Systems

	3 Proposed OR-Benchmark Framework
	3.1 Modeling of Watermarking Systems
	3.2 Performance Evaluation Criteria
	3.3 Our Benchmarking Framework
	3.4 Open Interfaces

	4 Case Studies
	4.1 Case 1: Copyright Protection
	4.2 Case 2: Content Integrity Verification
	4.3 Case 3: Tamper Localization and Self-restoration

	5 Conclusion and Future Work
	References

	SPOSE 2020
	Nothing Standard About It: An Analysis of Minimum Security Standards in Organizations
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Discussion and Concluding Remarks
	References

	The Bigger Picture: Approaches to Inter-organizational Data Protection Impact Assessment
	1 Introduction
	2 Background and Motivation
	3 Requirements
	4 Approaches to Collaborative DPIA
	4.1 Centralized Approach
	4.2 Federated Approach
	4.3 Requirement Coverage

	5 Conclusion
	References

	Systematic Scenario Creation for Serious Security-Awareness Games
	1 Introduction
	2 Background and Related Work
	2.1 Personas
	2.2 HATCH

	3 Methodology
	3.1 Interview Guide
	3.2 Interview Implementation and Participants
	3.3 Data Analysis
	3.4 Development of the Scenario
	3.5 Evaluation

	4 Results
	4.1 Scenario
	4.2 Personas

	5 Evaluation
	6 Discussion
	6.1 Scenario
	6.2 Methodology
	6.3 Threats to Validity and Limitations
	6.4 Future Work

	7 Conclusion
	References

	Analysing Simulated Phishing Campaigns for Staff
	1 Introduction
	2 Different Forms and Types of Phishing Messages
	3 Objectives of Simulated Phishing Campaigns
	4 Simulated Phishing Campaign Designs
	5 Problems with, and Obstacles to, Simulated Phishing Campaigns
	5.1 Security Aspects
	5.2 Legal Aspects
	5.3 Human Aspects

	6 What Do the Numbers Collected During the Simulated Phishing Campaign Tell Us?
	7 Conclusion

	Author Index

