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Security is considered one of the crucial issues for the widespread adoption of cloud computing.
Despite all research done in preventive security for cloud computing, the high complexity and the
interdependence of many software layers and infrastructures mean that in practice there are always
chances for something going wrong. For this reason, there is a need to complement preventive security
measures with reactive measures. Among these, monitoring is the most relevant approach. In this
paper, we introduce a new and robust architecture for dynamic security monitoring and enforcement
specially designed for cloud computing scenarios. Our solution is therefore a complete one including
a three-layered architecture, a new language for expressing monitoring rules and a strategy based
on the generation of a finite-state machine to improve the performance of the monitoring engine.
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1. INTRODUCTION

In a perfect world, applications and security mechanisms
would be correctly designed to fulfill the user’s needs thanks
to flawless implementations. In real world, the design of
applications and security mechanisms is sometimes based on
wrong assumptions, oversimplified facts, vague, incorrect and
incomplete requirements, etc., which are, in most of cases,
poorly implemented. In this setting, monitoring does not only
make sense but also becomes essential in order to achieve high
levels of assurance.

Obviously the role of monitoring is to complement the secu-
rity elements already included in a system (via hardware, OS,
platform/middle-ware. . .) by establishing assumptions about
the system security and then actually checking for such assump-
tions hold true at runtime [e.g. we can assume that the different
Virtual Machines (VMs) running in a platform are isolated].
Additionally, monitoring can be useful for different purposes.
It can help in increasing trust in infrastructures and applica-
tions, checking for compliance (e.g. an e-government process
that has to be split in phases and has to produce records of the
intermediary). Besides it can be an interesting tool for guiding
evolution of software. Evidently, monitoring is also useful as

a mechanism for checking performance, intrusion detection,
performance optimization and metering and accounting tasks.
Concerning monitoring capabilities, traditional monitoring
schemes check actual behaviours against an expected execu-
tion model (which can be expressed as rules or policies), but,
when properly used in a distributed environment, its potential
capability can be substantially increased, such as helping in
the discovery of unexpected interactions or model flaws.

Current monitoring architectures are not well suited
for highly distributed scenarios and Cloud Computing
environments (both centralized and decentralized). Moreover,
they do not take advantage of the special characteristics these
scenarios offer, precisely due to the fact that they are not
especially tailored to these scenarios.

The fact that most of the current monitoring languages are
based on mathematical (logic or calculus) formalisms represents
a drawback with regards to their expressive power and the
complexity of the writing monitoring rules. Recently, some
have been designed for expressibility, this comes at the price
of making the creation of complex specifications a task of epic
proportions. Even worse, they are not designed for reducing
highly efficient implementations.
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In a nutshell, we propose a monitoring model focused on
the runtime supervision at several levels (single application
instances, a set of different applications, inside the same plat-
form and all the instances of the same application across several
platforms) that overcomes the limited efficiency in traditional
monitoring systems through a tailored design of a monitor-
ing infrastructure and a monitoring specification language
designed. The rationale to produce efficient implementations
is that in order to enhance trust in applications, it becomes nec-
essary to analyse their behaviour not only as an isolated unit, but
as it is a member of a computing at different ecosystem levels.
For this reason, the monitoring architecture that we propose is
divided into three levels. These levels allow our monitoring sys-
tem to improve efficiency and to detect situations not possible
with either of these working alone. This means that the results
obtained from the analysis at these three levels provides more
information than the sum of each one of them working indepen-
dently, thus allowing the detection of problems not only on the
implementations, but also on the models describing them and
even problems caused by the interaction of different solutions.
This runtime analysis is based on a set of policies (monitor-
ing rules), which are written on a new event-sequence language
called EventSteer (detailed in Section 5). As a proof of concept
of our model, an actual implementation has been developed for
the PASSIVE project.

The remainder of this paper is structured as follows. Section 2
gives a complete background on dynamic verification and
system security monitoring. Section 3 presents the main
contributions of our approach and describes the dynamic
security monitoring and enforcement model. Section 4 deals
with prevention through analysis and correlation techniques.
Section 5 describes the EventSteer monitoring language.
Section 6 describes the strategy to generate finite-state machine
as monitoring runtime engines and discusses the performance
of the whole system. Section 7 includes a brief description of
the implementation of our approach. Finally, Section 8 provides
some concluding remarks and discusses future work.

2. BACKGROUND

This section presents the technical background on dynamic
security verification (monitoring) including a critical analysis of
current research on dynamic verification and on its limitations,
especially in relation to the needs of cloud computing
applications.

Different approaches have been proposed to provide an
assurance of the behaviours of software elements. Among these,
we may distinguish between static and dynamic approaches.
Static approaches (e.g. code inspection and automated analysis,
formal methods, testing, etc.) are based on checking the security
of the software before it is actually executed by the real
users in their real scenarios. Consequently, static verification
activities must be carried out in simulated environments.

Dynamic approaches (e.g. monitoring, surveillance and other
form of runtime analyses), on the other hand, are based on
the observation of the actual behaviour of the software and
are carried out in the environment where the software is
actually used.

Static approaches can help increase the users’ trust in the
software. The main advantages of these approaches are that the
system verification can be carried out even if the verification
processes require complex computations and costly analyses
because it is done only once before the software is ever run.
This means that the verification time is not an issue. However,
they have one major problem, namely, the above-mentioned fact
that the results of the static verification do refer to verification
activities carried out in a different (frequently highly controlled)
environment. The fact that a software element has been formally
verified or thoroughly inspected or tested in a laboratory does
not mean that the same software will behave correctly in all
possible real-world deployment scenarios. Indeed, the influence
of the real execution context in the verified software and the
interactions with such context cannot be realistically verified
with static methods, especially when the heterogeneity and
unpredictability of the context are high, as is the case in cloud
computing. On the other hand, dynamic verification methods
suffer two main problems: in the first place, the complexity
and computational power required by these methods are limited
because most of the times they must be constrained to avoid
that they downgrade the performance of the system. For this
reason, the type of analyses done are rather simple, but we must
highlight that the complexity of the processes for dynamically
verifying a given property of a given software is normally
several orders of magnitude simpler than the complexity of
statically verifying the same property and system. This claim is
easy to justify if we consider that the dynamic verification does
only analyse the actual execution trace of the software, while the
static verification has to consider all possible execution traces;
an additional weakness is the fact that the dynamic verifier
must be executed together with the observed software, which
means that we introduce a new element that may influence
the behaviours that we wanted to observe. On the bright side,
if properly designed and implemented, dynamic verification
provides a higher assurance level because the analysis of the
software behaviour is done in the real execution environment.
Consequently, dynamic methods do verify the software in its
actual execution context and can potentially discover problems
that cannot be observed using static methods.

Due to the nature of our work we will focus in this
section on the dynamic verification methods. The dynamic
verification of systems has been an active topic in several
areas of research including requirements engineering, program
verification, safety critical systems and service-centric systems.
The traditional way to carry out the dynamic verification is
achieved by monitoring the execution of a system and checking
its conformity against a set of rules. Such verification requires
the following elements, which may be internal (in this case, we
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say, we use ‘instrumented code’) or external to the observed
software) [1-4]: (i) a (frequently formal) system model and a
specification of a set of targeted safety and security properties
(ii) the definition and implementation of methods intended for
capturing events of interest and (iii) the deployment of a monitor
capable of analysing such events and checking for violations of
the rules in order to verify whether the observed behaviour of a
system satisfies the required properties.

Also there is an additional element that, though not mandatory
for verification, is frequently used in conjunction to dynamic
verification models. This is the control/recovery element, which
is used by the monitor to react to an improper behaviour. As
an example, in aspect-oriented programming (AOP) [5] and
monitoring-oriented programming (MoP) [6], the monitor is
embedded alongside the instrumented code. In other cases,
monitors are independent software modules implemented [3, 7]
separately to the system to be observed.

Regarding the languages used for the specification of the
system behaviour (monitoring rules), several approaches are
based on logics ranging from the popular linear temporal logic
(LTL) [8] and variations of it including past and future time LTL
(ptLTL and ftLTL, respectively) to more expressive (but less
efficient) logics like alternating time epistemic logic (ATEL).

Past and future time LTLs are modal logics for specifying
properties of concurrent reactive systems and are used for
analysing the traces of execution of such systems. In particular,
the Temporal Rover (TR) tool [9] supports a future and past
time metric temporal logic (MTL). MTL [10] extends LTL
with relative time and real-time constraints. In the context of
MoP, any monitoring formalism can be added to the system.
ptLTL, ftLTL and extended regular expressions (EREs), which
can express patterns in strings in a compact way [11], have
been used to formalize properties to be monitored [6]. The
proposed algorithms to deal with those specifications use binary
transition tree finite-state machines (BTT-FSMs) to monitor
ftLTL properties [6], as well as formulas written in a logic
based on EREs [11]. Havelund et al. [12—-14] have developed
several algorithms related to temporal logic generation and
monitoring, for instance, they propose algorithms for past time
logic generation by using dynamic programming [14]. They
have also explored the use of the MAUDE rewriting engine [15]
for monitoring future time logic [12, 13] and have proposed
algorithms that generate Biichi automata adapted to finite trace
LTL [16]. Other logic languages used for formalizing properties
are EAGLE [1] and HAWK [2].

On the other hand, several calculi, notably event calculus
(EC), have also been in the foundation of current monitoring
systems. The monitoring and checking (MaC) framework [17]
is based on a logic that combines a form of past time LTL
and models in real-time via explicit clock variables. JAVA
MAC [18] is a prototype implementation of the MaC framework
for monitoring and controlling applications written in Java
that defines an event-based language to describe monitors. We
highlight the fact that in the context of the Java MaC framework,

events refer to information that holds instantly during the
system runtime, while conditions are defined as illustrating
information that holds for a period of time. Mahbub and
Spanoudakis [19] have developed a framework for monitoring
the behaviour of service-centric systems, which expresses the
requirements to be verified against this behaviour in EC [20].
In this framework, EC is used to specify formulas describing
behavioural and quality properties of service-centric systems,
which are either extracted automatically from the coordination
process of said systems (this process is expressed in WS-
BPEL) or are provided by the user. In the area of component-
based programming, Barnett and Schulte [21] have proposed
a framework that uses executable interface specifications and
a monitor to check for behavioural equivalence between a
component and its interface specification. Robinson [22] has
proposed a framework for monitoring requirements based on
code instrumentation in which the high-level requirements are
expressed in KAOS [23], which is a framework for goal oriented
requirements specification based on temporal logic. KAOS has
also been used by Feather et al. [24] in a framework that was
developed to monitor system requirements at runtime while
incorporating some capabilities regarding the reconciliation
of requirements with the runtime system behaviour. In the
field of software systems monitoring, diagnosis focuses on
the identification of the potential causes of a system failure.
We can consider that the monitoring activity is the process
of observing a system in order to detect deviations from
normal behaviour and, in particular, violations of the properties
required for the system. Such observed deviations are frequently
not sufficient for understanding the reasons that underpin the
violation of the property and to identify both, the way to avoid
that problem in the future (i.e. how to evolve the system)
and the way to avoid negative consequences of the detected
violation (i.e. how to react to the violation). Consequently,
diagnosis is the process of determining the causes of violations
detected during the operation of a monitored system. Diagnosis
typically involves the identification of the possible trajectories
(sequences of events) that have led to a failure. Some proposals
use automata (modelling the expected behaviour of a system) to
recognize the faulty behaviour [25-29]. In such case, diagnosis
is carried out through the synchronization of the automata
and the events captured from the actual system. Pencolé and
Cordier [27] propose a similar but decentralized approach where
synchronization is performed for individual system components
and then aggregated for the global system. The problem of fault
diagnosis (considering time) has been studied and analysed by
Tripakis [29] and Bouyer et al. [25], who model the system
as a timed automaton. Timed automata extend the finite-
state machine models with real-time clocks [30]. References
[25, 29] focus on algorithms (diagnosers) that function as
efficient online fault detectors of internal faults for any given
sequence of observable system-generated events. Tripakis has
also worked on the diagnosability of a timed system showing
that the problem of checking whether a given timed system
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is diagnosable or not is a decidable problem and a diagnoser
can be constructed as an online algorithm in the case that
the system is actually diagnosable. The algorithm proposed by
Tripakis [29] is based on state estimation in order to decide
whether a fault has occurred. Due to the high complexity of
the previous algorithm, Bouyer et al. [25] describe a lower
complexity solution using two deterministic timed automata
(DTA) for an efficient online diagnosis. Bouyer ef al. have
considered general DTA, as well as a subclass of DTAs called
event recording automata (ERA) [30].

2.1. Monitor taxonomy

Monitors and event generators can have different capabilities
and structures. This subsection classifies monitoring and event
generation capabilities according to three dimensions (i) the
controlling capabilities of a monitor, (ii) the time of the event
emission with respect to the occurrence of the action described
by the event and (iii) the communication type between the
monitor and the system.

In the first dimension a distinction is made based on whether
the monitor role is to only observe, observe and control or
control only.

More precisely: (i) the monitor observes the runtime
behaviour of the system by receiving the generated events and
it checks whether the monitoring properties hold at runtime (ii)
the monitor observes the runtime behaviour of the system by
receiving the generated events, it checks whether the monitored
properties hold at runtime and forces the system to execute
specific actions. These actions can be either preventive or for
recovery. This class is also known as closed-loop control and
(iii) The monitor forces the system to execute actions without
needing to observe the actual state of the system. This class is
also known as open-loop control.

The second dimension of the taxonomy presents a
distinction according to the time of the event’s emission
with respect to the occurrence to the event-related action.
According to this criterion, we can distinguish between
two cases: (i) Emission preceding the action (pre), that
is, the event is sent before the action is performed (for
example, the event generator sends an event to the monitor
to alert that the system wishes to lock a resource before
the system actually locks it) and (ii) Emission after the
action (for example, the event generator sends an event
to the monitor notifying that the system has completed a
transaction).

Finally, the third dimension of the taxonomy refers to the
type of communication between the monitored system and the
monitor. According to this criterion, we distinguish between
the following two types of communication: (i) synchronous
communication: the event generator uses a blocking send
primitive to communicate with the monitor, waiting for a reply
from it. This is usually only used when the monitor can exert
control over the system and (ii) asynchronous communication:

The event generator uses a non-blocking send primitive to
communicate with the monitor. It is mainly used when the
monitor cannot exert any control over the system or when
the control actions can be applied asynchronously. For instance,
the monitored system may notify the monitor that it will attempt
to perform an action and start performing it without waiting for
permission to do so (these are called optimistic transactions). If
the monitor subsequently decides that this action is undesirable
it can abort or revert the action.

2.2. Security oriented systems

Some of the logics and languages reviewed in the previous
section have been used either in their original form or
with semantic modifications and extensions to allow the
formalization of security properties. Naldurg et al. [31], for
instance, have proposed a framework for intrusion detection
based on the EAGLE language, suitable for expressing temporal
patterns that involve reasoning about the data values observed
in individual events and thus allowing the description of attacks
whose signatures appear to have statistical properties (e.g.
password guessing or denial of service attacks). For such attacks
there is no clear distinction between an intrusion and normal
behaviour, so the intrusion detection involves collecting runtime
statistics and using them to evaluate the probability of the
occurrence of an attack.

In the area of intrusion detection [32], Ko et al. [33] have
proposed a specification-based approach, which uses dynamic
verification techniques to detect vulnerability exploitations in
security-critical programs. According to this framework, it is
possible to specify a trace policy that describes the intended
program behaviour with regards to security properties. The
trace policy then determines security-valid operation sequences
of the execution of one or more programs. For specifying
such trace policies, Ko et al. [33] have developed a grammar,
called ‘parallel environment grammar (PE-grammar)’ whose
alphabet consists of system operations. This PE-grammar can
express various classes of security trace policies; including
behaviour related to system object access, synchronization,
sequences of operations and race conditions in concurrent or
distributed programs. Schneider [34] has developed a system
called execution monitoring (EM) that can monitor violations
of security policies by monitoring the system execution steps.
This system is based on the security automata of Alpern and
Schneider [35], which are a special type of Biichi automata.
EM also incorporates mechanisms that can terminate the system
execution if it is about to violate its security policy. Following
the same automata-based formalism, Ligatti et al. [36] extended
the control capabilities of security automata by proposing edit
automata, which can remove and add letters (i.e. system actions)
to the words (i.e. execution traces) they may recognize. Having
proposed a security-policy enforcing model that follows the
general dynamic verification approach, Bandara et al. [37] have
specified alanguage based on EC to model the system behaviour
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and to write security policy specifications. The form of EC used
in this work was presented in [38] and consists of: (i) a set of
time points (that can be mapped to the non-negative integers),
(i1) a set of properties that can vary over the lifetime of the
system (fluents) and (iii) a set of event types. System operations
and domain-independent rules for policy enforcement were
specified in this approach using these constructs. According
to Bandara et al. [37], one can use EC to express system-
models containing a combination of authorization, obligation
and refrain policies.

Janicke et al. [39] have proposed a security model that
allows expressing dynamic access control policies, which can
be either time or event-driven. A system overall security policy
can then be composed out of smaller policies that capture
specific requirements and which can be individually verified.
The advantage of this access control model is that it allows for
expressing both parallel and sequential composition. Janicke
et al. [39] based their security model on interval temporal
logic (ITL), a flexible notation for both propositional and
first-order reasoning about intervals of time. ITL allows the
expressing of properties for safety, liveness and timeliness. The
policy model of Janicke et al. [39] provides a wide range of
operators (for example, to allow the dynamic addition/deletion
of rules or to select different sub-policies based on to the
occurrence of an event or a time-out). An important reason for
choosing ITL was the availability of an executable subset of
the logic, known as Tempura [40]. The use of ITL, together
with its subset of Tempura, offers the benefits of traditional
proof methods with the speed and convenience of computer-
based testing through execution and simulation. Brisset [41]
has worked on establishing and ensuring the correct operation
of aJava platform security mechanism for runtime authorization
of untrusted applications in remote hosts. Sekar et al. [42]
presented an approach called model-carrying code for mobile
code security. Damianou et al. [43] have defined a declarative,
object-oriented language, called Ponder, to specify security
policies that can be monitored and applied at runtime.

2.3. Methods for capturing events

Another important aspect to consider in system monitoring is
the mechanism used to retrieve information from the running
system. This is normally done based on a series of specific
situations (called events) that are relevant for the monitoring
activity. Event capturing methods can be divided into external
and internal ones.

2.3.1. External event capturing

External methods generate events without altering the code
of a system. External event capturing is based on the
fact that the software to be monitored has to call the
underlying software infrastructure (OS, VM, middleware,
etc.) and therefore the event capturing is done by those
infrastructures. To do so, these methods extend and/or

take advantage of capabilities of the general computational
environment in which a system is executed in order to generate
the event flow. Reflective middleware approaches [44-46],
proxy-based architectures [21] and the use of application
programming interfaces [7, 19, 47] constitute examples of
methods which belong to this category. Those technologies [48]
have been designed to support the development of distributed
systems. Capra et al. [45] proposed a framework designed to
facilitate the adaptation of applications to changing execution
conditions. The model considers different layers (operating
system, middleware, application and user), each of which is
described using metadata and connected by capturing events
in order to ease their interaction. Also in this field we can
find CARISMA [45] (a context-awareness-based reflective
middleware) and XMIDDLE [46]. In the field of component
based programming, Barnett and Schulte [21] have proposed
a framework that uses executable interface specifications and
a monitor to check for behavioural equivalence between a
component and its interface specification. The advantages of
the external event capturing approach are that it can be applied
to any code and that the event capturing can be considered more
trusted as it comes from an external (normally trusted) element.
On the down side of this approach is the fact that the monitoring
rules cannot be tailored to the specific behaviour of the software
to be monitored because the events that can be monitored are
limited to the calls to the infrastructure. Another drawback is
the limited ability to control the monitored software, which is
limited to the normal control that the infrastructure can have
over the applications running on it.

2.3.2. Internal event capturing

Internal event capturing is based on instrumenting the (source
or binary) code in order to insert statements to capture
the events of interest and to send them to the monitor. In
Robinson [22] the technique of code instrumentation is defined
as the insertion of statements into the system’s code (source or
binary code) for monitoring purposes. Instrumentation can be
done manually or automatically. For example, there are tools
like Jtrek and JSpy [49] or Joie [50], which automatically
instrument Java byte code. During the execution of the
instrumented code, an event stream is generated. The generated
events can then be passed directly to external monitors or
pre-processed before they reach the verification stage. A
tool using code instrumentation for monitoring Java-based
systems is RMon [22]. In RMon, requirements are initially
expressed in the KAOS framework [23], which provides a
goal-oriented formal specification language based on temporal
logic. Requirements are thus specified as high-level goals
which must be achieved by the system. These goals must then
be mapped onto low-level events that can be monitored at
runtime. The system’s code is then instrumented in order to
capture these low-level events using the Joie framework [50].
Likewise, in the MONID tool [31], the system-level events
are generated by appropriately the instrumented source code.
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FIGURE 1. Three-dimensional monitoring architecture.

An example of a system that applies instrumentation to the
binary code is the Java MaC architecture [18]. In Java,
MacC low-level specifications (written in PEDL) are inserted
into the byte code of the monitored program through an
automatic instrumentation procedure. Some related approaches
are AOP [5], which is based on a particular form of code
instrumentation to operate. MoP [6], Proof-Carrying Code [51,
52] and Design by Contract [53] are also based on an
instrumenting code.

The advantages of the internal event capturing approaches
are that the monitored events and thus the monitoring rules
can be tailored to perfectly suit the behaviour of the monitored
software and the efficiency of the monitoring. The main reason
for this efficiency is the fact that the monitoring rules are
simpler because they are based on direct observation of the
important events, while in the case of external event capturing,
the observed events are not the ones that are of direct interest,
and rules have to ‘deduce’ the interesting events from the
observed events. The main drawback of this approach is the need
to modify the code, but as already mention there are automated
tools for this purpose, which facilitate this task.

3. SYSTEM BEHAVIOUR: ENFORCEMENT

In this section, we describe the dynamic security monitoring
and enforcement model. As shown in Fig. 1, this infrastructure is
based on a three-dimensional model, provided each by the Local
Application Surveillance (LAS), the Intra Platform Surveillance
(IPS) and the Global Application Surveillance (GAS). Figure 2
shows how the intercommunication between such levels is
achieved.

LAS: LAS monitors application instances (so there is one
LAS per application instance) and it is the component that most
closely resembles the current monitoring systems. Its job is to

check whether the application violates any of its established
monitoring rules (the rules that express properties that need to be
satisfied at runtime) and is used to detect unexpected behaviours,
implementation flaws and underpin the trustworthiness of such
an application.

The output of the monitoring analysis is then sent to the
assigned IPS for further analysis. It is important to take into
account that the integration of an LAS into a PASSIVE-
virtualized environment does not affect the operation of the
virtualized environment itself. The purpose of the LAS is
just to provide more information to the LAS administrator
about the operation of applications. Using this information, the
LAS administrator can modify the application or virtualized
environment configuration in order to adapt the system
behaviour.

The monitoring infrastructure is divided into the following
subcomponents:

(1) LAS Event Receiver: Receives the application events
and routes them to the analyser.

(i1) LAS Analyser: With the events arriving, it proceeds to
evaluate whether any of the monitoring rules from the
rules databank were violated. The analysis results are
expressed in terms of the LAS analyser rule violations,
which express abnormal situations.

(iii) LAS Rules Databank: Stores the set of the application
monitoring rules. This component is managed by the
GUI subcomponent.

(iv) LAS GUI: A graphical user interface that communi-
cates the LAS administrator with the LAS component.
It has these main functionalities: It displays the analy-
sis results from the analyser, manages the monitoring
rules in the Databank and inspects the contents of the
Event Receiver.

IPS: To deal with potential problems caused by the interaction
between different VEs, a second monitoring mechanism is
in charge of monitoring at the level of one particular VE.
The IPS component serves this purpose by analysing data
from different VMs running on the same machine. The IPS
component collects information related to the violations of
monitoring rules, analyses it and sends the results to the GAS
component. The results sent depend on certain rules, so the
administrator can choose what information is meant to be sent
and what is meant to be kept as confidential.

Specifically, there is one IPS per VM and they are
interconnected with other IPS components of the same
virtualized environment. They are responsible for analysing
the result of the LAS analysers from the same VM, looking
for security risks that might arise whenever the different VMs
interact as well as whenever different applications from the same
VM interact. Selected results of the monitoring analysis are then
sent to the different GAS components (assuming such a GAS
is available) for further analysis.
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FIGURE 2. Intercommunication between different levels.

Likewise, the integration of an IPS into a PASSIVE environment configuration in order to adapt the system
virtualized environment does not affect the operation of the behaviour. IPS is divided into the following subcomponents:
virtualized environment itself. The purpose of the IPS is
just to provide more information to the IPS administrator
about the operation of applications. Using this information the (i) IPS Event Receiver: Receives the external events and
IPS administrator can modify the application or virtualized routes them to the analyser.
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(i) LAS Analysis Result Reader: Reads the result of the
analysis performed by the different LAS components
running on the same VM.

(iii) IPS Analyser: With the LAS Analysis results, it
proceeds to evaluate whether any of the rules from
the rules databank have been violated. The analysis
results are expressed in terms of IPS analyser rule
violations, which express abnormal situations.

(iv) IPS Rules Databank: Stores the set of the intra-
platform monitoring rules. This component is
managed by the GUI subcomponent.

(v) IPS GUI: A graphical user interface that communi-
cates the IPS administrator with the LAS component,
with these main functionalities; it displays the analy-
sis results from the analyser, manages the monitoring
rules in the Databank and inspects the contents of the
LAS Analysis Result Reader.

GAS: To support monitoring of specific software pieces and
detecting problems with non-compliant implementations (as
well as problems in the modelling), the GAS components
perform vertical analysis. They analyse data from different
machines referred to the same software (application). Such GAS
components receive information from several IPS components
and perform a new analysis on it. Thus, the GAS components
have a global view of what is the behaviour of the software
in different virtualized environments from different machines,
and thus is able to deduce proper conclusions. The existence
of GAS components benefits both users of the applications and
applications developers.

This level is optional and there is one GAS per application
(not instance). Furthermore, they might reside well outside the
virtualized environment if necessary. Their task is a secondary
form of analysis of the result of the IPS analysers from all VMs
in all virtualized environments in order to be able to detect
the application global design flaws, making it an invaluable
resource for the developers of such applications. GAS is
composed of the following subcomponents:

(i) GAS Event Receiver: Receives the external events and
routes them to the analyser.

(ii) IPS Analysis Result Reader: Reads the result of the
analysis performed by the different IPS components
located globally.

(iii) GAS Analyser: With the IPS Analysis results, it
proceeds to evaluate whether any of the rules from
the rules databank have been violated. The results of
the analysis are expressed in terms of GAS analyser
rule violations, which express abnormal situations.

(iv) GAS Rules Databank: Stores the set of the intra-
platform monitoring rules. This component is
managed by the GUI subcomponent.

(v) GAS GUI: A graphical user interface that commu-
nicates the GAS administrator with the GAS com-
ponent. It has these main functionalities. It displays

the analysis results from the analyser, it manages the
monitoring rules in the Databank and it inspects the
contents of the IPS Analysis Result Reader.

All these systems help achieve our goal of increasing
the security and reliability of virtualized environments and,
therefore, cloud computing by:

(i) Easing the identification of the origin of errors (thanks
to the LAS, IPS and GAS components, which are able
to monitor each application separately or as a whole).

(ii) Capturing precise and specific information on attacks,
errors and malfunctioning.

(iii) Lowering the time required to identify and fix errors
(a good set of monitoring rules helps with error
identification before it further propagates in the
application and becomes harder to track).

(iv) Early detection (the monitor provides the capability
to inform the developer of an unexpected behaviour
immediately after the first case happening).

(v) Increasing the protection of the VE code during the
monitoring process (by creating and using custom
system monitoring rules).

(vi) Increasing the ability to assess the integrity and
compliance of the VE after monitoring (by being able
to check at any time the current state of monitoring
rules).

4. PREVENTION: ANALYSIS AND CORRELATION

Runtime software monitoring of security properties is widely
accepted as a way to increase system resilience to dependability
failures and security attacks. Proposed models of monitoring
advocate the need for this form of system verification and
the development of a monitoring framework that supports it.
It should be noted, however, that whilst current monitoring
systems are able to detect violations of S&D properties at
runtime, they cannot always provide the necessary information
for understanding the reasons that triggered the violation of an
S&D property and therefore are not prepared to decide response
to said violation.

Furthermore, it is often necessary to try to predict a violation
before it even happens by using the available current system-
state information rather than wait until all the information
to make a final decision becomes available. This is because
an accurate early prediction can widen the scope of possible
reactions to the violation or even provide scope for taking pre-
emptive action that prevents the violation.

In our monitoring system, the absence of a signal after the
elapse of a given signalling period can be detected by specifying
a monitoring rule, requiring that the time between two
consecutive signals from the same source (e.g. an application
or a device) should not exceed the given period. Detecting,
however, the occurrence of a violation of this rule is not in itself
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sufficient for establishing the reasons why a source has failed
to send the expected signals. In such cases, a further search for
possible causes of the violation are useful when deciding how
to react to the violation.

As an example, consider that the violation might have
been caused because the source is malfunctioning and has
stopped sending signals after a certain point in time; the
source involved is no longer present in the area covered by
the server; some of the signals sent by the source have been
lost in the communication channel between the source and
the server; and the signal that was used to determine the start
of the last period of checking was sent by an external agent
(attacker) who managed to fake the identity of the source (i.e.
an attacker).

Although the preceding list of possible causes is not
exhaustive, it demonstrates that a decision about what would be
an appropriate reaction to the violation depends on the reason(s)
that have caused it and, therefore, the selection of the appropriate
responding action cannot be made solely on the basis of
knowledge of the violation but requires additional diagnostic
information. The diagnosis mechanism of PASSIVE is invoked
after the detection of the violation of a monitoring rule in order
to find possible explanations for the reasons underpinning the
occurrence of the events involved in the violation of the rule
and assess their genuineness.

This mechanism produces diagnostic information through a
process of four stages described in the following paragraph. In
the generation stage, the diagnosis mechanism generates all the
possible explanations of the events, which are involved in the
violation. These explanations are generated using an abductive
reasoning based on assumptions about the behaviour of the
components of the system. Application vendors provide these
assumptions. In the effect identification stage, the diagnosis
mechanism derives the possible consequences (effects) of the
potential explanations that were identified in the previous stage.
The consequences are generated from the abducted explanations
and system assumptions using deductive reasoning. In the
plausibility assessment stage, the diagnosis mechanism checks
the expected effects of explanations against the event log to see
whether there are events that match them or, equivalently, the
existence of further supportive evidence for the explanation.
In the diagnosis generation stage, the diagnosis mechanism
produces an overall diagnosis for the violation including belief
measures in the genuineness of the events involved and the
most plausible explanations that have been identified for these
events (if any).

5.  MONITORING SPECIFICATION AND ITS
LANGUAGE

Any monitoring system is based on a set of well-defined
behaviour policies, also known as monitoring rules. In our
particular monitoring system such rules are part of the

monitoring specifications, which are written in a new language
called EventSteer.

EventSteer is an extended event-sequence language (namely,
a language that allows the user to create rules based on an
expected or unexpected flow of events). Like EC [44] it uses
two basic concepts for representing the properties of systems
that change over time; events and fluents. Whilst an event is
defined as something that occurs at a specific moment in time
and has instantaneous duration, a fluent is a condition that has
different values at different moments in time. It is also extended
because it does not only allow for specifying event sequences
but also the possible consequences of failing to validate such
sequences in a standard imperative programming syntax (Java
in our case, but could be any other).

The main rationale behind the creation of a new language is
based on three key points. The first is that while EC provides
an elegant mathematical way to formulate specifications,
sometimes they are too complex to be understood at first glance.
The second is that the free mixing of time and events is difficult
to compile, interpret and debug due to the lack of a given fixed
sequence to try to follow. The third and last one is that this very
same lack of a fixed sequence in time means that it is extremely
complicated to devise an optimal way to evaluate these rules at
runtime.

Because of all this, one of the initial design goals of
EventSteer was to overcome the limitations and drawbacks of
current EC-based approaches. In particular, we focused, on the
one hand, facilitating the expression of time, by avoiding mixing
time and event processing, and by providing a clear distinction
between the settings of a time variable (i.e. assigning a value
to the variable) and the use of it (i.e. using the assigned value
in the evaluation of an expression). On the other hand, we also
focused on expressing time in a past to future fixed sequence that
facilitates the creation and optimization of the implementation
of those rule checkers (in particular, by using FSMs).

A complete description of the language is beyond the scope of
this paper. Nevertheless a description of the basic elements that
are the basis for the rationale of the project has been included
as follows.

Variables: In EventSteer, variables (also known as fluents
in EC) can have different values in different moments in time
(as their name indicates). They have names for identification
purposes and can be of one of the several types (Boolean, integer
or double). Variables are set to specific values in the initialization
section as well as in the consequences of monitoring rules as will
be described in the Consequences section. Likewise, variables
can be used in guards as part of event expressions by using them
inside a Boolean expression that establishes when a given event
can be accepted or not.

Time: Our notion of time is based on LTL [45]. LTL is a modal
temporal logic with modalities referring to time that allows the
definition of expressions about the future such as the fact that
a condition will become true in the future, that it will be true
until something happens, etc.
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Opposed to other temporal logics such as computation tree
logic (CTL) or ATEL, which allow the expression of different
possible paths into the future, LTL can only express conditions
on one path (i.e. it implicitly quantifies universally over paths),
hence the name linear. This is a limitation when expressing
the behaviour of software or hardware elements, especially for
verifying safety or liveliness properties using model checkers.
However, for the purposes of monitoring, the only path that we
need to analyse is the actual execution. Moreover, as we will
show, in our language, different rules can represent overlapping
paths, and there are several constructs to facilitate the expression
of complex rules. Therefore, the limitation of representing
one path in a rule does not constitute a problem for us. For
this reason, it is possible to represent all monitoring rules
using LTL.

Following the standard EC approach described in [30] the
time type is considered to have discrete values and consists of a
set of ordered time points that can be mapped to the set of non-
negative integers. However, as has already been mentioned, the
treatment of time has been carefully considered in EventSteer
and there are two main aspects to highlight: on the one hand,
time treatment is detached from event treatment and, on the
other hand, there is a clear distinction between the setting of
time variables and the use of these variables once they have
been instantiated.

Here is the treatment of time in EventSteer in more detail:

(i) Time variables and deadlines are linked to event
expressions. They are enclosed in brackets after
them as follows: eventExpression timeVariable. The
semantics of this construct is that time Variable is set to
the actual time when the eventExpression is verified.

(ii) Time variables are used in timeExpressions and can
be part of time ranges. Its syntax is timeVariable
(+timeConstant). The optional integer constant is
expressed in msecs.

(iii) Time ranges, used in deadlines, take the form
[(minTimeExpression)...(maxTimeExpression)].
Note that if the optional minTimeExpression is not
written it means the minimum time range is zero. Also
if the optional maxTimeExpression is not written it
means the maximum time range is infinite.

Events: Events are the central element of any monitoring
language. Events represent the connection between the monitor
and the monitored system. For the sake of the current discussion
and throughout the paper, we will consider that events are
instantaneous situations that indicate some relevant change in
the monitored system.

In our framework, we consider three kinds of events; namely
external, virtual and special events.

External events: External events are externally generated
events that are triggered at certain arbitrary points by an
external code. Examples of external events might be access
to a file, the beginning of a password request, the acceptance

of said password or even a certain button being pressed. In
our framework, we concentrate on events that are relevant for
the security of the system, but the EventSeer language is of
course independent of this. External events are expressed in our
language by directly using the event name and its attributes
as parameters if applicable. This is, eventName(attribl,
attrib2, etc.).

Virtual events: Virtual events are monitoring oriented,
internally triggered events we use in order to keep control
of the system state. Note here that by system state we really
mean the monitoring machine state or whatever underlying
implementation might be using the language. These kinds of
events are user-defined internal events. These events are sent
inside the consequence code, thanks to an special method named
SendVirtualEvent(evName, evParameters).

Special events: Special events are event predicates with
special meanings. They are:

(i) true: An event that is completed instantly, i.e. as soon
as it is needed.

(ii) false: An event that is never completed and fails the
completion of the event expression instantly.

Sequences: Sequences are the way to relate events in time.
They define a series of temporally ordered event expressions
and are done thanks to the sequence operators ‘, and ‘->’.
Other available operators are the complement ‘?” operator, the
any ‘—’ operator, the all ‘+’ operator and the except if
operator.

A short explanation of each of those operators follows:

0

(1) ¢ Witnessed sequence: It defines what previous event
expressions need to be completed in order to advance
the sequence. This, like most other operators, is
‘open’, meaning that no other events can arrive in
between without making the sequence fail.

(i1) ‘->’ Rule expected sequence: It works like the
witnessed sequence operator, with the only difference
being after it is used if the sequence fails the rule will
become violated and will trigger its consequence.

(iii) ‘—’ Any: This operator is used to define an
event expression constituted by several alternative
sequences. Namely, as long as one of all the event
expressions is verified the combined event expression
is considered to be verified.

@iv) ‘“+’All(in any order): This operator defines a sequence
that is verified when all the event expressions that it
contains are verified regardless of the order in which
such event expressions happen.

(v) 7’ Complement: This operator is used to express the
set of events that are not to be considered in a certain
context.

(vi) ‘I’Except if: This operator is used to express the set of
events that are not to be witnessed in a certain context.
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Reactions: Reactions allow the monitoring machine to react
to certain event expressions by making changes to the internal
monitoring machine state (variables/fluents, sending other kinds
of virtual events etc.). In EventSteer, reactions are stated as rules
without a ‘->’ operator. For instance, there could be a reaction to
increase an nLoginAttempts integer variable each time an event
warning of a failed login attempt was produced.

Consequences: Consequences are the actions that must be
triggered when a rule is violated and can have a direct effect on
the monitored system or its internals. Examples of consequences
can be restarting the system, halting it, suggesting actions to a
higher controller or changing a system parameter, as well as
changing variables, etc.

Real life example: This example shows the applicability of
this language to a given real life case, which, with a bit of
intuition on the reader’s part, might prove to be useful for a
basic understanding of the language.

Let us imagine a computer system which has the following
set of requirements:

(i) When a user fails to login three times in a row, a login
error screen must appear. If for some reason it does
not, then the system will be halted.

(ii) Users can only transfer data if they are logged in and
such a transfer can only take 20 s at most to complete.

events {
evLoginAttemptFailed, evLoginError,
evLoggedIn, evLoggedOut,
evlransferStarted, evTransferCompleted

}

variables {
int nLoginAttempts, bool bLoggedIn
}

init {?
bLoggedIn = false;
nLoginAttempts = 0;
?}

rules {
// REACTIONS //
// if a login failed the number of login
// attempts increases
rLoginFailed: evLoginAttemptFailed;
{? nLoginAttempts++; ?}

// if a login happened then we are logged in
rLoggedIn: evLoggedIn;
{?
bLoggedIn = true;
nLoginAttempts = 0;
?}

// if a login failed then we are logged out
reactionLoggedOut: evLoggedOut;
{?
bLoggedIn = false;
?}

// RULES //

// if a login failed when the number of

// attempts was >= 3 then we must- see

// a login error

rLoginAttempts:

evLoginAttemptFailed / nLoginAttempts >= 3
-> evLoginError;

{?
SystemHalt () ;

?}

// if a transfer started then we must-
// be logged in
rTransferLoggedIn:
evlransferStarted -> true / bLoggedIn;
{7

SystemHalt () ;
?}

// if a transfer started at time tl then
// it must- be completed before t1l+20000 msecs
rTransferCompletion:
evTransferStarted {tl}
-> evTransferCompleted [..tl1+20000];
{?
SystemLog () ;
?}

6. FINITE-STATE MACHINE GENERATION
STRATEGY

We have introduced a global overview of our dynamic
monitoring system and the description of the monitoring
specification language to process the events in rules. As
we have previously mentioned, the real-life usability of a
monitoring system in most cases depends heavily on its impact
on performance. In order to address this problem, we decided
to make use of a strategy based on the generation and use of
FSMs as the underlying monitoring runtime engine.

While one of the strengths of EC-based formal languages is
the ability to write non-time-linear sequences, it happens to also
be its major weakness when one of the goals is performance. In
other words, this expressive power is paid in full in the end by the
compiler of these languages, which need to generate extremely
complex verification code (runtime engines), obviously leading
to performance bottlenecks (a tremendously important aspect
for real-life usage scenarios).

A specific example would be the fact that in EC-based
languages it is possible to write an expression such as: ‘Event A
has to be observed; then another event B has to be observed
not later than 500ms after A has been observed; and a C
has to be observed somewhere in the middle of A and B’.
Although it is a perfectly valid expression, the fact that it is
possible to write it out of sequence (time-wise), among other
things, either requires a very CPU intensive runtime verification
of such expression or creates the need of some set of really

THE COMPUTER JOURNAL, Vol. 55 No. 8, 2012

€202 1940100 €0 U Josn eBe[e\ 8p pepISIoAun A 0.6 7/6.6/8/SS/SI01HE/Ulwod/wod dno-olwapese)/:sdpy Woj popeEojumMoq



990 A. MuRNoz et al.

effective compiler optimizations that are not always feasible.
Moreover, due to this flexibility (lack of constraints) in the
expressive power, it is harder to determine the soundness of
the specifications and, therefore, mistakes are both easier to
make and harder to find. The above considerations constitute
one of the main reasons for the addition of a strict time-linear
sequence structure into our language (EventSteer), a feature
that makes it possible, and even relatively easy, to generate
performance-optimized FSMs specially tailored to efficiently
check EventSteer specifications.

All of this is one of the main reasons for the addition of
a strict time-linear sequence structure into our language, a
feature that makes it possible, and even relatively easy, to
generate performance-optimized FSMs specially tailored to
such expression testing and verification.

Traditional methods to process the relationship between
events are rather limiting because its expressive power allows
non-linear sequences in time, i.e. formal and formal languages
based on the EC rules allow writing without regard to a
predetermined linear order, for example, may be a situation
in which an event A has to be observed before time 100,
another event B before a time event 500 and a C before time
300. Due to the nature of the EC, the generated code can
verify these expressions is extremely complex and this leads
to a clear inefficiency in terms of computational speed. For
this reason we have introduced a clear language restrictions
in terms of linear time, it has to follow a set sequence
and clear in time. And thanks to this feature is possible to
generate FSMs optimized for the testing of such expressions
in terms of efficiency. Along this section is described how the
transformation from the event-sequence language to the FSMs
is achieved.

6.1. Language elements to sub-state machines
transformation

The transformation is based on the fact that every event-
sequence language element can be transformed into sub-state
machines (SSMs), which are just little FSMs, part of the
complete resulting FSM. These transformations are unique for
each element, since they are related to the particular properties
of every one of them. Among the possible transformations,
there are:

6.1.1. Atomic
We have defined three different atomic operations:ev(filters),
true and false.

ev(filters): Create a start and end state with a transition with
the given filtered event.

< } ev(filters) =< )

true: Create a start and end state with a transition that always

triggers.
< > true O

false: Create a start and failure end state with a transition that
always triggers.

( ) cancel FSM ( )

6.1.2. Operators
LSEQ, RSEQ and LSEQ ->RSEQ: Merge the last state of LSEQ
with the first state of RSEQ.

and RSEQ.

SEQ + SEQ + ...: Since it is possible to translate this
operator to a series of finite permutations of the ‘,; and ‘—’
operators, the previous transformations are applicable.

LSEQ ! RSEQ: On the first state of LSEQ spawn a parallel
SSM that ends in failure and dispose of it in the last state of

LSEQ.

6.1.3. Guards
SEQ/GUARD: Add to the last state of SEQ a new guard
immediate transition (transition that is checked only once on
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entry and before any non-immediate ones) that leads to a failure
state.

______________

SEQ "~ GUARD: Add to the last state of SEQ a new guard
immediate transition (transition that is checked only once on
entry and before any non-immediate ones) that leads to the first
state of SEQ.

! GUARD

6.1.4. Time
SEQ {t1}: Add to the last state of Left an entry action that sets
the time variable to the current time.

enEmEW,

P

SEQ [..t1+x]: Adds to the first state of SEQ an entry action
that sets an alarm at t1+x and makes the first state of Left spawn a
parallel SSM to listen for that alarm. That SSM is then disposed
in the last state of SEQ.

! salarm1(tl
i;r)

[V S
%_ E
| cancel P T
i

SEQ [tl+x..]: Add to the last state of SEQ a new time
immediate transition (transition that is checked only once on
entry and before any non-immediate ones) that leads to a failure
state.

currentTime <
tl+t

ffffffffffffffff

6.1.5. Sample
Finally, here is a complete example of the resulting
transformation from an event sequence to an FSM.

a {tl}, ((b | c) ' 4, e / guard)

[£t1+100..t1+200]

——————————————

Set alarml
to t1+200
L

alarml

7. IMPLEMENTATION

The PASSIVE project has developed an improved security
model for virtualized systems that tries to solve, specifically,
the problems related to the management of large applications
running on virtualized platforms in e-Government scenarios.
One of the main concerns raised by the shared-resource nature
of virtualization technologies is the data confidentiality conflict,
therefore this new security model will ensure: (i)An adequate
separation of concerns (e.g. policing, judiciary) (ii) That threats
from co-hosted OS s can be detected and dealt with and (iii)
that public trust in application providers can be maintained
even when the underlying host or any other hosted guest’s
change. To achieve these aims, PASSIVE offers: (i) A policy-
based Security architecture that allows security provisions to be
easily specified and efficiently addressed; (ii) Fully virtualized
resource access with fine-grained control over device access,
running on an ultra-lightweight Virtual Machine Manager; and
(iii) a lightweight, dynamic system for host and application
authentication in a virtualized environment. Thanks to these
elements PASSIVE lowers the barriers to adoption of virtualized
hosting by government users, leading to considerable gains in
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energy efficiency, reduced capital expenditure and adding the
flexibility offered by virtualization.

As a proof of concept of our model, an actual implementation
has been developed for the PASSIVE project. The PASSIVE
monitoring engine is in charge of observing specific events
coming from the VMs and matching these events to monitoring
rules written in a new monitoring language (EventSteer). In
the framework of PASSIVE, such monitoring specifications are
specially tailored to ensure that specific security policies are
enforced. That is, monitoring is directed by global security
policies. However, in other scenarios, both the proposed
architecture and the language can be applied to monitor any
arbitrary behaviour of the monitored software. In PASSIVE,
when a deviation from the acceptable policies is detected,
the monitoring component communicates any relevant data
to the PASSIVE policy decision point, which chooses the
proper reaction. Our monitoring architecture provides advanced
monitoring capabilities based on several levels of monitoring:
(1) individual application instances, (2) the set of different
applications running on the same platform and (3) different
instances of the same application across several platforms.
Levels 1 and 2 are performed in the same computing platform of
the monitored application, while level 3 is performed externally.
There is a monitoring element responsible for each layer. LAS
deals with level 1, IPS with level 2 and GAS with level 3.
Additionally, to the provision of capabilities that are not possible
with traditional monolithic approaches, the architecture also
improves the efficiency of the monitoring system because the
monitoring effort is divided across platforms (each platform
is only concerned with the monitoring activity that is relevant
for it). In particular, the monitoring done by the LAS and
IPS components are simplified because they are relieved of
all evolution-oriented monitoring activities, which are very
expensive in computational terms, especially when done locally.
In fact, by moving the GAS component out of the computing
platform and allowing it to control different instances, the
efficiency of the level 3 monitoring is also improved. Finally,
it is important to note that the externalization of the GAS
might introduce privacy issues and consequently we have
added privacy control capabilities to the IPS to solve these
issues.

8. CONCLUDING REMARKS AND FUTURE WORK

As highly distributed implementation wise systems (such as
cloud computing and virtualized environments) become more
and more common each day, security is quickly becoming both a
key point of concern and of research. One of the main reasons for
the concern is the fact that, due to the intrinsic properties of such
systems, (i) many programs from many different developers
might be sharing the very same hardware and (ii) most of them
are basically exposed to the internet as a whole, opening the
door to many security threats both old (e.g. SQL injections) and

brand new (e.g. espionage of other programs running on the
same hardware).

While the old threats can be pretty much covered by standard
systems, the new ones cannot be easily detected by them, thus
opening the door for better specially tailored tools. That being
said, we hope that our monitoring research will be one of many
tools to come in the future with the same focus namely to solve
this special kind of new security problems.

However, a high-level architecture must also reside over a
solid low-level base. We think that both the new event-sequence
language and its finite-state machine compilation serve that
purpose well. Thanks to the new even-sequence language we are
able to observe as well as control any layer of the architecture
(be it with monitoring specifications for the LAS, IPS or GAS
level) and thanks to the finite-state machine implementation it
is fast enough not to tax the system resources to a level that
would be impractical performance-wise.

Summarizing, as we have shown throughout the paper, our
scheme allows:

(i) A multi-layer monitoring architecture that provides
new capabilities for highly distributed implementation
wise systems such as cloud computing.

(i) A new event-sequence language able to express mon-
itoring specifications which allows for observation as
well as control.

(iii) A fast implementation based on finite-state machines
adequate for real life performance-efficient scenarios.

As for immediate future work we are targeting, first, a
monitoring specification validation system which will make use
of sets of emulated event flows that will allow third parties to test
the sturdiness and good behaviour of their specifications before
the actual programs can generate such events. This would allow
amore loosely coupled approach between the team making such
specifications and any other team making the actual programs.

Also we are targeting the optimization of the resulting FSMs
in order to further improve the usability in performance-efficient
scenarios with complex sets of specifications, such as the case
of cloud computing.

We are also studying language extensions to further improve
expressibility given that we can find use cases which would not
be presently addressable.

As to the not so immediate future we are targeting the
possibility of an automated system evolution driven by the
analysis results from the monitoring subsystem, which would
allow the automatic patching of security flaws as soon as they are
detected by checking on-line whether new component versions
that address the violation of certain rules are available and
updating them.

Also we are considering a component capable of monitoring
operating system events instead of instrumented monitoring,
thus allowing the system to actually enforce and check both
system-wide or wide policies.
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