D. Morales, I. Agudo and J. Lopez, “Zero-Knowledge Bitcoin Mixer with Reversible Unlinkability”, Blockchain: Research and Applications, 2025.
http://doi.org/10.1016/j.bcra.2025.100323
NICS Lab. Publications: https://wuw.nics.uma.es/publications

Zero-Knowledge Bitcoin Mixer with Reversible
Unlinkability

Daniel Morales*, Isaac Agudo®, Javier Lopez”

@ Network, Information and Computer Security (NICS) Lab, University of Malaga, Spain

Graphical Abstract

Zero-Knowledge Bitcoin Mixer with Reversible Unlinkability

Daniel Morales, Isaac Agudo, Javier Lopez

*Corresponding author
Email addresses: damesca@uma.es (Daniel Morales), isaac@uma.es (Isaac Agudo),
javierlopez@uma.es (Javier Lopez)

Highlights

Zero-Knowledge Bitcoin Mixer with Reversible Unlinkability

Daniel Morales, Isaac Agudo, Javier Lopez

e We propose a decentralized mixer-based solution to achieve private pay-
ments with selective disclosure of data

e A set of conditional disclosers provide payment data to those allowed only,
based on unlinkability through a trapdoor function

e The mixer can verify compliance thanks to NI-ZKPs without learning
anything about the payment

Zero-Knowledge Bitcoin Mixer with Reversible
Unlinkability

Daniel Morales”*, Isaac AgudoP, Javier Lopez®

b Network, Information and Computer Security (NICS) Lab, University of Malaga, Spain

Abstract

Cryptocurrencies, particularly Bitcoin, continue to be the most prevalent
use case within the blockchain ecosystem. One of the inherent limitations of
blockchain is that it can create a false sense of privacy. All transaction history
and the amount of cryptocurrency held are publicly available, and this infor-
mation can be easily associated with specific individuals. Many works have
proposed fully-private solutions, which are ideal but not realistic in many sce-
narios.

This paper proposes a technical solution that enables private Bitcoin pay-
ments by default, but with the option to conditionally disclose payment data.
To do so, this solution relies on unlinkability by a decentralized mixer, which
can be reversed by a conditional discloser using a trapdoor unlinkability func-
tion. The conditional discloser, which also provides accountability of requests,
obeys the payer’s policies regarding who can access payment data.

To ensure compliance, we propose a mixer that does not learn anything
about the payment link, but is guaranteed by Zero-Knowledge Proofs that the
payment can be relinked by a specific conditional discloser.

Furthermore, we provide a proof-of-concept implementation of the proofs,
using Circom and SnarkJS. We also present a benchmark that demonstrates
the feasibility of this solution. It incurs only one additional parameter per
on-chain transaction, while the remainder of the verification data is managed
off-chain.

Keywords: Bitcoin, Mixer, Unlinkability, Zero-Knowledge Proof

1. Introduction

Blockchain technologies have brought a new computing paradigm in trustless
environments based on decentralization, immutability and public verification.
From the variety of applications that have been proposed, such as e-voting [1]

*Corresponding author
Email addresses: damesca@uma.es (Daniel Morales), isaac@uma.es (Isaac Agudo),
javierlopez@uma.es (Javier Lopez)

Preprint submitted to Blockchain: Research and Applications February 21, 2025

or healthcare [2], the original one remains as the most widespread, i.e., digital
currencies or cryptocurrencies [3].

All data in blockchain transactions are public by default [4]. To address this
issue and guarantee users’ right to privacy, many research works have focused on
providing technical tools to ensure privacy while maintaining verifiability and
correctness in the blockchain ecosystem. More specifically, w.r.t. private pay-
ments, solutions have emerged that conceal the link between payers and senders.
Some of them, such as Monero [5] or ZCash [6], offer new redesigned blockchains.
On the other hand, blockchain mixers provide this service in widely adopted
blockchains through an additional layer, e.g., in UTXO-based blockchains like
Bitcoin [7, 8, 9|, or account-based blockchains like Ethereum [10, 11, 12].

Ensuring full privacy is the best solution for human rights, because it can
prevent abuses by companies or governments, or even insecure situations prod-
uct of the public exposure of the patrimony, for example. However, it is not
realistic in many scenarios where some amount of regulation is needed to en-
sure security. In fact, it is not easy to find the right level of privacy for users
without reducing security against criminals, and there is no consensus on it.
A clear example is that private payments facilitate money laundering problems
[13, Section 1]. Blockchain pseudonyms are already attractive for money laun-
dering [14], which is achieved through the use of many ephemeral addresses and
complex cryptocurrency movements. However, transparent transactions allow
graph analysis techniques [15], which is not the case when mixers are involved.
According to [16], mixers and privacy coins are significant open doors for fraud,
unlike crypto-to-fiat interfaces, which are highly secure. Moreover, the survey
in [17] highlights the need for future research to focus on the legal traceability
and accountability of transactions.

Some efforts are being made to enable compliant payments in cryptocurrency
environments, typically through the use of deny lists and Know Your Customer
(KYC). For the former, the Treasury’s Office of Foreign Assets Control (OFAC)
maintains a list of sanctioned addresses for various assets belonging to entities
on economic/trade embargo lists!. For KYC, regulations in many countries
require exchanges to ensure the identification of their customers before accepting
transactions. These approaches can be classified as proactive compliance and
they are not so difficult to implement. Another category is reactive compliance,
i.e., those procedures that require advanced analysis of transactions such as
Customer Due Diligence (CDD), which is identified in [18] as a key safeguard
against money laundering. However, this is more difficult to guarantee when it
comes to privacy coins, and has even led to some of them being banned from
exchange services [19]. Tornado Cash, an Ethereum mixer, provided a user-
driven compliance tool to generate proof of funds reports?, but it was sanctioned
by OFAC for being used for money laundering [20, 21].

A clearer consensus is that full transparency by default is not realistic or

Thttps://github.com/0xB10C/ofac-sanctioned-digital-currency-addresses
2https://tornadoeth.cash/compliance/

acceptable, not only because it interferes with the human right to privacy or
GDPR principles such as data minimization [22], but also because it makes
it almost impossible to adopt some use cases in the blockchain ecosystem. A
clear example is blind auctions, where providing a public record of bids clearly
biases the outcome. In the payment use case, public transactions include the
pair of addresses involved and the amount sent. Although blockchain is said to
protect user identities through pseudonyms, they can actually be linked to real
identities, e.g., by correlating wallet and IP addresses on the node provider side,
as long as users do not use privacy mechanisms such as TOR3. It is even easier
when a user pays for goods or services with cryptocurrency, since the seller
will know the total amount of money and the user’s entire transaction history.
The same happens to the user w.r.t. the seller’s wallet. These situations lead
to threats to personal and economic safety [4]. To protect against the identity
correlation with the wallet address, a typical recommendation is not to reuse the
wallet address. However, this lacks usability, and ephemeral wallet addresses
can be correlated if they target a common source of funds.

public observers

amount of data
disclosed
A A

max :

Full
privacy

Full
transparency

Figure 1: Data exposure levels from a full privacy to a full transparency setting.

It is clear that to address these issues, privacy must be ensured by default,
and additional techniques must be used to achieve some level of transparency
when necessary. This is a one-way problem, because a system that sets full
privacy by default can allow different levels of data disclosure, reaching full
transparency in the most extreme case. However, once full transparency is set
by default, it is impossible to move towards privacy (see Figure 1).

This paper focuses on how to achieve an agnostic technical solution that
provides privacy by default with tailored transparency as desired by the user.
Such a solution allows selective disclosure of transaction data, e.g., to accoun-
tants, exchanges, investigators, or any desired third party. A solution in this
direction already exists in ZCash, where viewing keys allow users to share their
blinded transaction data with third parties. However, we note that this does

Shttps://www.torproject.org/

not happen in the Bitcoin network, which is the most capitalized cryptocurrency
(~ x3,744 the capital of ZCash at the time of writing). Therefore, this work
targets a compliant Bitcoin mixer with tailored transparency. In addition, to
reduce the impact of money laundering, Bitcoin’s UTXO model makes it easier
to isolate fraudulent transactions without compromising an entire wallet, com-
pared to Ethereum-based solutions. While a transaction sending fraud ETH
contaminates the entire target account because it holds a unique balance field,
a UTXO in Bitcoin can remain unspent forever if it is detected as fraudulent.

1.1. Contributions

This paper presents a technical solution for a decentralized Bitcoin mixer
with reversible unlinkability, where transactions are private to the public and
the mixer view by default, but a trusted conditional discloser chosen by the payer
can link the payer’s address to the recipient’s address on request, as long as the
requester is allowed by the payer. This allows the entire spectrum from full
transparency to full privacy to be covered in a single solution. In addition, the
conditional discloser provides accountability for the identity of the requesters,
thus enabling active transparency, i.e., in both directions. Since the mixer is not
allowed to see the link between senders and receivers, it must be provided with
proofs of compliance that ensure that conditional disclosers can apply reversible
unlinkability.

More specifically, this solution is intended for Bitcoin mixers based on mixnets,
where a set of semi-honest nodes mix the transactions without obtaining any
knowledge of the link. Reversible unlinkability is achieved through a trapdoor
function based on public key cryptography, and compliance verification through
a Zero-Knowledge Proof (ZKP). Unlike Ethereum, Bitcoin has no smart con-
tracts and its scripting language is very limited. Therefore, we let the data that
allows the conditional linking of transactions to be added on-chain, while the
ZKP verification is performed off-chain by the mixer.

We provide specific designs and a proof of concept for the proof of compliance
protocol based on decryption and secret sharing based mixnets. In addition, a
benchmark evaluation is provided to analyze the overhead for the payer.

1.2. Paper organization

The rest of the paper is organized as follows: Section 2 summarizes and
compares the main contributions for blockchain private payments in the liter-
ature, mainly those based on mixers. Next, Section 3 introduces the technical
background, and Section 4 provides our main contribution, i.e., the protocol
design, its security requirements, the implementation of the proofs, and a proof
of concept. Section 5 presents an evaluation of the proof of concept and a threat
analysis. Finally, Section 6 gathers some conclusions and future work.

1.8. Technical overview

In our design, we assume a decentralized mixer service where a set of servers
M = {My,..., My} blind the link between the payer’s and the receiver’s ad-
dress. To be compatible with Bitcoin, which does not have the programmability

power of smart contracts in other blockchains, we assume a mixnet layer to de-
ploy the mixer service, either by using a decryption mixnet as described in [9]
(which relies on a decrypt-and-permute technique) or a secret sharing mixnet as
described in [30, 31] (which relies on a re-randomize-and-permute technique). In
Section 5 we show that secret sharing mixnets are more suitable for our compli-
ance solution in terms of efficiency when generating a valid proof. In addition,
threshold signatures are used to protect the clients’ funds to be stolen from a
single malicious server in the mixer, i.e., a sufficiently large subset of M must
cooperate to unlock the UTXO sent by the payers.

Our design relies on two main contributions to solve two problems: achieving
(1) reversible unlinkability and (2) compliance.

First, for reversible unlinkability, we rely on trapdoor linkable transactions,
which means that the input transaction (sent by the sender to the mixer) and
the output transaction (sent by the mixer to the receiver) are computationally
linked. We do so by using a trapdoor function and computing two parameters
I,U', where I’ = f,(l), and appending [to the input transaction and !’ to the
output transaction. This allows anyone with 7 to verify the link, while the
relation (/,1’) remains undisclosed without knowledge of 7. In our design, we
introduce a role named conditional discloser (that can be either centralized or
decentralized) that has knowledge of 7 and can relate transactions processed
by the mixer. To instantiate the trapdoor function, we rely on public key
cryptography, which is also desirable for the next contribution.

Second, for compliance, we rely on non-interactive ZKP. This allows the
payers to let the mixer service knowing that there is at least one conditional
discloser that can relink the transaction. For that, the payer proofs that [and
I are related with respect to the key pair of the conditional discloser. However,
since the mixer is decentralized, it must not learn that [and I’ are related because
" will be added to the output transaction that also contains the address of the
recipient. Because of this, the ZKP must ensure that the ciphertext sent to
the mixer (prior to the mixing phase) contains a proper pair of data I’ and
recipientqqqr, without learning their actual values, but also being ensured that
I’ is generated by encrypting [with the public key of the conditional discloser.

2. Related work

This section discusses the primary research in the field of blockchain mixers,
which is summarized in Table 1. A symbol v means that the mixer achieves
the specified property, and a symbol X means that it does not. To clarify, the
property anonymity with respect to X means that X remains unaware on the link
(payerqddr, recipientqqar). Therefore, our solution hides the payer address from
the recipient, and the link between the payer and the recipient from any public
observer and from the mixer itself. With respect to the availability property, a
symbol v in payer or in mixer means that the payment service protects against
the payer or the mixer going off-line and therefore avoiding to complete the
payment. Finally, with respect to compliance, proactive compliance means that
an address can be verified to be fraud before submitting the payment, while

Table 1: Related work comparison. * Unless the whole mixnet cheats. ** As long as 2/3 of
the nodes are honest. T If pk of a Zether account can be linked to the ETH address, then
anonymity is lost. ¥ Only briefly mentioned. n.a. Not applies.

Anonymity (with respect to) Theft Account. Availability Compliance ATxs Bitcoin

Payer Recipient Outsider Mixer prevention Payer Mixer Proac. Reac. compatible
Mixcoin X v v X X v v X X X 2 v
Blindcoin X v v v X v v X X X 2 v
TumbleBit v v v v v X 4 X X X 4 v
CoinJoin X v v n.a. v X X n.a, X X 1 v
CoinShuffle X v v n.a. v X X n.a, X X 1 v
CoinParty X v v v v X v 4 X X 2 v
Mobius v X 4 v v X 4 v X X 2 X
Tornado C. v v 4 v v X 4 v X 4 2 X
Zether vi vi 4 v v X v v X X 1 X
Haze v v v v v X v v v vt 2 X
Ours X v v v v X v v v v 2 v

reactive compliance means that the address can be verified even if it became
fraud after the payment. A remark is that in CoinJoin and CoinShuffle, the users
are those involved in the mixing process. CoinJoin does not achieve anonymity
against the users, but CoinShuffle does, unless the whole mixnet cheats.

Some of the early works proposed centralized mixers such as Mixcoin [7] or
Blindcoin [23]. In these solutions, the mixer is a TTP that receives the set of
k input transactions (with the same amount of funds) and applies a private,
randomized permutation to the set of output transactions, accomplishing k-
anonymity. However, while the mixer in [7] learns the link between the payer
and recipient, in [23] the users are protected against such a situation. Both
[7, 23] achieve accountability by providing the payer with a signed warrant by
the mixer that works as a commitment contract, stating that the mixer has
indeed received the funds. If the mixer steals the funds, the payer can expose
the mixer’s actions publicly. TumbleBit [24] is also centralized and proposes a
tumbler where payers can deposit their funds in escrow using multi-sig addresses
with the tumbler. Solving an off-chain puzzle via RSA encryption allows the
recipient to obtain 1 BTC previously deposited by the payer in the tumbler.

Despite being accountable, centralized mixers still pose a threat to cryp-
tocurrency theft, so the focus of most novel research has been on decentralized
mixers. The earlier works, CoinJoin [8] and CoinShuffle [25], offer solutions
where there is no intermediary and all the payers partake in a distributed pro-
tocol to mix the transactions, using a permutation mixnet which ensures that
no one can link payers to recipients. Nonetheless, these solutions result in an
overhead to the payers. To tackle this overhead problem, CoinParty [9] pro-
poses a middle-ground solution, wherein users send and receive transactions via
an outsourced and decentralized mixer that uses threshold signatures to avoid a
single point of failure. This solution ensures that funds cannot be stolen unless
more than 1/3 of the mixer nodes are corrupted, otherwise no valid subset of
nodes will agree on generating a signature to spend an UTXO to an invalid
address. The mixing method utilizes a permutation mixnet similar to [25], but
the mixing is done by the nodes instead of the payers.

Most recent works moved from the Bitcoin world and have benefited from

smart contract capabilities to achieve decentralized secure mixers. Mobius [10]
proposes a tumbler smart contract that records deposits from stealth addresses,
which are derived from a master secret key agreed upon in advance by the
payer and the recipient. When the contract receives k£ incoming transactions,
it forms a ring with the stealth addresses. This allows anyone that can pro-
vide a valid ring signature to withdraw the amount sent, with guarantees of
k-anonymity. While most solutions offer anonymity for the payer w.r.t. the
recipient, Mobius provides anonymity for the recipient w.r.t. the payer. As for
Tornado Cash [11], it also utilizes smart contracts for receiving deposits and
withdrawal requests, but relies on NI-ZKPs to maintain on-chain privacy and
enable correctness verification. Specifically, it accepts blinded notes as deposits
and note nullifiers as withdrawals. On the other hand, Zether [12] proposes an
Ethereum smart contract that allows confidential balances and transactions us-
ing Additive Homomorphic Encryption and NI-ZKPs for encryption correctness
verification. However, Zether can facilitate anonymous transfers by directing
the payer to send transactions to an anonymity set, wherein all but one of the
encrypted amounts will be zero. Another work is Haze [26], which works in a
similar manner to Tornado Cash but also addresses compliance. However, it
prioritizes proactive compliance over reactive compliance, contrary to our focus
in this paper.

Finally, there are solutions such as ZCash [6] or Monero [5] that propose
private payments in independent blockchains. While Monero is focused on a
fully-private setting by default, ZCash allows payers to select the amount of
disclosure they want for their payments. Regarding the building blocks, Monero
is closer to Mdobius because it relies on stealth addresses and ring signatures to
achieve privacy, while ZCash is closer to Tornado Cash by using blinded notes
as deposits and note nullifiers as withdrawals, in addition to NI-ZKPs to enable
correctness verification. The main difference, as previously stated, is that both
Monero and ZCash embed their building blocks for privacy in the blockchain
layer, which means that they require the migration of clients to their specific
blockchains in order to benefit from their services.

We note that, despite of the different aspects addressed in blockchain mix-
ers, compliance has only been addressed very recently in Tornado Cash and
Haze [26]. However, Haze mostly prioritizes compliance before withdraws and
Tornado Cash assumes the payer to be the one deciding to generate the compli-
ance proof and keeping it. In addition, almost all solutions focus on providing
a full-private setting, but do not facilitate a selective disclosure of data.

Finally, a key remark is that the most recent solutions rely on smart con-
tract capabilities to facilitate hiding the links of the payments. This is mainly
an aspect of programmability, since smart contracts are Turing-complete, and
also because of the structural design of these blockchains, which are normally
balance-based blockchains. Therefore, it is easier to include all the logic needed
to achieve privacy (signature or ZKP verifications, encrypted pools of trans-
actions, homomorphic operations, etc.) in the smart contract as if it was a
centralized entity and deploying it in a blockchain that implies a decentralized
execution. Achieving these operations in an UTXO-based blockchain like Bit-

coin is indeed harder and requires extra features: either some sort of off-chain
layer 2 solution or a complete redesign of the blockchain. Notice that both
ZCash (UTXO-based) and Tornado Cash (balance-based) rely on the same con-
cept to achieve privacy and verify correctness, however, while Tornado Cash
benefits from smart contract capabilities which are on-chain computation in
Ethereum, ZCash requires a complete new blockchain to support these features.
Because of this and since we want to include transaction privacy support in na-
tive Bitcoin (which remains as the most important blockchain for cryptocurrency
payments), our solution is focused on a layer 2-like design such as CoinParty,
which allows Bitcoin users to transact privately but with accountability support
and backwards compatibility.

3. Technical background

3.1. Blockchain mixers

Blockchain mixers allow payers to send payments to recipients without ex-
posing the link, i.e., with privacy, and they achieve that by anonymity and
unlinkability. Anonymity [27] guarantees that a subject is unidentifiable within
a set of peers in a system, referred to as the anonymity set. On the other
hand, wunlinkability ensures that multiple items within an anonymous system
are equally unrelated based on prior knowledge. Blockchain mixers are formally
introduced in Definition 1.

Definition 1. A blockchain mixer is a service that enables anonymous pay-
ments by unlinking transactions. More precisely, the anonymity sets for the
payer and the recipient are the set of input and output transactions respectively,
i.e., {txrn,, ..., txrn, } and {txoury,....,txouT, }. The mizer ensures unlinkabil-
ity by making sure that any input transaction txry, appears to be equally related
to any txour;-

A centralized mixer owns a wallet with address m. It accepts payments
from input addresses until the anonymity set reaches a predefined threshold, i.e.,
I = {iny,...,in,}. Additionally, it receives the output set O = {outy, ..., out, }
through confidential off-chain channels, which is mixed by a private permutation
7. Each incoming payment is sent from m to each address in 7(O). However,
to avoid over-reliance in the mixer, some works propose decentralized mixers
based on mixnets.

3.2. Mixnets

A mixing network (mixnet) [28] is composed of a set of nodes {Mj, ..., My}
that, given a set of ordered, encrypted input messages {(z1), ..., (x,)}, outputs
the set of decrypted and permuted messages {Zr(1),..., Zr(n)}, Where 7 is a
private permutation and (z) means some kind of ciphertext containing x. The
mixing process is performed such that no single M; can correlate a message from
the output set with one from the input set.

3.2.1. Decryption-based miznet

A decryption-based mixnet is constructed upon the concept of onion encryp-
tion [29], where each server in the mixnet, denoted as M;, owns an asymmetric
key pair (skas,, pkar,). Moreover, each sender encrypts its message sequentially
using the public keys of all servers (Equation 1) before sending (x); to M.

<w>j = EnCPle (EncpkMQ ("'EncpkMN (x]))) (1>

When the mixnet receives n messages (z);, each server M; sequentially de-
crypts its layer, applies a private permutation m; to the message list, and
sends the outcome to M;11. At the end, My outputs the permuted plaintexts,
ie, man (man, (. ({21, ..., 20 }))), where no server can link x; to the original
sender.

8.2.2. Secret-shared-based miznet

A secret-shared-based mixnet is built on the concept of secret-shared shuffle,
introduced in [30] as a 2-party protocol and extended in [31] for the n-party case.
Each sender shares its input x in secret-shared form [z], i.e., each server receives
a share of x. When the servers receive n messages, the input to the mixer has the
form [x], with € = (21,2, ..., ,,). In addition, each server M; holds a private
permutation ;. In the end, after applying the permutations using an MPC
protocol, each server holds a secret-shared vector [y] that satisfies Equation 2.

y =m(m(..mn(x))) = (xW[I:N](1)7m7"[1:N](2)7 "‘V‘TTF[LN](")) (2)

The core block for secret-shared shuffle is a 2-party share translation protocol
[30], where P, and P, take no inputs, but at the end of the protocol P; holds
random vectors a, b, and P, holds a random permutation 7 and A = 7(a) — b.

3.2.8. Protection against DoS in miznets

Given a mixnet composed of a fixed set of servers, e.g., M = { My, My, M3},
which is the minimum needed, it is easy to perform a DoS: it just suffices to
block one server in order to deny the whole service. This is obviously because the
adversary knows that all the incoming encrypted messages are going the follow
the same route, i.e., My, My and Mjs, respectively. To protect against DoS,
typical solutions rely on a larger pool of servers M where, for each message,
the client selects a proper subset M’ C M. In private messaging applications,
where learning the subset M is enough for the adversary to know the source of
the message, timing obfuscation and cover traffic techniques are used to avoid
an easy identification of M. In the case of this work, we do not target privacy
in the same way: the focus is set on k-anonymity. Notice that it does not matter
for the adversary to learn the subset M’ used by a particular payer as long as
there are at least other £k — 1 payers using the same path. What is powerful
to protect against the DoS specifically is not letting the adversary to know in
advance which subset M’ will be selected in a particular round. Therefore,
once the adversary learns M’, the mixing round has already be completed and

a different subset will be selected for the next one, avoiding effective DoS attacks
[44]. This type of solution falls within the area of proactive security where the
adversary is assumed to corrupt nodes dynamically [45, 46].

3.8. Non-Interactive Zero Knowledge Proofs

A ZKP protocol is utilized by a prover to convince a verifier that a private
witness w and a public statement = belong to a relation R. A Non-Interactive
ZKP (NI-ZKP) accomplishes the same task via a single message sent from the
prover to the verifier, and the protocol consists of a tuple of algorithms (K, P, V)
such that:

Setup. crs « K(1™) outputs a common random string.

Prove. p < P(crs,z,w,R) takes as input a crs, a public statement
x € L, a private witness w, and a relation R, and outputs a proof p.
Verify. V(crs,z, R, p) outputs 1 if the proof p is accepted.

Two main properties of ZKP are defined by Equations 3 and 4. The first
property (completeness) means that, given a true statement for R, an honest
prover with a valid witness should convince the verifier, while the second prop-
erty (soundness) means that, given a false statement for R, it is very hard
to compute a valid proof. Another property is zero-knowledge, meaning the
proof reveals nothing about w except the statement’s veracity. For this work,
we used a specific type of NI-ZKP called Succinct Non-Interactive Arguments
of Knowledge (SNARKS) [32], which also fulfill the succinctness property, i.e.,
that the ers and proof size are poly()\), and the verifier executes in poly(A+ |z|)
time, with A being the security parameter.

(3)

Pr [V(crs,x,p) = 1‘ ers < K(1%))] =1

p <« Plers,z,w

Py [V(crs,x,p) = 1‘ crs + K(1%) } 1 n

Nz, w) ¢ R |p < P(ers,z,w)| poly(\)

4. A Bitcoin mixer with reversible unlinkability

This section introduces a solution to achieve a Bitcoin payment system with
full privacy by default, which can be configured by the users to achieve tailored
transparency. As discussed in Section 1, the relation between privacy and trans-
parency is one-way, i.e., different levels of transparency can be achieved from
full privacy by default, but no privacy can be achieved from full transparency
by default.

To the date, public blockchains cannot regulate these levels of transparency,
except by requiring node providers not to reveal certain subsets of data. How-
ever, this is typically related to law enforcement and blocking malicious services,
and has nothing to do with user privacy.

10

Authorized consumers of payment data

£ 8 B &

&&@@

discloser

0.Registration/agreement

Payer Mlxer Recipient
— @ 1a.(l', out), p. A / 4.1 « Decg, (1) @ le—
) 2. txy(in » m; 1) _— 3. txgyr(m - out;)
.................. »|) by .
[txd [

—

Blockchain

1b. signgp,, o, (m, 1)

Figure 2: Roles and interactions for a mixer with private and relinkable payments. Dashed
arrows represent on-chain transactions, while solid arrows represent off-chain communication.
The wallets interact with the blockchain, and the mixer wallet employs a threshold mechanism.

In the following paragraphs, we introduce a CoinParty-based mixer [9] that
is Bitcoin-compatible, together with an additional layer of transparency disclo-
sure control that provides selective disclosure capabilities of payment data and
accountability of queries. Such a layer can be considered similar to a Policy
Enforcement Point (PEP), which ensures access control (to payment data) only
to those authorized by the payer. There is an additional particularity w.r.t. the
standard use of CoinParty, which is that the mixer must somehow verify that
privacy can be selectively revoked, but without being able to learn the actual
payment information. To achieve this, our solution relies on ZKPs.

4.1. Roles and protocol design

The different roles involved in the protocol and the interactions between
them are presented in Figure 2. From all the roles, the payer, the recipient,
and the mixer are those directly related to the payment. The payer sends some
amount of BTC to the recipient through the mixer, which adds the privacy
layer. These are the roles that already existed in CoinParty [9]. However,
we also add the conditional disclosers and the authorized consumers of
payment data. The former are those in charge of providing selective disclosure
of payment data, therefore they are trusted to the payer. The latter, on the
other hand, are those willing to learn payment data from a particular payer or
recipient. In this work we focus on providing an agnostic technical tool that
enables selective disclosure, but it can be applied differently regarding the use
case. For example, enabling an accountant to relink the payments is decided

11

solely by the payer, therefore the accountant is provided access by the allowlist
of the conditional discloser trusted by the payer. Another example is to let
the mixer having a list of accepted conditional disclosers, therefore refusing to
process all payments which are not verifiable to be relinkable by at least one of
those disclosers, which may be deployed by regulatory entities.

Regarding the technical aspects, as in CoinParty, we assume a decentralized
mixer (a set of parties M = {My,..., My}) with a wallet address m and a
mixnet to shuffle outgoing addresses. For simplicity, we will assume for the rest
of the paper that mixer and mixnet parties are the same, i.e., M, but they can
be decoupled. An incoming transaction tz;y from a payer has input address
in and output address m. In addition, the address of the recipient out is sent
in encrypted form to the mixnet. The mixer wallet private key is secret-shared
with all the servers, thus avoiding to spend funds unless the majority agrees.
Then, after permuting the output addresses sent by the payers to the mixnet,
one outgoing transaction txoyr is sent by the mixer from address m to each
address out. For the selective disclosure of payment information, this solution
relies on reversible unlinkability, which is based on the concept of trapdoor-
linkable transactions, introduced in Definition 2.

Definition 2 (Trapdoor-linkable transactions). Two transactionstzrry and
troyr are linked if txyy includes a parameter | and txoyr includes a parameter
U such thatl' = f(l), where f is a deterministic function. We say two trapdoor-
linkable transactions are related by parameters generated by a trapdoor function
fr. Without knowledge of the trapdoor T, the view of (1,1') is indistinguishable
from (I,r), where r is a randomly sampled value.

The linkability parameter [is included in tx;x by the payer (Figure 2, step
2) and !’ is included in tzoyr by the mixer (step 3). Since we target trapdoor-
linkable transactions, we define I’ = Encpy,, (1), where (pkcq, skcq) is the asym-
metric key pair generated by the conditional discloser and the private key works
as the trapdoor. It is important that the pair (I,I’) does not expose any ad-
ditional information than (I,r) without knowledge of sk.q, being r a random
value.

To let the mixer learning I’ without knowing which payer it belongs to, it is
included into the ciphertext that inputs the mixnet, i.e., (I, out) (step la). In
addition, the payer can send an off-chain signed message to the recipient (step
1b) to confirm the address from where the mixer is supposed to send tzoyr.

We note that trust in the conditional disclosers can be easily minimized
by accountable decryption based on threshold cryptography [33, 34]. These
solutions allow to split private keys into shares, each one held by a different
discloser. This implies that more than one discloser must agree in retrieving the
link, thus minimizing the probability that a malicious discloser exposes data
when a non-authorized consumer queries for it.

In addition to relinkability of transactions, the conditional disclosers provide
accountability of the queries received to obtain payment data. In a standard
public blockchain, all the history of transactions can be queried through a node

12

provider, and it may not even request the identity of the requester. However,
the conditional disclosers can be equipped with an authentication mechanism
such that they log the identity of each requester for a payment and provide such
log to the payer.

It remains to introduce how the mixer verifies compliance without learning
the payment link, otherwise the payer could just provide dummy (I,1’) values
such that no transparency can be achieved at all. For that, we introduce the
concept of proof of reactive compliance in Definition 3.

Definition 3 (Proof of reactive compliance). A proof of reactive compli-
ance p. ensures a verifier, in zero-knowledge, that given a first parameter I,
there exist a second parameter I generated with a correct trapdoor T, s.t. only
another designated verifier (who knows 7) can relink both parameters.

While the conditional discloser is the verifier of the relation (I,1’), the mixer
is the verifier of the proof p., which is computed by the payer and included in
the message in step la. More specifically, the proof p. is a ZKP that states the
following: (1) the private value I’ is equal to Encyy,,(I) and (2) I is included
inside (I, out). To verify the ZKP, the mixer uses (I',out) and pk.q as public
inputs, thus being ensured that the owner of pk.; has the ability to link [and
an unknown ', which has not been mixed by the mixnet yet.

Only when a sufficiently large set of incoming transactions are ensured to be
compliant, their off-chain messages (I, out) are processed by the mixnet, thus
returning unlinkable pairs (I’, out) to build the outgoing transactions.

To relink a transaction, the conditional discloser just decrypts I’ (step 4)
and looks for the incoming transactions of that round to see which one holds .

4.2. Security requirements

First, the conditional discloser is assumed to be trusted for privacy because
it can relink all the payments linked with its public key. In addition, authorized
consumers trust the conditional discloser to answer their queries, if they are
allowed. As introduced above, trust in the conditional discloser can be mini-
mized through decentralization, by requiring more than one discloser to link a
transaction.

Regarding the encryption mechanism, it is mandatory to be IND-CPA with
randomness hiding, such as ElGamal, thus protecting against anyone computing
" from [and pk.q, which are public values. Since authorized consumers cannot
verify the relation (I,1’), conditional disclosers may be requested to provide a
ZKP that ensures I’ decrypts to [when using sk.q4, therefore avoiding malicious
disclosers.

With respect to the mixer, it is assumed to be decentralized, thus avoiding
a single point of trust, preventing fund theft, and ensuring payment privacy
against the mixer. In our design, the mixer can be semi-honest or covert (the
latter is like malicious, but tries not to be detected), depending on the underlying
cryptographic protocols (refer to Section 4.3). In addition, the mixer is trusted

13

ZKP 1: Decryption mixnet proof

Public input: 1, x, pkea, {pkm, }icf1,..., N}
Private input: U, out, {ri}ie{lv_qN}, 7
Computation:

1. I' = Encpy,,(l; 1)
2. xog = (I, out)
3. Forallie{l,..,.N}: z; = Encpr,, (Ti—137-1)

4. x ==znN

to verify that each incoming transaction is compliant before completing the
payment.

Finally, the payer is assumed to be malicious because she can try to cheat
for convincing the mixer that the incoming and outgoing transactions can be
linked when they cannot.

4.8. Implementation of compliance proofs

This section describes the design of the proofs using NI-ZKP, which are
generated by the payers and verified by the mixer. In each proof, the private
inputs are embedded by the payer and are never exposed to the mixer, while the
public inputs are introduced by the mixer at verification time. The computation
performed inside the proof is neither exposed. For the rest of the section, we
let = (I', out) to be the encrypted message sent by the payer to the mixnet.
In addition, pky, is the public key of the i** mixnet server, and r represents
the randomness used for encryption. We devise two proof circuits, depending
on the selected approach for the mixnet.

4.8.1. Mizer with decryption miznet.

The first server of the mixnet is in charge of verifying the proof p., which
must confirm that both (,1’) are linked and that I’ is included in the ciphertext
x. ZKP 1 outlines the public and private inputs needed and the computation
carried out within the proof. The payer is the only party with knowledge of
the private inputs. It is important to note that zg is the plaintext version of x,
and r; is the randomness for the i** encryption layer. The proof computes (in
zero-knowledge) the encryption of I’ and the sequence of encryptions to achieve
x. The mixer verifies the correctness of the public keys used for the encryption,
i.e., pkeq and {pkys, } are public inputs. Consequently, the mixer is guaranteed
that the parameters have not only been produced correctly, but can also be
decrypted by the designated party. It is noteworthy that this solution involves

14

ZKP 2: Recursive proof of verification

Public input: x;
Private input: x;—1, i1, pPi—1
Computation:

L. z; = Encpy,,, (Ti—1;7i-1)
2. true + Verify(pi—1,2i—1)

computing n + 1 public key encryptions within the NI-ZKP, which can be quite
costly for a large n.

Avoiding a single verifier. As previously stated, the proof is verified by
the first server, whose ciphertext includes the encryption with all the layers.
This server holds the potential to collude with the payer and assert to the other
servers that p. has been successfully verified, even if it has not. While it may be
tempting to have all servers verify p. using the public parameter x, this approach
incurs the risk of a linkability attack. Specifically, each server M; could use the
public keys from the previous servers to sequentially re-encrypt the ciphertext
obtained from M;_q, thereby obtaining xz and bypassing the permutations.

We propose a solution based on recursive NI-ZKP, where each mixnet server
M; proves to M; 1 that p. has been properly verified. In other words, p;(p;—1(...pc))
is verified through recursive NI-ZKP, allowing M, to check the proof being ver-
ified inside p;—1 (sent by M;_1), but with the verified ciphertext = encoded as a
private parameter. However, it is necessary to ensure that the partial ciphertext
x; of M; is verified in p., as shown in ZKP 2. It is worth noting that this is not
problematic since M;, which computes the proof for M; 1, possesses knowledge
of both z; and x;41 = Decsy,,, (x;).

4.3.2. Mizer with secret-shared mixnet

In this approach, the verification is not performed against a ciphertext, but
on a secret-shared value, i.e., opening [z] allows the retrieval of (I’, out). This
method introduces a problem that does not exist in the decryption-based sce-
nario: even if the payer proves the validity of a share to the corresponding
mixnet server, the payer can cheat by sending shares of different secrets to the
other servers, rendering the proof useless and altering the real value of z. A sim-
ple but inefficient solution would imply sending independent proofs p.(*) to the
servers, where p.(?) verifies the share [«];- However, this increases computation
and communication overheads x N. Therefore, we propose a solution requiring
a single proof p. which is verifiable by all servers in M. The verification pro-
cess consists of two phases: (1) a check for share consistency, which requires
a light online interaction by the mixnet parties, and (2) the verification of the
proof, which is done locally. We now provide the solution for both Additive and
Shamir secret sharing schemes.

15

ZKP 3: Additive secret-shared mixnet proof

Public inputs: MAC, (g, h),l, pkea

Private inputs: {[]:}icqr... > {Irlibieqn,..ny, s out, 7
Computation:

Lox= Z;\\;l[[x]]i

2. r=3 [l

3. MAC == ¢"h"
4. I' = Encpy,, (; 1)
5. ¢ == (', out)

Additive secret sharing. The shares are computed as z = vazl x;, where
N — 1 shares do not reveal the secret. Initially, the payer sends (p., M AC) to
each M;, where M AC is a Message Authentication Code for the secret instan-
tiated with a Pedersen commitment scheme as defined in Equation 5 (we note
that the commitment randomness is also secret-shared). We benefit from the
additive homomorphic property of Pedersen commitments to enable every M; to
recompute the M AC' using their secret-shares. To achieve this, each M; broad-
casts (M AC, g% h"™) to the other servers, thus each server can recompute the
M AC using the partial commitments received from the other servers according
to Equation 6.

MAC = ¢g*hn" (5)

N
[Toon = g===n=5m = goh" = MAC (6)
i=1

Next, the proof p. (refer to ZKP 3) is locally verified using the M AC. We
should note that the public inputs are common to all M; and, even if the shares
are not verified w.r.t. I, the M AC is, leading to a secure verification.

Shamir secret sharing. The shares are based on a secret polynomial of
grade ¢ such that z = P(0). Each secret holder is identified with an integer id j €
{1,..., N}, and the share for M; is computed as P(j). Given a sufficiently large
number of shares ¢+ 1, the polynomial can be reconstructed using interpolation,
and the secret can be recovered.

First, the payer sends (p¢, {co, c1, ..., ¢t }) to every M;, where ¢; are Feldman’s
polynomial commitments [35], s.t., ¢cg = ¢, and g; = g%, being a; a coefficient
of the secret polynomial P(y). The share consistency check leads every M; to
locally verify its share using Equation 7 and broadcast {cg, 1, ..., ¢t} to the rest
of M;. The slight difference w.r.t. the additive version is that the consistency
check is jointly performed using the M AC, i.e., it checks that the shares recon-

16

ZKP 4: Shamir secret sharing mixnet proof

Public inputs: {co,c1,...,¢t}, 9,1, Dkcd
Private inputs: {[z]i}icq1,.... N}, {01, .. ae}, U out,
Computation:

1. = Open([z]1, [z]2, ---, [z] ~)
2. Commitment verification:
(a) co=g"
(b) Forallie {1,...,t}: ¢; = g™
3. I = Encpg,,(l; 1)
4. x = (I, out)

struct . On the other hand, in the Shamir version, each server locally verifies
that its share is consistent w.r.t. a secret polynomial, i.e., they do not verify the
other servers shares, and for that reason they must agree that the polynomial
commitments sent by the payer are the same to each server.

t]
g[[z]L — H cjij — gz;=0 asz _ gP(’L) (7)
7=0

Next, the proof p. is locally verified using the polynomial commitments. We
note that public inputs are common to every M; and, even if a particular [z];
is not verified w.r.t. I/, the commitments are, leading to a secure verification as
long as the share consistency check is done correctly.

4.4. Proof of concept

This section presents a proof of concept implementation* of the proof of
compliance generated by the payer (Section 4.3), which is used in the next
section to run a benchmark and test its practical feasibility.

This implementation is assumed to work in tandem with the Bitcoin wallet
application and is comprised of two main modules: (1) a cryptographic library,
responsible for generating the linkage parameters (I,1’), and (2) a compliance
proof generator, which produces the compliance proof p.. Moreover, we assume
that the application sends the off-chain messages to the mixer, while the wallet
signs and sends the on-chain transactions.

The cryptographic library is implemented in Python and Sagemath (the
latter for an easier handling of elliptic curve operations) and it supports the

4https://github.com/damesca/zk-mixer

17

schemes presented in the paper, i.e., a decryption-based mixnet and a secret
sharing-based mixnet.

Table 2: Comparison between different zk-SNARKSs protocols. Notation: m is the number
of wires, n is the number of multiplication gates, a is the number of additon gates, M is the
number of non-zero coefficients in the matrices.

Protocol Setup Prover work Proof size
Groth16 [32] SRS (circuit specific) O(n+m) 2G; + 1Go
Sonic [36] SRS (universal) O(n log n) 20G; + 16F,
Marlin [37] SRS (universal) O(m log m) 13G, + 8F,
Plonk [38] SRS (universal) O((n+a) log (n+a)) 7Gy + 6F
Fractal [39] CRS (transparent) O(M log M) O(M)F
Bulletproof [40] CRS (transparent) O(n log n) O(log n)G + 5Z,,

Regarding the proof generator, we opted for zk-SNARKS due to their zero-
knowledge, succinctness, and non-interactivity. Nevertheless, there are several
protocols available, each with distinct characteristics (refer to Table 2). To
determine the optimal choice, two main factors are considered: the setup and the
proof size, which are closely related. There are three types of setups: (1) trusted
setups, which generate secret randomness (toxic waste) to create a circuit specific
Structured Reference String (SRS), (2) universal setups, which also require toxic
waste but allow the reuse of the SRS with arbitrary circuits, and (3) transparent
setups, which create a public Common Reference String (CRS) that does not
utilize toxic waste. From Table 2 we note that transparent zk-SNARKSs generate
the longest proofs, compared to the SRS settings where the proof size remains
constant.

In our application, the setup is not an issue since the mixer, i.e., the proof
verifier, generates the SRS and the keys, and publicly distributes the proving key
to the payers. As long as the secret value from the setup remains undisclosed,
no payer can forge a fake proof. Moreover, our application does not require a
universal setup since there is only one circuit, i.e., the circuit for p.. After all
these considerations, we choose Grothl6 as the best option for our application
because it provides the fastest proving time and the shortest proof size.

Additionally, Groth16 has been extensively researched and there are quite
good developments for its use. This implementation relies on Circom® [41] and
SnarkJS® toolkit. Circom enables writting ZKP programs in a high-level lan-
guage and compiling them to constraints. On the other hand, SnarkJS facilitates
the computation of the proofs. Moreover, Circomlib” is a Circom library that
includes diverse functionalities such as ECC operations and hash functions. We
have implemented new circuits to compute p., including public key encryption
and secret, sharing.

Shttps://docs.circom.io/
Shttps://github.com/iden3/snarkjs
Thttps://github.com/iden3/circomlib

18

There are additional details to consider. This implementation uses altBn128
curve as Groth16 building block. It natively supports operations modulo p, i.e.,
the curve’s field modulo. In this case, field elements are limited to 253 bits.
Although this modulo can be expanded, it comes at the cost of introducing bit-
wise circuits, hence additional constraints. Since the bottleneck for constraints
are SHA2 hash functions, we also consider circuits based on MiMC [42] and
Poseidon [43], which are hash functions designed to be efficient in arithmetic
circuits.

Decryption-based mixnet proof. Its main block is public key encryption.
We have implemented a hybrid encryption scheme, based on EC-Elgamal for key
encryption and AES® for message encryption. Hybrid encryption is selected as
a solution to layered encryption, where ElGamal’s output is a pair of points and
the input message is a single input.

secret sharing-based mixnet proof. This scenario requires computation
for only one encryption, thus computational workload is expected to be light.
The additional overhead comes from the additive secret-shares and the commit-
ments. The secret sharing version of the proof has a challenge: x must be shared
modulo p. We note that = (I’, out), where I’ is a hybrid encryption ciphertext
and the address out may have, e.g., 20 bytes in Bitcoin. Having field elements
limited to 253 bits, concatenation cannot be used to encode these values in z.
To solve this issue, we have devised two possible solutions, the first of which has
been implemented:

1. To encode x = (I, out) and include !’ inside ¢tz instead of txoyr, because
[is shorter than I’. However, assuming a P2PKH Bitcoin address of 20
bytes, [is limited to be sampled with 11 bytes maximum.

2. To send [and out as different secret shared values, which expands to 253
bits the length of I. However, both secret-shared lists must be ensured to
be permuted with the same 7.

4.4.1. Integration in Bitcoin transactions

Arbitrary data can be added to Bitcoin transactions inside the PubKey
locking script, with a maximum allowed length of 10,000 bytes. More specifically,
the DROP opcode allows to remove the previously stacked item so it does not
affect the unlocking logic. Therefore, it allows to include ! and !’ inside the
transactions without interfering them, but enabling an off-chain verifier to read
both parameters.

We remark that [is a short and randomly sampled value, e.g., 16 bytes for
128 bits of security (but only 11 bytes in the secret sharing-based approach).
On the other hand, I’ is the ciphertext of a hybrid encryption scheme, therefore
it takes 16 bytes for the symmetric ciphertext when using AES and 128 bytes
for the key encapsulation when using EC ElGamal (because it takes two curve
points, hence 4 scalars of 32 bytes), i.e., a total of 144 additional bytes.

8https://github.com/Electron-Labs/aes-circom

19

Transaction Data
number of

version (4B) inputs (1B)

. Ny Input 0
previous transaction P!

hash (32B)

output index
(4B)

script length
(1B)

OP_PUSHBYTES_72
(1B)

sequence (4B)

number of
outputs (1B)

output value Output 0
(8B)

OP_EQUALVERIFY
(1B)

(OP_PUSHBYTES_33

(1B) public key (33B)

signature (72B)

ScriptSig

P_HASH160)

OPiDUP(1B)|Q iasi OP_PUSHBYTES_20

e OP_CHECKSIG (1B)

[ScriptPubKey|

locktime (4B)

Figure 3: Structure of a basic P2PKH transaction in Bitcoin with one input and one output.

pk hash (20B)

Figure 3 shows the taxonomy of a basic P2PKH transaction in Bitcoin with
only one input and one output, where its total length (i.e., the minimum possi-
ble) is 191 bytes. To include the linkage parameter, it would suffice to modify
the locking script in the output as follows: (linkParam) OP_DROP OP_DUP
OP_ HASH160 (pubKeyHash) OP _EQUALVERIFY OP_ CHECKSIG. A re-
mark is that this script will be added to both the input transaction (from the
payer to the mixer) and the output transaction (from the mixer to the recipi-
ent). In the case of the parameter [, it adds a 8.38% overhead of the base size of
the transaction. Regarding I’, it adds a 75.4% overhead, which is significantly
higher. Therefore, it becomes reasonable to assume that [will be included in
the input transaction because it is cheaper for the payer. However, if the larger
cost of including I’ is assumed by the mixer when sending the output transac-
tions, one would expect an increment in the service fees requested to the payers
by the mixer. What can be done by the mixer is to send one round of mixed
UTXOs inside a single transaction including all the payments to the recipients
and therefore amortizing the payment fees.

5. Evaluation and analysis

5.1. Fvaluation

This section presents the results acquired through the execution of the proof
of concept under diverse settings. The programs were tested using an Ubuntu
22.04.1 LTS virtual machine, operating on an Intel ESXi server with an 8-core
CPU (2.2 MHz) and 32 GB of RAM.

The efficiency of the proof varies according to the particular hash function
used. Our design employs hashing inside ElGamal encryption (hashed version)
and authenticated AES. The number of constraints for the ElGamal block w.r.t.

20

Table 3: Performance of decryption-based and secret sharing-based ZKPs for transaction
compliance. Terminology: N: number of nodes, constr.: number of constraints in the circuit,
wt: witness generation time, pt: proof generation time, (0): standard deviation. All times
are indicated in seconds.

N constr. wt (o) pt (o) N constr. wt (o) pt (o)
Decryption (sha256) Secret Sharing (sha256)

3920040 837 (0.1) 33.10(0.3) 4 221,950 245 (0.1) 9.63 (0.1)
1,168,372 10.32 (0.1) 51.90 (0.6) 8 224,008 2.39 (0.1) 9.48 (0.2)
5 1,407,704 1246 (0.2) 56.27 (0.5) 12 226,514 242 (0.1) 9.50 (0.2)

IS

Decryption (mimc?7) Secret Sharing (mimc7)
3 187476 195 (0.0) 951 (02) 4 36559 0.77 (0.0) 3.44 (0.1)
4 241417 243 (0.0) 1031 (0.1) 8 38,617 0.77 (0.0) 3.52 (0.2)
0.1

5 295358 2.85(0.0) 16.08 (0.2) 12 41,123 0.80 (0.0) 3.58 (
Decryption (poseidon) Secret Sharing (poseidon)

184,920 627 (0.1) 9.20 (0.3) 4 35920 527 (0.1) 3.56 (0.1)
238,222 6.79 (0.2) 10.06 (0.2) & 37,978 522 (0.1) 3.55(0.1)
5 201,524 7.28(0.1) 1585 (0.2) 12 40484 526 (0.1) 3.52 (0.1)

)

I

the hashing algorithm are the following: 62,906 with sha256, 4,097 with mimc?7,
and 3,609 with poseidon.

To evaluate the implementation, we conducted different executions of ZKP
generation on both the decryption-based and the secret sharing-based mixnet
version. In each setting, we chose varying numbers of nodes, with fewer nodes for
the first setting compared to the second. There are two reasons for this: firstly,
the decryption-based solution allows a higher corruption threshold than the
secret sharing-based option, and secondly, the decryption-based setting becomes
inefficient before the latter. Table 3 shows the results from several executions,
including different hash functions. While the number of constraints does not
depend on the number of executions because it is a parameter that depends on
the circuit description, for the running times we provide the geometric average
over 25 executions per each type of circuit. It is clear that sha256 instances
introduce more constraints than mimc7 and poseidon ones. This has a direct
impact on the execution time, i.e., generating the witness and the proof.

All the implementations add a constant number of constraints per round
in the protocol, rendering them linear. The base cost for the encryption of [
with pk.q is fixed for both the decryption-based and the secret sharing-based
schemes (although dependent of the hash scheme). Then, even when both sce-
narios are linear, the decryption-based mixnet grows at a much faster rate than
the secret sharing scheme because each round of hybrid encryption imposes
significantly more constraints than each new secret holder added in the secret
sharing method.

We also gathered data on energy consumption during the proof generation.
Figure 4a displays the percentage of CPU used in proof computation, using

21

% of CPU used in different phases 107 Memory used in different phases

100 T T [: i / Voot jw 1 T T
| \ \
| \ |
=l 71 m | ! | 08| .
T | o
KX 1 = / 0‘
__— g€ ool |
| L e
S J‘f E o04f
=
25 | ‘\ compile compile Yotk
! —— setup 0.2 —+— setup
(—e— proof “ —e— proof
| |
: : : : :)
10 20 30 40 50 ¢ 10 20 30 40 50
Time Time
(a) Percentage of CPU used (b) Amount of memory used

Figure 4: Performance metrics to compute a proof of compliance

the decryption-based proof with three layers of encryption and sha256 as the
hash function. The figure presents the consumption of each of the three phases:
circuit compilation, circuit-specific setup, and witness and proof generation. We
note how the setup phase consumes significantly more CPU than other phases,
often running at almost full capacity. Nonetheless, it is worth noting that circuit
compilation and setup only need to occur once, since our system design does
not require circuit modification. In practice, the payer only needs to execute
the witness and proof generation functionalities. A similar result is shown in
Figure 4b regarding memory consumption, where setup consumes the most.

5.2. Security threats

This section analyzes the security threats of our solution.

If we assume a secure zk-SNARK scheme with a correctly computed setup
phase, the soundness property guarantees that each valid proof is truthful but
with negligible probability. This impedes a malicious payer to avoid the linkage
of the transactions, i.e., tagging tx;y with [and sending (r,out) s.t. r #
Encpi,, (1), otherwise p. would not pass verification.

It may happen that a malicious mixer colludes with a malicious payer, thus
omitting the verification of p. and including a malformed I’. However, as long as
the selected conditional discloser is honest, it will be able to notice that I’ does
not decrypt to any [in the set of incoming transactions in that round. Moreover,
it can compute a ZKP ensuring that claim. In addition, a decentralized mixer
can be required to post some proof on-chain ensuring it has correctly verified
the proofs p. in a mixing round, e.g., by recursive ZKP, therefore solving the
“lazy mixer” problem.

If the conditional discloser is malicious, a regulator that queries for I’ can
be provided with a false I, since it has no way to verify that I’ decrypts to
[without sk.;. However, a ZKP computed by the conditional discloser can

22

guarantee correctness. We notice that the conditional discloser cannot forge a
false [as long as the mixer correctly verifies p. and adds I’ to tzoyr.

Finally, regarding fund theft, we assume a mixer as in CoinParty, where
the mixer wallet’s private key is secret-shared among all the N mixer parties,
therefore requiring ¢t + 1 < N shares involved to compute a valid signature.
Honest and semi-honest mixer parties will not partake in the signature process
unless they affirm the integrity of the mixnet result.

6. Conclusions and future work

In this paper, we have introduced a technical solution for a decentralized
Bitcoin mixer with reversible unlinkability, where only a trusted conditional
discloser selected by the payer from a set of available disclosers can link the
payer’s address with the recipient’s address of a private payment.

Our solution enables a cryptocurrency space for secure payments with guar-
antees, where privacy with respect to the public view and the mixer is provided
by default. Different levels of transparency can be achieved through a trapdoor
unlinkability function using public key encryption and NI-ZKP for compliance
proofs. The pool of conditional disclosers allow payers to provide the payment
information only to entities they trust.

The design is proven to be secure as long as the payer does not collude with
both the mixer and the conditional discloser at the same time, a risk that can
be mitigated by decentralization.

The implemented proof of concept ensures the feasibility of this solution,
which fits Bitcoin by requiring only one additional parameter in each on-chain
transaction, thus avoiding large additional fees for the transactions.

Finally, we leave as future work to reduce the trust in the conditional dis-
closers through decentralization, using threshold decryption, and also to increase
the efficiency of the proofs of compliance through a design improvement of the
ZKP circuits. We also intend to embed this solution within Lightning Network
as a privacy protection for the settlement payment, since Lightning facilitates
fast and cost-effective Bitcoin payments through confidential off-chain channels.

Acknowledgements

This work has been partially supported by the project SecTwin 5.0 funded
by the Ministry of Science and Innovation, Spain, and the European Union
(Next Generation EU) (TED2021-129830B-100). The first author has been
funded by the Spanish Ministry of Education under the National F.P.U. Pro-
gram (FPU19/01118).

References

[1] U. Jafar, M. Juzaiddin, A. Aziz, Z. Shukur, J. Wu, H. Wang,
Blockchain for electronic voting system—review and open re-
search challenges, Sensors, 21:5874, 2021.

23

2]

3]

4]

[5]

[6]

7]

8]

19]

[10]

[11]

[12]

H. Tian, J. He, Y. Ding, Medical data management on
blockchain with privacy, Journal of Medical Systems, 43:1-6,
2019.

0. Ali, M. Ally, Clutterbuck, Y. Dwivedi, The state of play
of blockchain technology in the financial services sector: A sys-
tematic literature review, International Journal of Information
Management, 54:102199, 2020.

N. Kshetri, Cryptocurrencies: Transparency Versus Pri-
vacy [Cybertrust], Computer, 51(11):99-111, 2018. https:
//ieeexplore.ieee.org/document/8625935/.

N. V. Saberhagen, Cryptonote v2.0, https://www.bytecoin.
org/old/whitepaper.pdf, 2013.

E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E.
Tromer, M. Virza, Zerocash: Decentralized anonymous pay-
ments from bitcoin, In Proceedings - IEEE Symposium on Se-
curity and Privacy, pages 459-474, 2014.

J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, E.
W. Felten, Mixcoin: Anonymity for bitcoin with accountable
mixes, Lecture Notes in Computer Science, 8437:486-504, 2014.

G. Maxwell, CoinJoin: Bitcoin privacy for the real world,
https://bitcointalk.org/index.php?topic=279249.0,
2013.

J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, K. Wehrle,
Coinparty: Secure multi-party mixing of bitcoins, In Proceed-
ings of the 5th ACM Conference on Data and Application Se-
curity and Privacy, 2015.

S. Meiklejohn, R. Mercer, Mobius: Trustless Tumbling for
Transaction Privacy, Proceedings on Privacy Enhancing Tech-
nologies, 2018(2):105-121.

A. Pertsev, R. Semenov, R. Storm, Tornado Cash Privacy Solu-
tion Version 1.4, https://berkeleydefi.github.io/assets/
material/Tornado%20Cash’20Whitepaper.pdf, 2019.

B. Biinz, S. Agrawal, M. Zamani, D. Boneh, Zether: To-
wards Privacy in a Smart Contract World, In J. Bonneau,
N. Heninger (Eds.), Financial Cryptography and Data Secu-
rity, Lecture Notes in Computer Science, Springer International
Publishing, Cham, pages 423-443, 2020.

24

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

K. Kolachala, E. Simsek, M. Ababneh, R. Vishwanathan, SoK:
Money Laundering in Cryptocurrencies, In Proceedings of the
16th International Conference on Awvailability, Reliability and
Security, ARES ’21, Association for Computing Machinery,
New York, NY, USA, pages 1-10, 2021. https://doi.org/
10.1145/3465481.3465774.

D. M. Sat, G. O. Krylov, K. Evgenyevich, Bezverbnyi, A. B.
Kasatkin, I. A. Kornev, Investigation of money laundering
methods through cryptocurrency, Journal of Theoretical and
Applied Information Technology, 2016.

J. Lorenz, M. I. Silva, D. Aparicio, J. A. T. Ascensao, P.
Bizarro, Machine learning methods to detect money laundering
in the bitcoin blockchain in the presence of label scarcity, In
Proceedings of the First ACM International Conference on Al
in Finance, ICAIF ’20, Association for Computing Machinery,
New York, NY, USA, 2021.

D. Dupuis, K. Gleason, Money laundering with cryptocurrency:
open doors and the regulatory dialectic, Journal of Financial
Crime, 28:60-74, 2021.

Q. Feng, D. He, S. Zeadally, M. K. Khan, N. Kumar, A survey
on privacy protection in blockchain system, Journal of Network
and Computer Applications, 126:45-58, 2019.

S. Mabunda, Cryptocurrency: The New Face of Cyber Money
Laundering, In 2018 International Conference on Advances
in Big Data, Computing and Data Communication Systems
(icABCD), pages 1-6, 2018. https://ieeexplore.ieee.org/
abstract/document/8465467.

D. M. Meichler, Binance to Delist Privacy Coins in
European Countries, https://decrypt.co/142973/
binance-delist-monero-zcash-4-europeancountries,

May 2023.

U.S. Treasury, U.S. treasury sanctions notorious virtual cur-
rency mixer tornado cash, https://home.treasury.gov/
news/press-releases/jy0916, 2022.

Chainalysis, Understanding tornado cash, its
sanctions implications, and key compliance ques-
tions, https://blog.chainalysis.com/reports/

tornado-cash-sanctions-challenges/, 2022.

Art. 5 GDPR — Principles relating to processing of personal
data, https://gdpr-info.eu/art-5-gdpr/.

25

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

L. Valenta, B. Rowan, Blindcoin: Blinded, accountable mixes
for bitcoin, Lecture Notes in Computer Science, 8976:112-126,
2015.

E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, S. Gold-
berg, TumbleBit: An Untrusted Bitcoin-Compatible Anony-
mous Payment Hub, 2016.

T. Ruffing, P. Moreno-Sanchez, A. Kate, CoinShuffle: Practical
Decentralized Coin Mixing for Bitcoin, In M. Kutylowski, J.
Vaidya (Eds.), Computer Security - ESORICS 2014, Lecture
Notes in Computer Science, Springer International Publishing,
Cham, pages 345-364, 2014.

M. Dotan, A. Lotem, M. Vald, Haze: A compliant privacy
mixer, Cryptology ePrint Archive, Paper 2023/1152, 2023.

A. Pfitzmann, M. Kéhntopp, Anonymity, Unobservability, and
Pseudonymity — A Proposal for Terminology, In H. Feder-
rath (Ed.), Designing Privacy Enhancing Technologies: Inter-
national Workshop on Design Issues in Anonymity and Unob-
servability Berkeley, CA, USA, July 25-26, 2000 Proceedings,
Lecture Notes in Computer Science, Springer, Berlin, Heidel-
berg, pages 1-9, 2001.

K. Sampigethaya, R. Poovendran, A Survey on Mix Net-
works and Their Secure Applications, Proceedings of the IEEE,
94(12):2142-2181, 2006.

D. L. Chaum, Untraceable electronic mail, return addresses,
and digital pseudonyms, Commun. ACM, 24(2):84-90, 1981.

M. Chase, E. Ghosh, O. Poburinnaya, Secret-shared shuf-
fle, In S. Moriai, H. Wang (Eds.), Advances in Cryptology —
ASTACRYPT 2020, Springer International Publishing, Cham,
pages 342-372, 2020.

S. Eskandarian, D. Boneh, Clarion: Anonymous communica-
tion from multi-party shuffling protocols, Cryptology ePrint
Archive, 2021.

J. Groth, On the size of pairing-based non-interactive argu-
ments, In M. Fischlin, J.-S. Coron (Eds.), Advances in Cryptol-
ogy — FUROCRYPT 2016, Springer Berlin Heidelberg, Berlin,
Heidelberg, pages 305-326, 2016.

M. D. Ryan, Making Decryption Accountable, In F. Stajano,
J. Anderson, B. Christianson, V. Maty4as (Eds.), Security Pro-
tocols XXV, Lecture Notes in Computer Science, Springer In-
ternational Publishing, Cham, pages 93-98, 2017.

26

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

D. Nunez, I. Agudo, J. Lopez, Escrowed decryption protocols
for lawful interception of encrypted data, IET Information Se-
curity, 13(5):498-507, 2019.

P. Feldman, A practical scheme for non-interactive verifiable
secret sharing, In 28th Annual Symposium on Foundations of
Computer Science (sfes 1987), pages 427-438, 1987.

M. Maller, S. Bowe, M. Kohlweiss, S. Meiklejohn, Sonic:
Zero-knowledge snarks from linear-size universal and updat-
able structured reference strings, In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, CCS ’19, Association for Computing Machinery, New
York, NY, USA, pages 2111-2128, 2019.

A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, N. Ward,
Marlin: Preprocessing zksnarks with universal and updatable
srs, In A. Canteaut, Y. Ishai (Eds.), Advances in Cryptology —
EUROCRYPT 2020, Springer International Publishing, Cham,
pages 738-768, 2020.

A. Gabizon, Z. J. Williamson, O. Ciobotaru, Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive

arguments of knowledge, Cryptology ePrint Archive, Paper
2019/953, 2019.

A. Chiesa, D. Ojha, N. Spooner, Fractal: Post-quantum and
transparent recursive proofs from holography, In A. Canteaut,
Y. Ishai (Eds.), Advances in Cryptology — EUROCRYPT 2020,
Springer International Publishing, Cham, pages 769-793, 2020.

B. Biinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, G.
Maxwell, Bulletproofs: Short proofs for confidential transac-
tions and more, In 2018 IEEE Symposium on Security and
Privacy (SP), pages 315-334, 2018.

M. Bellés-Munoz, M. Isabel, J. L. Munoz-Tapia, A. Rubio, J.
Baylina, Circom: A circuit description language for building
zero-knowledge applications, IEEE Transactions on Depend-
able and Secure Computing, pages 1-18, 2022.

M. Albrecht, L. Grassi, C. Rechberger, A. Roy, T. Tiessen,
Mimec: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity, Cryptology ePrint Archive,
Paper 2016/492, 2016.

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, M.
Schofnegger, Poseidon: A new hash function for zero-knowledge
proof systems, Cryptology ePrint Archive, Paper 2019/458,
2019.

27

[44]

[45]

|46]

R. Zou, X. Lyu, J. Ma, B. Zhang, D. Wuy, BCMIX:
A Blockchain-Based Dynamic Self-Reconfigurable Mixnet,
IEEE/ACM Transactions on Networking, pages 2222-2235,
2023.

A. Herzberg, S. Jarecki, H. Krawczyk, M. Yung, Proactive
Secret Sharing Or: How to Cope With Perpetual Leakage, Ad-
vances in Cryptology — CRYPTO’ 95, pages 339-352, 1995.

C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J.B. Nielsen, T.
Rabin, S. Yakoubov, YOSO: You Only Speak Once, Advances
in Cryptology — CRYPTO 2021, pages 64-93, 2021.

28

