
1

A Lightweight Mechanism for Dynamic Secret
Sharing of Private Data by Constrained Devices

Daniel Morales, Isaac Agudo, and Javier Lopez

Abstract—Outsourced computations are essential for IoT de-
vices, but they can raise privacy issues. Privacy-preserving
technologies, such as Secure Multi-Party Computation, can be
used to delegate computations on private data from multiple
devices while disclosing nothing but the output, but they may
come at a prohibitive cost. In particular, Secret Sharing-based
Secure Multi-Party Computation requires the device to establish
n independent confidential channels for each shared message,
one channel per holder. This work proposes a new approach for
IoT devices to secretly share private data with a committee of
holders by broadcasting a single ciphertext. A straightforward
solution is Homomorphic Encryption with Decryption to Shares
from Chillotti et al., 2022, but it requires Fully Homomorphic En-
cryption and is not dynamic. Additionally, we propose Oblivious
Sharing Re-Encryption, which is a new family of protocols that
achieve this lightweight private data sharing without requiring
Fully Homomorphic Encryption, and which is also more dynamic.
We provide a concrete implementation based on NTRU encryp-
tion, together with a security proof and performance analysis.
The analysis shows that OSRE outperforms the standard setting
with n confidential channels when the device sends more than
one message.

Index Terms—Privacy, Secret Sharing, Secure Multi-Party
Computation, Internet of Things

I. INTRODUCTION

Outsourcing computation to the cloud is essential for
resource-constrained devices such as IoT. This enables cost-
effective computing instances [1] and use cases ranging from
smart buildings to intelligent transportation to smart health-
care. However, outsourcing computation can introduce new
privacy issues, especially when the devices share sensitive
data. In [2], one security consideration is encryption by things,
i.e., having each device encrypt data before uploading it to the
cloud. This method can prevent the cloud from accessing the
data and protect against data breaches. However, sending en-
crypted data using traditional mechanisms results in complex
key management. Additionally, data must be decrypted before
it can be consumed. In these scenarios, privacy-preserving
technologies have proven to be very useful because they allow
computations to be performed on confidential data.

Among these technologies to enhance privacy, Secure Multi-
Party Computation (MPC) is a family of cryptographic proto-
cols that allows a set of parties to jointly compute a function
on their private inputs without revealing anything else but
the output. Although traditional MPC is set up for direct
and interactive computation by the input owners, some works
propose MPC in a service provider setting [3]. This delegates

The authors are with NICS Lab, University of Málaga, Spain. Emails:
{damesca, isaac, javierlopez}@uma.es.

the entire computation to a set of computing nodes while
ensuring the privacy of the input providers’ data.

Some works have proposed MPC as a solution for con-
strained devices. For instance, [4] proposed an architecture for
performing secure authentication using MPC in smart cities.
Similarly, [5] proposed a publicly auditable MPC solution for
privacy-preserving computations in industrial IoT.

This work focuses on general-purpose MPC protocols that
can compute almost any function on private data. These
protocols are mainly based on two technologies: Fully Ho-
momorphic Encryption (FHE) and Secret Sharing (SS)-based
MPC. FHE is better suited for cloud environments, where the
computing instance receives ciphertexts from the client and
computes on them, producing an encrypted output. However,
it struggles with settings where there are multiple input
providers, because handling decryption keys without com-
promising privacy is difficult. Typically, solutions involve
handling the keys through SS or involving the input providers
in some form of interactive MPC for decryption.

...

c1
c2

c3

cn secret holders
x

device

(a) Secret Sharing with n independent confidential chan-
nels.

c

secret holders
x

device

(b) Lightweight Secret Sharing.

Fig. 1: Two approaches for Secret Sharing delivery.

SS-based MPC is more flexible, and privacy is guaranteed
as long as enough parties in the set of computing nodes remain
uncorrupted. More precisely, a secret x is divided into n
different shares {xi}ni=1, one share per secret holder. Given a
corruption threshold t < n, only a valid subset of t+1 shares
can reconstruct x, and functions can be computed directly
on the shares. However, this implies a limitation: although
increasing the number of SS holders increases security, it
also implies an overload on the device when sharing private
data. More precisely, if there are n computing nodes, to
send a private value x the device must set up n independent
confidential channels and send one share of x per channel
(see Figure 1a), i.e., n ciphertexts. For a large n, this may
be unacceptable for constrained devices that periodically send
private data.

D. Morales, I. Agudo and J. Lopez, “A Lightweight Mechanism for Dynamic Secret Sharing of Private Data by Constrained Devices”, IEEE Internet
of Things Journal, 2025.
http://doi.org/10.1109/JIOT.2025.3555026
NICS Lab. Publications: https://www.nics.uma.es/publications

2

This work focuses on the concept of allowing a constrained
device to share a secret with an MPC committee in such
a way that there is no need to send n independent values
through n independent confidential channels. This alternative
is illustrated in Figure 1b, where the device can publicly share
a single encryption from where each SS holder can retrieve
its own share. To summarize, the following research question
is formulated:

Can the dealer of a Secret Sharing scheme send a single
ciphertext that allows each holder to recover only its own
share of the original secret, and nothing else?

Applications. The proposed approach can be beneficial
in scenarios where constrained devices send SS data. For
instance, consider a group of smart metering devices that
periodically send consumption data to an MPC-based privacy-
preserving analytics platform. The platform computes statistics
on the aggregated data. By sending only one ciphertext per
measurement to the analytics platform, the smart meters can
save resources compared to establishing independent confiden-
tial channels. Another scenario is privacy-preserving anomaly
detection, where an external analysis engine searches for
matching rules on SS data packets from network devices.
Additionally, privacy-preserving drone geofencing involves
a drone periodically sending location data to a monitoring
engine that only discloses the location if the drone enters a
forbidden flying area.

Contributions. We summarize the main contributions.

• Homomorphic Encryption with Decryption-to-Shares
(HEDS) is identified as a method that enables SS of
private data by sharing a single ciphertext, thus reduc-
ing connections and communication costs. However, it
requires FHE and is not dynamic, i.e., formation of
committees must be done prior to generate the ciphertext.

• A new general procedure to SS by letting the data owner
to send a single ciphertext is proposed, named Oblivi-
ous Sharing Re-Encryption (OSRE), which is dynamic
regarding the formation of committees.

• A protocol instance of OSRE based on NTRU encryption
where a semi-honest proxy can generate the shares of
the secret obliviously, by using Additive Homomorphic
Encryption (AHE) and deliver them to a committee that is
formed after the encryption of the secret thanks to Proxy
Re-Encryption (PRE).

• An implementation of our NTRU-based OSRE protocol
and a performance evaluation.

Organization. The paper continues as follows: Section II
gathers related work on IoT private computing and efficiency
in SS. Then, Section III provides a cryptographic background.
With respect to Section IV, it introduces both the system
and security models. Section V introduces HEDS and how
it can be used to deliver shares with a single encryption,
and then Section VI introduces OSRE, our main contribution
for efficient and dynamic SS. Next, Section VII provides a
security proof, and Section VIII discusses about performance
and evaluates our implementation. Finally, Section IX presents
some conclusions and future work.

II. RELATED WORK

IoT security. As analyzed in [6] the IoT ecosystem presents
some vulnerabilities, such as data leakage or improper en-
cryption, which pose high security threats. In addition, other
privacy threats such as identification, location tracking, or
profiling, lead to critical situations. Some works address
confidentiality in IoT networks [7], but they only consider end-
to-end encryption, i.e., data must be decrypted at some point
in order to be processed. There are works, such as [8], [9],
that propose FHE for confidential smart metering aggregation.
However, [8] suggests using a gateway encryption key for all
smart meters, creating a single point of failure. In contrast, [9]
addresses the centralized decryption issue by distributing the
decryption key with HSS. Finally, [10] proposes an application
for privacy-preserving deep learning using MPC. This allows a
model to be trained with encrypted inputs provided by different
devices.

Secret Sharing efficiency. SS has been extensively studied
and we refer to [11] for a very complete survey. Regarding
communication efficiency, some lower bounds are provided
and roughly speaking, we have that the size of the share
to be sent to one holder must be at least the size of the
secret. Since this cannot be circumvented, a common approach
to achieve better performance is using Multi-Secret Sharing
Schemes (MSSS) [12], where a set of messages (m1, ...,ml)
is shared with a set of holders H by sending a single share
per holder and therefore achieving, at most, a ×l reduction
in the overall communication cost. However, this still requires
the device to establish n independent confidential channels.
Our approach overcomes this by allowing the device to use a
single connection, approach that, apart from the work in [13]
has never been addressed.

III. CRYPTOGRAPHY BACKGROUND

A. Secure Multi-Party Computation

MPC [14] is a theoretical problem where a set of parties
{Pi}ni=1, each one holding some private data x(i), wish to
jointly compute a function y = f(x(1), ..., x(n)) on their
private data without revealing anything but the output y. There
are several approaches to solve MPC using different building
blocks. In this paper, we focus on general-purpose MPC
protocols, which are mainly based on SS or FHE. We note
that the secret owners may be those involved in performing the
computation, or they may delegate it to an MPC computation
engine.

B. Secret Sharing

An SS scheme allows a dealer holding a private value x to
share it with a set of holders {Hi}ni=1, giving each Hi a secret-
share xi of x. There must exist a function x = open(x1, ..., xt)
that outputs x given a sufficient number of t ≤ n shares. Linear
SS schemes have the additional property that they can locally
apply an additively homomorphism on shares, and some of
them also allow multiplication. Additions and multiplications
are then mapped to the secret once reconstructed. The most
widely adopted SS schemes for MPC are Additive Secret
Sharing (ASS) [15] and Shamir Secret Sharing (SSS) [16].

3

In ASS, the shares are computed s.t. x =
∑n

i=1 xi, with xi

randomly sampled from Fp. To reconstruct x, all the n shares
are needed. Thus, x remains private as long as no more than
t = n− 1 holders are corrupted.

In SSS, the secret is encoded in a polynomial of degree k,
more specifically a0 = x. Then, k random coefficients ai are
sampled and the polynomial is set as P (y) = a0+

∏k
i=1 aiy

i.
Then, the share for Hi is computed as xi = P (i), with i ∈ N
being Hi’s id. Note that at least k + 1 shares are needed to
reconstruct the polynomial by interpolation, thus obtaining x.

Both ASS and SSS lead straightforward to an additively
homomorphism, i.e., given shares of x and y, additive shares
of the sum can be computed locally by zi = xi+yi s.t. x+y =
z = open(z1, ..., zn). They also support multiplication, but
with additional tricks.

C. Homomorphic Encryption

An FHE [17] scheme is a public key encryption scheme
with the additional property that, given two (or more) ci-
phertexts c1 ← Encpk(m1) and c2 ← Encpk(m2), a
function can be evaluated on them. More precisely, given
c3 ← Eval(f, {c1, c2}) and m3 = Decsk(c3), it holds that
m3 = f(m1,m2). There are also relaxed and more efficient
schemes, called Partially Homomorphic Encryption (PHE),
which support only one type of operation on ciphertexts, e.g.,
addition [18] or product [19].

D. Proxy Re-Encryption

A PRE scheme [20] allows a proxy to re-encrypt a ciphertext
cA encrypted with pkA into a ciphertext cB encrypted with
pkB , thus changing who can decrypt it. To do this, the proxy
uses a re-encryption key rkA→B ← ReKeyGen(skA, skB).
There are two types of schemes regarding how they com-
pute the re-encryption key. Interactive PRE computes it from
(skA, skB), thus requiring an interactive protocol between
Alice, Bob, and the proxy in order not to reveal the secret keys
to the other parties [21]. On the other hand, non-interactive
PRE computes the key from (skA, pkB), so it can be computed
by Alice without revealing her key.

IV. SYSTEM AND SECURITY MODEL

...
xA xB xM

device A device B device M
data owner domain data consumer domain

data processing domain
MPC processor

TTP

cA cB cM

cA
cB
cM

c*A
c*B
c*M

f(xA,xB,...,xM)

Fig. 2: System model for dynamic lightweight SS delivery.

Figure 2 shows the system model, which involves a set of
constrained devices that own some private data, and a data

consumer that wants to compute some function on that data. A
naive approach without privacy would imply that the devices
send the plaintext data to the data consumer who computes
the function. In this work, we introduce a privacy-preserving
delegated model where all the data processing is done in the
encrypted domain thanks to MPC. We assume that constrained
devices periodically generate encrypted data, under their own
public key. We also aim for a dynamic model, i.e., the data
owner can choose what to do with her encrypted data after it is
generated and stored somewhere. Instead of simply retrieving
data and sending it to the data consumer, or using PRE to
delegate decryption rights, we include a Trusted Third Party
(TTP) that is able to delegate data to an MPC processor
without exposing the plaintexts, by generating new forms of
encryption from the original ciphertexts such that the MPC
committee can retrieve their secret shares and nothing else.
In the following sections we show that HEDS solves this
situation without a third party, but also without dynamism,
and that our new protocol that fulfills the general notion of
OSRE, instantiated with NTRU and PRE, allows to achieve
this scenario with dynamism and with a semi-honest proxy
instead of a TTP. We separate the device from the data owner
domain, understanding that data generation and encryption is
done inside the device, but that the owner domain can perform
additional operations. This allows to minimize the work done
by the device and therefore its resource consumption. We also
assume that ciphertexts generated by the device are stored
somewhere accesible by the TTP (or semi-honest proxy), from
where the delivery to the MPC committee can be done.

Regarding the security model, we make explicit the dis-
tinction between a TTP and a semi-honest proxy. In a naive
and general approach, a TTP could just receive m from the
device, generate the set of shares {mi}, and send each mi

to each share holder Hi in the committee. This would be an
outsourcing of the share delivery, but in this work, and more
specifically in our construction in Section VI-A, we aim at a
semi-honest proxy (that follows the protocol specification) that
is able to generate the shares without being able to see them,
in a way that each Hi can later retrieve mi. With respect to
the security of the MPC committee, our protocol is agnostic
to that, and one can assume both semi-honest or malicious
adversaries, and different target corruption thresholds.

V. LIGHTWEIGHT SHARE DELIVERY USING HEDS
An HEDS scheme [13] allows Alice to encrypt her message

m with a public key pkH , which is previously generated by
a trusted setup that relies on FHE. Each holder Hi owns a
share of the secret key skHi

s.t. skH =
∑

i skHi
. Given

the ciphertext c generated by Alice, each holder can locally
decrypt it with skHi and obtain a valid share mi of the
message, i.e., m = open(m1, ...,mn). The homomorphic
property allows anyone to compute a function on c before
decrypting its content to shares. HEDS is straightforwardly
achieved for 2-parties in [13] thanks to a property in decryption
of linear FHE schemes, and then bootstrapped to n-parties in
the setup phase thanks to FHE.

We note that HEDS implicitly enables SS delivery by a
single encryption. However, it has a main limitation: the

4

committee of holders (and their key pair) must exist before the
device encrypts the message. This may be suitable for static
long-term committees, but at the expense of less security in
environments with adaptive adversaries. In addition, prior ex-
isting static committees hinder dynamism, causing the device
to encrypt all the data to be shared with a different public key
each time a different committee is selected.

An additional aspect to notice is that, for our application, it
would just suffice with Encryption with Decryption to Shares
(EDS), because the homomorphism that enables to evaluate on
ciphertexts is not needed. However, FHE is also needed for
the setup that generates the keys in HEDS, so we leave as an
open problem to analyze if EDS can be achieved by a different
strategy that also allows to achieve shorter ciphertexts.

VI. LIGHTWEIGHT SHARE DELIVERY USING OSRE

One way to alleviate the cost of FHE would be by relying
on a TTP that implements a sort of oblivious secret sharing,
somehow following the system described in Section IV. The
most simplistic approach would be to have an Additive Ho-
momorphic Encryption (AHE) scheme that is dense in the
ciphertext space1 and directly sample random ciphertexts to
build the encrypted shares, i.e.,

Enc(secret) =

n∑
i=1

randomCi =

n∑
i=1

Enc(randomPi),

from where the sum of the random shares {randomPi} is
equal to the original secret.

We now introduce OSRE as a new general procedure that
allows dynamic and efficient SS delivery to a committee, from
where we will propose a concrete scheme in Section VI-A.
OSRE is composed by three general phases:

1) Device’s data delivery. The device encrypts m using
its own long-term public key pubk and stores c ←
Encpubk(m) somewhere accessible by the proxy.

2) Oblivious sharing. The proxy retrieves c and generates
a set of new ciphertexts {c∗i = Encpubki

(mi)}, where
pubki

is a key held by the share holder Hi.
3) Share decryption. Each holder decrypts c∗i using its

secret key privki , obtaining mi.

We notice that, in the case that all keys pubki
are the same,

we are in the scenario introduced at the beginning of this
section, where ciphertexts are randomly sampled. However,
despite this approach does not require a costly setup (as it
happens in HEDS) because the holders could just agree on a
common key pair for the committee where privki

= privkj

for all i, j, it still has the problem of having to decide the
committee beforehand. Therefore, the interesting case would
be one where each pubki is different (and so is each privki)
and can be decided later on.

1We mean by dense that each random sample from the ciphertext space
is a valid ciphertext under a given key in the encryption scheme. It can be
easily verified that ElGamal encryption fulfills this.

A. Dynamic OSRE based on NTRU and PRE

In this section, we introduce a concrete scheme for OSRE
that solves the scenario in Figure 2, where an IoT device sends
a ciphertext c = EncpkD

(m) to a semi-honest proxy (instead
of a TTP) that blindly generates secret shares of m (without
learning m) and delivers them encrypted to the committee of
holders H (which comprises the MPC processor in Figure 2).
It is dynamic because H can be selected after c has been
generated by the device. For this approach, we rely on AHE
to compute the shares obliviously and PRE to let each holder
Hi being the only one capable of decrypting c∗i . Note that
density in the ciphertext space is not needed anymore. For
all the previous, NTRU encryption scheme is selected as the
candidate. For the sake of completeness, the algorithms for
NTRU-RLWE [22]–[24] with PRE are introduced below.

Key Generation. Select the following parameters: se-
curity parameter λ, ciphertext modulus q, ring dimension
N , gaussian key distribution Xk over the polynomial ring
R = Z[N]/⟨xN + 1⟩ with distribution parameter σe, and
an empirically selected assurance measure α to minimize the
number of bits needed to represent q. The plaintext space
is M = {0, 1, ..., p − 1}N , where p ≥ 2 is the plaintext
modulus. Then, sample polynomials f ′,g ← Xk and set
f = pf ′ + 1 to satisfy f ≡ 1(mod p). Set sk := f ∈ R
and pk := pgf−1 ∈ Rq .

Encryption. Sample random polynomials s, e ← Xe, and
compute c = hs+ pe+m ∈ Rq .

Decryption. Compute b = fc ∈ Rq and output m′ =
b(mod p). Correctness holds as long as there is no wrap-
around mod q, i.e., when ||b||∞ ≤ q/2. Then, it holds that
m′ = fc = pgs+ pfe+ fm = fm = m(mod p).

Re-Encryption Key Generation. Given the source key skA
and the target key skB , the re-encryption key is computed as
rkA→B = skA · sk−1

B .
Re-Encryption. Given an NTRU ciphertext cA encrypted

with pkA, the new ciphertext is computed as cB = cA ·
rkA→B + pe′ ∈ Rq .

We first notice that a naive way to achieve OSRE with
NTRU would be for additive shares of the secret. Given c←
EncpkD

(m), the proxy can sample n−1 random shares {mi},
and then compute the last share as cn = c−EncpkD

(
∑

i mi).
It should be noticed that, while this achieves correctness, it
allows the proxy to see n− 1 shares of m.

On the other hand, a better approach can be achieved for
Shamir shares, which is properly introduced in Protocol 1.
First, the device D encrypts the message m and sends c0
to the proxy P . In this approach, for the oblivious sharing
phase, the proxy does not see any share in plaintext, but all
the coefficients {ai} of the polynomial that encodes the secret
except a0, i.e., the secret. Notice that, without knowledge of
a0, there are still |Fp| different polynomials that could be valid
candidates, and therefore the secret is kept securely hidden
from the proxy view. The proxy can construct Q(i), which
is a partial polynomial of the secret evaluated with Hi’s id,
and later achieve the exact share for Hi inside the ciphertext
space, i.e., W (i), thanks to the AHE property. Then, PRE
allows to re-encrypt each c

(W)
Hi

from pkD to pkHi
such that

5

Protocol 1: Plaintext Shamir OSRE

Participants: the committee of holders H , the device D,
the data owner O, the proxy P .
Notation: ⇒ means sending data.

1) Initial data delivery
a) D: a0 = m
b) D ⇒ P : pkD, c0 ← EncpkD

(a0)

2) Oblivious Sharing
a) P : samples random {a1, ..., ak} ∈ Fp.

Then, for each holder Hi, computes Q(i) =∑k
j=1 aji

j , c
(Q)
Hi

← EncpkD
(Q(i)), and

c
(W)
Hi

= c0 + c
(Q)
Hi

= EncpkD
(W (i)), where

W (i) is Hi’s share
b) O ⇒ P :
{rkD→Hi

← ReKeyGen(skD, pkHi
)}ni=1

c) P ⇒ Hi: c′Hi
← ReEncrkD→Hi

(c
(W)
Hi

)

3) Share decryption
a) Hi: mi = DecskHi

(c′Hi
)

each encrypted share c′Hi
can be sent to each Hi.

One of the main disadvantages of OSRE against HEDS is
that communication is O(n) in the owner side because of the
re-encryption keys delivery, despite they are not delivered by
the device. However, we identify a way of reaching O(1) com-
munication for the owner, but at the expense of requiring the
encryption scheme to enable threshold decryption. It basically
requires that the committee H , instead of generating individual
key pairs (pkHi

, skHi
), generate a set of secret keys {skHi

}
and a single public key pkH . Then, each ciphertext ci will be
re-encrypted under the same key rkpkD→pkH

. The last step is
for the committee to jointly decrypt each ci such that mi is
only received by Hi. This is possible by each Hj computing a
partial decryption di,j of ci, such that mi = combine({di,j}).
Equation 1 shows that NTRU allows partial decryption when
partial secret keys are additive, i.e., f =

∑
i fi. However,

linear decryption schemes leak information about the partial
decryption keys [25], so we left as future work finding a proper
decryption algorithm.

∑
i

di(mod p) =
∑
i

fi(pgsf
−1 + pe+m)(mod p) =

= pgs+ pfe+ fm = m (1)

VII. SECURITY ANALYSIS

This section provides a security analysis of Protocol 1. We
remark that the property to be guaranteed is privacy of the
secret m with respect to a semi-honest proxy. As introduced
before, the protocol needs NTRU because it is additively ho-
momorphic and has PRE. More specifically, NTRU-RLWE has
been proven to be IND-CPA both in the original paper [22],
[23] and in its PRE version [24]. We remark that IND-CPA

in such two cases implies the standard encryption IND-CPA
game, but with the addition that the adversary can perform
homomorphic operations or re-encryptions on the ciphertext
mb, respectively, which still does not allow to distinguish if
the encrypted message was m0 or m1. In addition, IND-CCA
is not needed because our scheme assumes that the proxy has
no oracle access to decryption, i.e., decryption keys are kept
by the dealer (for m) and the share holders (for mi).

For the proof, we follow an inductive approach for the
oblivious sharing phase. We consider two parameters for the
proof, which are the threshold t and the number of parties
n, and use the notation OSRE(t, n) for an instance of OSRE
where the dealer delivers a message m using a Shamir scheme
with threshold t and n holders. To ease notation, we consider
in this proof that t is the minimum number of shares needed
to reconstruct the secret m.

First, we define OSRE(1, 1) as Protocol 1’s base case
with t = 1 and a single holder H1, where the ciphertext is
c
(1)
H1

= EncpkD
(a0), with a0 = m. The case OSRE(1, 2)

implies sending the same c(1) to both holders, where any
of them reveals m. The following case, OSRE(2, 2), needs
to increase the polynomial degree from 0 to 1, since the
degree must always be t− 1. Therefore, we can define c

(2)
H1

=

c
(1)
H1

+EncpkD
(a1 ·1), i.e., the evaluation of P (i) = a0+a1 · i,

with a1 a randomly sampled coefficient. Next, OSRE(2, 3)
computes an additional share for H3, but security is the same,
i.e., 2 shares are enough to open the secret. The general case
is presented in Equation 2 to define the ciphertext of a holder
Hi in OSRE(k, n).

c
(k)
Hi

= c
(k−1)
Hi

+ EncpkD
(ar · ik−1) (2)

Correctness holds because
∑

i Enc(ai · xi) = Enc(
∑

i ai ·
xi) is guaranteed by AHE. Regarding security, it can be
noticed that OSRE(k+1, n) can be reduced to OSRE(k, n).
In addition, OSRE(k, n) presents the same security as
OSRE(k, k), as introduced above. Therefore, any step can be
reduced to exposing the content in OSRE(1, 1), i.e., breaking
the IND-CPA assumption of the base encryption scheme.

Finally, regarding re-encryption, we recall the sequential
composition property in [26]. Since both AHE and PRE
are IND-CPA, they are easily simulatable in the stand-alone
model. This imply that they can be sequentially composed
while maintaining the security properties. Even when Protocol
1 performs n re-encryptions, one per share holder, security
under sequential composition still holds because each re-
encryption is independent of the others.

VIII. COST ANALYSIS AND COMPARISON

A. Theoretical cost analysis

This section provides a theoretical comparison of the differ-
ent schemes proposed. First, regarding asymptotic costs, these
are provided in Table I.

We notice that, despite HEDS is more efficient asymptoti-
cally, it implies larger ciphertexts because of FHE, and also
implies an initial setup to form the committee. On the other
hand, OSRE achieves dynamism by relying on a proxy (TTP

6

TABLE I: Asymptotic cost comparison

Role HEDS OSRE (Prot. 1) OSRE (Prot. 1 with thr. dec.)

Device O(1) O(1) O(1)
Owner n.a. O(n) O(1)
Proxy n.a. O(n) O(n)

Share holder O(n) O(1) O(n)

or semi-honest), which takes O(n) operations. We notice that
if using HEDS, one could assume that the underlying FHE
scheme also supports PRE, and this would add dynamism to
HEDS with a re-encryption step with O(1) cost in the owner
side. However, the encryption phase done inside the device
would still be less efficient. Therefore, assuming that we are
selecting a dynamic option that relies on a semi-honest proxy,
OSRE is more efficient for the device. Even if it implies more
computation in the proxy side, the proxy is normally assumed
to be more powerful in terms of resources than the devices.
We also notice that OSRE with threshold decryption moves
the linear term O(n) from the owner side to the share holders
committee side.

The rest of this section is intended to provide some specific
communication costs, mainly regarding ciphertext and re-
encryption key lengths. For simplicity, the energy savings
achieved by using one connection instead of n are omitted
here. First, we briefly introduce how lengths are computed for
each scheme. To ensure a fair comparison, we set the security
parameter λ = 128, and obtain the size of the parameters (see
Table II).

ECIES. This hybrid encryption scheme [27] is used to
model n confidential channels, namely standard setting (STD).
The channel establishment is based on Diffie-Hellman, hence
the device sends 510 bits (a point in the elliptic curve). For
message encryption, the recommendation is AES-128-CBC for
the ciphertext and HMAC-SHA-256 for the authentication tag
(in constrained devices), therefore 384 bits.

NTRU-SVES. The parameters are from [28]. A cipher-
text in NTRU is a polynomial with N coefficients mod q.
Therefore, one polynomial can be encoded with N⌈log2(q)⌉
bits. As for the re-encryption keys, they are computed as
rkA→B = fAf

−1
B . A secret key in NTRU has N coefficients

in ternary form, i.e., from {−1, 0, 1}. Therefore, the length of
rkA→B is 2N (2 bits per coefficient).

TFHE. A TLWE sample [29] is determined by the di-
mension d. Then, a ciphertext is defined as (a1, ..., ad, b) ∈
LWEs,σ((q/p)m) ⊆ Rd+1

q . Each element is typically encoded
with 32 bits, therefore the length of a TFHE ciphertext
is 32(d + 1) bits. Regarding re-encryption, using the FHE
implicit approach proposed in [30] we have that rkA→B =
EncpkB

(skA). Therefore, it has the length of one ciphertext.

TABLE II: Length of one ciphertext and re-encryption key
with λ = 128.

Algorithm Params Ciph. (bits) Re-Enc. key (bits)

ECIES n.a. 510 + 384 n.a.
TFHE d = 630 20192 20192

NTRU-SVES N = 439, q = 2048 4829 878

The intuition behind the comparison is learning from what n

the cost of ciphertexts in HEDS/OSRE is lighter than STD in
the data owner domain (owner and device). In addition, for the
case of OSRE from Protocol 1, even when sending {rk} grows
faster in n than STD, the intuition says that this is amortized
when sending Nc > 1 ciphertexts to the same committee.
Equation 3 represents the cases for when STD (the first term)
is more costly than OSRE/HEDS. Notice that n∗ fixes the
amount of re-encryption keys that are sent in each scheme,
which is n in OSRE, 1 in OSRE with threshold decryption, 0
in HEDS, and 1 in HEDS with PRE.

n · PK + n · csymm
len ·Nc > n∗ · rklen + casymm

len ·Nc (3)

1 10 100

20

40

60

80

100

Nc

n

OSRE = STD
OSREthr = STD

HEDS = STD
HEDS = OSRE

Fig. 3: Comparison of the minimum n needed for scheme A
to outperform scheme B (A = B), as a function of Nc.

From Equation 3, n can be obtained as a function of Nc,
and this is shown in Figure 3 for OSRE (NTRU), OSREthr

(NTRU), HEDS (TFHE), and STD (ECIES).
First, Nc = 1 is a special case because OSRE cannot

outperform STD, due to the n re-encryption keys. It also
happens that HEDS outperforms OSRE, but only for n ≥ 18,
otherwise STD is better. It is clear that the most efficient option
is OSREthr, but only for n ≥ 7, otherwise STD is still the
best.

Second, we analyze the amortized case, i.e., when the same
re-encryption key is reused for Nc ≥ 1 ciphertexts. Notice
that the area above the curve A = B means that scheme A
is more efficient than scheme B. The first conclusion is that
OSRE outperforms HEDS in most cases, but those in the area
above the curve HEDS = OSRE, i.e., when Nc is somehow
small. Next, since n varies depending of Nc, we perform an
asymptotic analysis to achieve the bounds of the different
schemes. First, OSRE = STD presents a lower bound
limNc→∞ f(Nc) = 12.58, i.e., OSRE cannot outperform STD
with n < 13. The bound for OSREthr = STD is the same,
but an upper bound instead of a lower one, which means that
OSREthr always outperforms STD with n > 13. It can be
concluded then that the benefit of OSREthr against OSRE
is presented for small Nc values. Finally, HEDS = STD
presents an upper bound limNc→∞ f(Nc) = 52.58, which
means that HEDS always outperforms STD with n > 52.

7

10 15 20 25 30

101

102

103

Nc

K
iB

osre-dev(r)
osre-dev(w)

osre-owner(r)
osre-owner(w)

tls-dev(r)
tls-dev(w)

(a) Client side communication cost in Bytes (read/write) to send
Nc ciphertexts with a fixed n = 20.

dev(ciph)

owner(blind)

proxy(rk)

proxy(osre)
dev(tls

)

0

2,000

4,000

6,000

tim
e(

m
s)

n=10
n=20
n=30

(b) Running time for different steps and different values of n.

Fig. 4: Performance evaluation based on simulations.

B. Implementation and evaluation

We have implemented and tested the OSRE protocol, relying
on two available libraries for NTRU and its PRE scheme2, in
Java. We have compared it against the STD case, which has
been implemented in Java using TLS connections.

There is an important implementation aspect first, which
is that NTRU supports homomorphic addition of plaintexts,
but these are mapped to elements inside the NTRU ring,
i.e., addition is done between polynomials. However, OSRE
needs addition inside Fp, which is the field used by SSS.
Therefore, we have implemented a special codification method
that allows to perform a single addition of two ciphertexts s.t.
they can be decoded back to the sum of integers. For that,
first notice that NTRU plaintexts M has ternary coefficients,
i.e., from {−1, 0, 1}. Then, given mb the binary representation
of m ∈ Fp, we let the coefficient of M with degree k to
encode the digit mb[k]. NTRU must guarantee a minimum
number dm0 of coefficients with values of either -1, 0, or 1,
therefore we adjust this once mb is set. What we do next is to
perform addition between the polynomials M1 and M2 inside
the ciphertext space. This emulates binary addition, but leaving
the carry to the final step, i.e., if the result (M1 +M2)[k] is
-1, that means that there is a carry in that digit. Finally, once
the result is decrypted, the carry is applied from the LSB to
the MSB. We note that, if the polynomial M to encode the
message mb is large enough, different strategies can be applied
to decide which cells to use for the message bits, therefore
adding variations on how to sparse the digits to avoid attacks
based on plaintext knowledge.

Another caveat is that the ReKeyGen algorithm of NTRU
PRE in [24] is interactive, between the data owner, the proxy,
and the committee of holders, which incurs in larger costs than
if it was non-interactive.

Finally, for evaluation, we have simulated a network sce-
nario using docker inside a Ubuntu 22.04.1 LTS virtual ma-
chine, operating on an Intel ESXi server with an 8-core CPU
(2.2 MHz) and 32 GB of RAM. Note that the intention of the
simulation is not showing realistic performance values, but a
fair comparison between OSRE and the STD case. All the
simulations have been run with 8 threads.

For a fixed Nc = 1 the result obtained is very similar to
the theoretical analysis, i.e., sending the ciphertext is O(1),

2https://github.com/nicslabdev/ntrureencrypt

but sending the re-encryption keys scales with n, the same
as in STD with independent TLS channels. However, our
scheme outperfoms STD in terms of communication when
Nc > 1, as shown in Figure 4a, where the cost for TLS
channels grows so much faster than in OSRE (notice that
axis Y is logarithmic). This happens because the re-encryption
keys are only sent once. This graph has been generated for
n = 20, but the difference is more significant for larger n
values. Finally, Figure 4b presents some running times with
different n values. It can be seen how the major latency is
introduced by the proxy, overall to derive the re-encryption
keys due to the interactivity of the ReKeyGen step. If a non-
interactive PRE were used instead, this step would be much
more efficient. However, despite this phase is not efficient, for
a large n TLS is even slower, due to the parallel management
of connections.

IX. CONCLUSIONS AND FUTURE WORK

This work presents a lightweight and dynamic solution to
let constrained devices secret sharing data by sending a single
ciphertext, hence avoiding the need of n independent con-
fidential channels. Despite this is straightforwardly achieved
by HEDS, we introduce a new general approach to achieve
protocols named OSRE, which enables more dynamism and
does not need FHE. More specifically, the committee of
holders can be selected after data has been encrypted by the
device with its own public key. Our main contribution is an
OSRE scheme for SSS, based on NTRU and PRE. In general,
OSRE outperforms HEDS, overall when the amount Nc of
ciphertexts sent is large, therefore it is suitable for settings
with periodic reports of confidential data. We have provided
theoretical bounds, an implementation, and a evaluation, which
shows that OSRE beats the STD case with TLS channels in
some settings. We leave as future work to find if HEDS can be
relaxed to EDS, and also finding a suitable secure threshold
decryption scheme for NTRU.

ACKNOWLEDGMENT

This work has been partially supported by the project SecAI
(PID2022-139268OB-I00) funded by the Spanish Ministerio
de Ciencia e Innovación, and Agencia Estatal de Investigación.
The first author has been funded by the Spanish Ministerio de
Educación under the National F.P.U. Program (FPU19/01118).

https://github.com/nicslabdev/ntrureencrypt

8

Funding for open access charge: Universidad de Málaga /
CBUA.

REFERENCES

[1] P. P. Ray, “A survey of IoT cloud platforms,” Future Computing and
Informatics Journal, vol. 1, pp. 35–46, Dec. 2016.

[2] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty Security
Considerations for Cloud-Supported Internet of Things,” IEEE Internet
of Things Journal, vol. 3, pp. 269–284, June 2016. Conference Name:
IEEE Internet of Things Journal.

[3] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “SEPIA:
Privacy-Preserving Aggregation of Multi-Domain Network Events and
Statistics,” 2010.

[4] V. Sucasas, A. Aly, G. Mantas, J. Rodriguez, and N. Aaraj, “Se-
cure Multi-Party Computation-Based Privacy-Preserving Authentication
for Smart Cities,” IEEE Transactions on Cloud Computing, vol. 11,
pp. 3555–3572, Oct. 2023. Conference Name: IEEE Transactions on
Cloud Computing.

[5] Y. Yang, J. Wu, C. Long, W. Liang, and Y.-B. Lin, “Blockchain-Enabled
Multiparty Computation for Privacy Preserving and Public Audit in
Industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 18,
pp. 9259–9267, Dec. 2022. Conference Name: IEEE Transactions on
Industrial Informatics.

[6] M. M. Ogonji, G. Okeyo, and J. M. Wafula, “A survey on privacy
and security of Internet of Things,” Computer Science Review, vol. 38,
p. 100312, Nov. 2020.

[7] P. M. Chanal and M. S. Kakkasageri, “Preserving Data Confidentiality
in Internet of Things,” SN Computer Science, vol. 2, p. 53, Jan. 2021.

[8] S. Tonyali, N. Saputro, and K. Akkaya, “Assessing the feasibility of
fully homomorphic encryption for Smart Grid AMI networks,” in 2015
Seventh International Conference on Ubiquitous and Future Networks,
pp. 591–596, July 2015. ISSN: 2165-8536.

[9] A. Marandi, P. G. M. R. Alves, D. F. Aranha, and R. H. Jacobsen,
“Lattice-Based Homomorphic Encryption For Privacy-Preserving Smart
Meter Data Analytics,” The Computer Journal, p. bxad093, Sept. 2023.

[10] Q. Zhang, C. Xin, and H. Wu, “Privacy-Preserving Deep Learning Based
on Multiparty Secure Computation: A Survey,” IEEE Internet of Things
Journal, vol. 8, pp. 10412–10429, July 2021.

[11] A. Beimel, “Secret-Sharing Schemes: A Survey,” in Coding and Cryp-
tology (Y. M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and
C. Xing, eds.), (Berlin, Heidelberg), pp. 11–46, Springer, 2011.

[12] J. Herranz, A. Ruiz, and G. Sáez, “New results and applications
for multi-secret sharing schemes,” Designs, Codes and Cryptography,
vol. 73, pp. 841–864, Dec. 2014.

[13] I. Chillotti, E. Orsini, P. Scholl, N. P. Smart, and B. Van Leeuwen,
“Scooby: Improved Multi-party Homomorphic Secret Sharing Based
on FHE,” in Security and Cryptography for Networks (C. Galdi and
S. Jarecki, eds.), Lecture Notes in Computer Science, (Cham), pp. 540–
563, Springer International Publishing, 2022.

[14] D. Evans, V. Kolesnikov, and M. Rosulek, “A Pragmatic Introduction to
Secure Multi-Party Computation,”

[15] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty Com-
putation from Somewhat Homomorphic Encryption,” in Advances in
Cryptology – CRYPTO 2012, pp. 643–662, Springer, 2012.

[16] V. Goyal, Y. Song, and C. Zhu, “Guaranteed Output Delivery Comes
Free in Honest Majority MPC,” in Advances in Cryptology – CRYPTO
2020 (D. Micciancio and T. Ristenpart, eds.), Lecture Notes in Computer
Science, (Cham), pp. 618–646, Springer International Publishing, 2020.

[17] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. P. Fitzek,
and N. Aaraj, “Survey on Fully Homomorphic Encryption, Theory, and
Applications,” Proceedings of the IEEE, vol. 110, pp. 1572–1609, Oct.
2022. Conference Name: Proceedings of the IEEE.

[18] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in Advances in Cryptology — EUROCRYPT ’99
(J. Stern, ed.), Lecture Notes in Computer Science, (Berlin, Heidelberg),
pp. 223–238, Springer, 1999.

[19] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms,” in Advances in Cryptology (G. R. Blakley
and D. Chaum, eds.), Lecture Notes in Computer Science, (Berlin,
Heidelberg), pp. 10–18, Springer, 1985.

[20] Z. Qin, H. Xiong, S. Wu, and J. Batamuliza, “A Survey of Proxy
Re-Encryption for Secure Data Sharing in Cloud Computing,” IEEE
Transactions on Services Computing, pp. 1–1, 2016. Conference Name:
IEEE Transactions on Services Computing.

[21] R. Canetti and S. Hohenberger, “Chosen-Ciphertext Secure Proxy Re-
Encryption,” 2007. Publication info: Published elsewhere. Full version
of paper in ACM CCS 2007.

[22] D. Stehlé and R. Steinfeld, “Making NTRU as Secure as Worst-Case
Problems over Ideal Lattices,” in Advances in Cryptology – EURO-
CRYPT 2011 (K. G. Paterson, ed.), Lecture Notes in Computer Science,
(Berlin, Heidelberg), pp. 27–47, Springer, 2011.

[23] D. Stehlé and R. Steinfeld, “Making NTRUEncrypt and NTRUSign as
Secure as Standard Worst-Case Problems over Ideal Lattices,” 2013.
Publication info: Published elsewhere. Submitted. Some of the results
in this paper have been presented in preliminary form at Eurocrypt 2011.

[24] D. Nuñez, I. Agudo, and J. Lopez, “NTRUReEncrypt: An Efficient
Proxy Re-Encryption Scheme Based on NTRU,” in Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security, (Singapore Republic of Singapore), pp. 179–189, ACM, Apr.
2015.

[25] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R.
Rasmussen, and A. Sahai, “Threshold Cryptosystems from Threshold
Fully Homomorphic Encryption,” in Advances in Cryptology – CRYPTO
2018, pp. 565–596, Springer International Publishing, 2018.

[26] Y. Lindell, “How to Simulate It – A Tutorial on the Simulation Proof
Technique,” in Tutorials on the Foundations of Cryptography: Dedicated
to Oded Goldreich (Y. Lindell, ed.), pp. 277–346, Cham: Springer
International Publishing, 2017.

[27] V. Gayoso Martı́nez, L. Hernández Encinas, and A. Queiruga Dios,
“Security and Practical Considerations When Implementing the Elliptic
Curve Integrated Encryption Scheme,” Cryptologia, vol. 39, pp. 244–
269, July 2015.

[28] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and
Z. Zhang, “Choosing Parameters for NTRUEncrypt,” 2015. Publication
info: Preprint. MINOR revision.

[29] “TFHE - Security and Parameters.” Last accessed: 2024-10-04, https:
//tfhe.github.io/tfhe/security and params.html.

[30] C. Gentry, A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. Last accessed: 2024-10-04, https://crypto.stanford.edu/
craig/.

Daniel Morales is a Ph.D. candidate in the Department of Computer Science
at the University of Malaga. His research interests are comprised of developing
cryptographic protocols, highly focused on the privacy area, and designing
decentralized and trustless infrastructures.

Isaac Agudo is an Associate Professor in the Department of Computer
Science at the University of Malaga. He has been involved in several
research projects, and is very active in technology transfer with international
companies. His main research interests include security and privacy in areas
such as blockchain, or smart devices. In particular, he is currently working
on privacy preserving access control and information sharing.

Javier Lopez is a Full Professor in the Department of Computer Science
at the University of Malaga. His research activities are mainly focused on
network security, security protocols and critical information infrastructures,
and he leads a number of national and international research projects in these
areas.

https://tfhe.github.io/tfhe/security_and_params.html
https://tfhe.github.io/tfhe/security_and_params.html
https://crypto.stanford.edu/craig/
https://crypto.stanford.edu/craig/

	Introduction
	Related Work
	Cryptography background
	Secure Multi-Party Computation
	Secret Sharing
	Homomorphic Encryption
	Proxy Re-Encryption

	System and security model
	Lightweight share delivery using HEDS
	Lightweight share delivery using OSRE
	Dynamic OSRE based on NTRU and PRE

	Security analysis
	Cost analysis and comparison
	Theoretical cost analysis
	Implementation and evaluation

	Conclusions and future work
	References
	Biographies
	Daniel Morales
	Isaac Agudo
	Javier Lopez

