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Abstract

Anomaly Detection Systems (ADS) are essential in Industrial and Internet of Things (IIoT)
environments by identifying equipment failures, environmental anomalies, operational irregu-
larities, and cyberattacks. However, the increasing reliance on Machine Learning and Deep
Learning (DL) exposes ADS to adversarial attacks, particularly transferable evasion attacks,
where Adversarial Examples (AE) crafted for one model can deceive others. Despite their im-
portance, limited research has examined the transferability of adversarial attacks in industrial
and IoT contexts or the effectiveness of defense strategies against them. This work system-
atically evaluates the transferability of adversarial evasion attacks across six ADS models,
including both tree-based and neural network architectures, trained on industrial and IIoT sce-
narios datasets. We also analyze multiple adversarial detection methods, measuring not only
their performance, but also their computational efficiency in terms of execution time, processor
utilization, and energy consumption. Our results show that most ADS are vulnerable to trans-
ferable evasion attacks and that existing detection methods fail in model- and attack-agnostic
settings. We further demonstrate that incorporating adversarial learning with a small set of
low-perturbation examples significantly improves detection while maintaining low computa-
tional overhead, enabling practical and efficient real-time deployment.

Keywords · Anomaly Detection Systems, Adversarial Attack, Detection, Transferability,
Industrial IoT.

1 Introduction

Evasion attacks remain a major concern for detection system design. Within the field of net-
work security, Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have
been targeted for adversarial evasion. Attackers exploit weaknesses by manipulating rule activa-
tion pipelines or duplicating packet segments to mislead detectors [1]. In industrial settings, the
literature similarly addresses evasion attacks against Anomaly Detection Systems (ADS), includ-
ing stealthy attacks that gradually alter control systems to avoid alarms until failure, and replay
attacks, where recorded normal sensor readings are injected to conceal malicious actions such as
Denial of Service (DoS) [2].

The adoption of Machine Learning (ML) and Deep Learning (DL) for anomaly detection has
introduced a new attack surface: adversarial evasion. These attacks exploit Neural Networks’ (NN)
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susceptibility to subtle perturbations that alter predictions [3]. Research has shown that such at-
tacks extend beyond Computer Vision (CV), affecting ML and DL models in domains including
Network IDS (NIDS), Internet of Things (IoT), and industrial cybersecurity [4–6]. Consequently,
robust detection and defense mechanisms are critical to maintain the resilience of modern detection
systems. In this context, research on adversarial AI in industrial ADS is still at an early stage.
Existing studies largely address ML-based fault detection, diagnosis, and electricity theft, while do-
mains such as anomaly detection in Electric Vehicle Charging Infrastructure (EVCI) and IoT-based
monitoring remain underexplored [7]. Moreover, most works assume glass-box or oracle closed-box
threat models, overlooking adversarial transferability [8]. To bridge this gap, we examine transfer-
able adversarial evasion and their detection under gray-box settings, constraining perturbations to
preserve data functionality and yield realistic attack scenarios.

The transferability evaluation involves 6 target models: 4 tree-based ML methods including
CatBoost, Light Gradient Boosting Machine (LGBM), Random Forest (RF) and eXtreme Gradient
Boosting (XGB), and two NN, namely Multi-Layer Perceptron (MLP) and Deep NN (DNN). Four
transferable adversarial attacks, Momentum Iterative Fast Gradient Sign Method (MIFGSM), Pro-
jected Gradient Descent (PGD), Translation-Invariant Method (TIM) and Diverse Input Method
(DIM), are evaluated on two datasets: one with EVCI usage data for detecting anomalies such as
malfunction, electricity theft and data leakage, and another with IoT sensor data from a clean room
simulation testbed for monitoring air quality, temperature and humidity. We further assess state-
of-the-art Adversarial example AE detection methods in industrial and IoT contexts. Therefore the
main contributions of this paper are (i) a systematic evaluation of transferability in adversarial
evasion attacks against 6 ADS trained on two datasets representing real-world scenarios; (ii) an
extensive experimental study of AE detection techniques, assessing their effectiveness across mod-
els, attacks, and use cases; (iii) and an analysis of the computational efficiency of top detectors,
including execution time, energy consumption and processor usage, to assess real-time suitability.

The remainder of this paper is organized as follows. Section 2 reviews related work; Section
3 covers adversarial evasion attacks and transferability; Section 4 outlines adversarial detection
methods; Section 5 evaluates them; and Section 6 presents conclusions and future directions.

2 Related work

Adversarial attacks and defenses have been extensively studied in the CV domain [5]. Recent
work extends this research to ML/DL-based NIDS, IoT ADS, and industrial settings, showing that
NN vulnerabilities also affect tabular data such as network traffic and sensor measurements [4].
While adversarial detection is increasingly referenced in these domains [5], most approaches remain
developed for CV, highlighting the early stage of research on non-visual data. Nevertheless, few
studies have specifically addressed AE detection crafted to evade anomaly detection in industrial or
network environments. For instance, Elgarhy et al. [9] propose ensemble-based detectors for smart
grids, combining majority voting or stacking with adversarial training and clustering. Their method
outperforms benchmarks in accuracy and resilience but remains limited to glass-box scenarios,
leaving vulnerability to transferable gray- and closed-box attacks. Likewise, in [10] the authors
propose a robust ensemble-based electricity theft detector trained on smart meter readings that
resists evasion attacks and maintains performance across glass-, gray-, and closed-box settings. This
approach allows a single ADS to detect both anomalies and attacks, avoiding separate detectors.
However, the ensemble’s complexity may increase computational demands, requiring validation
under real-time conditions. Also, Babadi et al. [11] propose an ensemble framework combining
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RF, AdaBoost, Decision Trees, and a Convolutional NN (CNN) to detect decision-based closed-box
attacks on industrial IDS. Trained on clean and AEs, it achieves 98–99% detection accuracy and
improved robustness. However, evaluation is limited to two attack types with oracle access, without
considering transferability, restricting applicability to realistic scenarios.

Lastly, although Wang et al. [12] focus on NIDS for general network infrastructures rather than
industrial or IoT-based ADS, they introduce MANifold and Decision boundary-based Adversarial
example detection (MANDA), an adversarial detection method combining statistical analysis with
ML. MANDA leverages inconsistencies between manifold evaluation and model inference, along
with model uncertainty under small perturbations, to detect problem-based adversarial attacks.
Experimental results on NSL-KDD and MNIST datasets show higher accuracy and improved ro-
bustness compared to conventional statistical baselines. Nonetheless, the approach is limited to
glass-box scenarios and remains untested against transferable attacks, which are more representa-
tive of realistic adversarial conditions.

To the best of our knowledge, only a limited number of studies have explored adversarial evasion
or adversarial detection in this domain, and while results show high detection rates, key gaps
remain in the current literature. While constrained or problem-based attacks are increasingly
being considered, transferable attacks under realistic constraints are rarely addressed. Moreover,
evaluations on use cases across different scenarios are lacking. The effectiveness of adversarial
detection for anomaly detection is largely unexplored. This paper addresses these gaps by assessing
the robustness of multiple ADS models, generating constrained transferable AEs on industrial and
IoT datasets, and comparing state-of-the-art detection techniques in terms of accuracy, detection
rate, false positives, and computational performance for real-time deployment.

3 Transferability of adversarial examples

This section overviews adversarial attacks and transferability, outlines the transfer attacks, presents
the industrial and IoT datasets, defines the threat model, and concludes with an evaluation of ADS
vulnerabilities under the crafted attacks.

3.1 Background on Evasion Attacks and Transferability

Evasion attacks are imperceptible perturbations crafted to deceive AI/ML models with the objec-
tive to generate incorrect predictions on test time [3]. These perturbed inputs are called AEs. Given
an input x and a classifier f(·) with prediction y = f(x), an attacker seeks a minimum perturbation
δ such that f(x + δ) ̸= f(x) while ∥δ∥ remains constrained. AEs can be generated under varying
assumptions about an attacker’s knowledge, but a key property enabling attacks in closed box and
gray box scenarios is transferability, which is the ability of an AE crafted for one model to remain
effective against another model with different architecture or training data [8]. This property allows
attackers in network security and industrial sensor applications to train a surrogate model under
a glass box setting, generate AEs, and then transfer them to the target model to induce misclas-
sification, even when the attacker has limited knowledge of the target system [4, 8]. To this end,
the literature has introduced optimization techniques to improve the transferability of adversarial
attacks, including MIFGSM which stabilizes gradient directions [13], PGD, TIM which optimizes
perturbations over translated images [14], and DIM which applies random variations to inputs [15].
These optimizations increase the likelihood that AEs crafted on a surrogate model remain effective
on unseen target models. In our threat model, we consider these optimized transferable attacks
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to evaluate their impact on industrial ADS and test state-of-the-art detection methods, while con-
straining perturbations to ranges that are physically or operationally plausible.

3.2 Datasets

To establish a realistic threat model, this study employs two datasets for training and evaluating
the ADS. The first dataset concerns an Electric Vehicle Charging Station (EVCS), which records
infrastructure usage information. Since the original dataset contained only benign data, we relied
on the modified version presented in [16], where random perturbations were introduced into 20%
of the data and labeled as anomalous. This dataset comprises 6 features: total energy consumed,
cost or fee, charge duration, session duration, connector type, and charging speed. These features
represent common aspects of charging sessions and provide a realistic basis for industrial ADS and
adversarial attack evaluation. The second dataset, termed ENVironment Measurements (ENVM),
was collected from a custom IoT testbed designed to replicate clean room conditions like those
in semiconductor manufacturing, where strict control of air quality, temperature, and humidity
is required [17]. It includes 11 features, consisting of actuator values (lights, lamp, alert light),
user inputs (lamp potentiometer and light potentiometer), and sensor readings (room temperature,
accurate temperature, gas sensor, air quality sensor, humidity sensor, and ambient light). Anomalies
were generated in real time during sensor readings, capturing events such as high temperature,
excessive humidity, degraded air quality, and increased gas concentration. Labels were generated
using an unsupervised detector trained on benign data to build the labeled dataset, then used to
train the environmental ADS.

3.3 Threat model

The threat model of the study assumes a gray-box setting, in which the model architecture and
the internal details of the detection system are unknown to the adversary. It is assumed that
the adversary gets access to both training and testing data, consistent with practical scenarios
in which parts of the system may be accessible to them. For the EVCS dataset, the attacker is
considered to have exploited inherent vulnerabilities in the EVCI, gaining access to user usage
data [18]. Similarly, for the ENVM dataset, the attacker is assumed to have compromised deployed
IoT devices, obtaining access to environmental sensor readings [19].

To preserve functional behavior, perturbations are applied only to continuous features, while
categorical features remain unchanged. Modified values are constrained to valid feature ranges via
masking and clipping, which restrict perturbations to selected features and bound values within a
predefined range.

3.4 Evaluation of attacks

Following the threat model, a surrogate NN was built to approximate the target classifier, consisting
of three fully connected layers with 128 neurons in the first layer and 64 in the second, both using
ReLU activation, and two output neurons for binary classification of normal versus anomalous
samples. The model was trained for 10 epochs with a batch size of 32 using the Adam optimizer, a
learning rate of 0.001, and cross-entropy loss. The surrogate model is trained separately on EVCS or
ENVM dataset depending on the evaluated dataset. To evaluate transferability, the Detection Rate
(DR) metric, equivalent to recall, was employed as defined in (1) [20], pointing out the importance
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of False Negatives (FN) among True Positives (TP), critical since evasion attacks seek to increase
undetected anomalous samples.

DR =
TP

TP
+ FN (1)

Moreover, the F1-score is employed to assess the overall performance of anomaly detection. The
F1-score represents the harmonic mean of precision and DR, providing a balanced measure that
reflects both false positives and false negatives. In this way, it overcomes the limitations of accuracy
in imbalanced datasets, which are common in anomaly detection tasks. The definitions of F1-score
and Precision are presented in (2) and (3) respectively.

F1 = 2 · Precision · DR

Precision+ DR
(2)

Precision =
TP

TP + FalsePositives
(3)

Six ADS models were trained and evaluated against 4 transferable attacks across perturbation
levels (ϵ) from 0.01 to 0.91 in steps of 0.1. While perturbations above ϵ=0.3 are usually not consid-
ered stealthy due to being perceptible to the human eye [21], they still represent stronger attacks
with higher success rates in evading detection. Since prior studies have shown that defenses like
feature squeezing and statistical methods can be bypassed under stronger perturbations [22], testing
across different levels of aggressiveness allows for a more complete assessment of ADS robustness
and evasion detection performance.

Tables 1 and 2 report the DR for the EVCS and ENVM datasets respectively, considering 6
different ADS trained with their corresponding datasets. Adversarial examples were transferred at
test time to the target models, ranging from no attack (ϵ= 0) up to the maximum perturbation
strength. For the EVCS dataset, results indicate that MIFGSM, PGD, and TIM are the most
effective attacks, with DR showing a clear linear decline as the perturbation magnitude increases.
Even ensemble ADS such as RF or CatBoost, which are more robust in adversarial settings, were
significantly affected. By contrast, the DIM attack is considerably less effective, suggesting that
random input transformations are less effective against data coming from EVCI usage, where fea-
tures values are restricted. The ENVM dataset presents a contrasting outcome, where tree-based
classifiers, which perform best under clean conditions, experience a sharper decline in detection
rate under transferable adversarial perturbations, while NNs, despite weaker clean performance,
show smaller degradation. This difference arises from the dataset’s design, where anomalies were
generated in real time during sensor operation, producing perturbations consistent with the data
distribution. Although tree-based models generally achieve higher performance on tabular data [23],
their decision boundaries are more sensitive to perturbations, making them more vulnerable than
NNs, whose predictions are less influenced by subtle correlations in this particular case. The present
results are further contrasted in Table 3, where Attack Success Rate (ASR) in (4) for both datasets
is reported per model.

ASR =
FN

TP + FN
· 100% (4)

The ASR values were averaged per attack depending on the similarity, hence, ASR1,3 represents
the mean of the ASR values from MIFGSM, PGD and TIM attacks. ASR4 represents the value
for DIM attack. ASR increases as perturbation values increase, matching inversely with the linear
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decline observed in the DR. Models trained on EVCS dataset are more vulnerable to transfer attacks
than ENVM, since there is less evasion across perturbation levels. ASR results are also reported for
ϵ=0, since there exists an inherent misclassification of the model that should be considered. Based
on the preliminary ASR, for EVCS dataset starting from ϵ>0.11 values start to reach around 2%
of success and, above that, evasion becomes threatening. For ENVM dataset, threatening ASR
values are noticeable around ϵ= 0.21, forcing the attacker to perform more aggressive attacks to
have more opportunities for evasion.

The findings therefore determine that under limited knowledge, AEs transfer across model types,
highlighting the importance of defense mechanisms in ML- and AI-based ADS. The following sec-
tions examine methods for detecting such attacks, evaluating their effectiveness and suitability for
the presented datasets.

4 Adversarial evasion detection

This section outlines adversarial attack detection methods from CV, network, and industrial do-
mains, adapted to sensor tabular data and evaluated in Section 5. Statistical methods are excluded
because their dependence on training data limits effectiveness in industrial and IoT settings, where
sensor drift and environmental shifts occur [24].

4.1 Statistical methods

Statistical methods for AE detection mainly detect if the input data distribution matches the
training data in order to detect AEs [25]. Since AEs are crafted adding subtle perturbations
optimized to fool the model, they are not intended to follow the benign data distribution. Hence,
statistically the detection is possible. In [25] the authors detect AEs by measuring the distance
between the sample and the training data manifold, while in [26] and [27] the distance through
maximum mean discrepancy and kernel density estimation is measured. The main downside is that
they are either expensive or not able to detect individual adversarial samples. Moreover, they might
generate false positives caused by benign but out-of-distribution samples [28]. Therefore, while
plausible for offline batch detection, statistical methods are not practical for real time adversarial
attack detection.

4.2 Feature squeezing

Feature squeezing is an input transformation technique that reduces the feature space to limit
feasible perturbations, thereby mitigating the impact of adversarial attacks by restricting the ad-
versary’s ability to generate effective AEs [29]. It has been primarily applied to protect DL models
through enhanced data robustness and AE detection. For robustness, models achieve better pre-
diction performance when adversarial inputs are squeezed preventing a higher evasion rate, while
for detection, AEs can be identified by comparing predictions on original and modified inputs. The
main advantage of feature squeezing is that it safeguards models without requiring architectural
changes, making it suitable for already trained and deployed systems. In [30], the authors evaluate
adaptive noise reduction methods for adversarial detection using scalar quantization and smoothing
filters, showing that input modifications, such as resizing or blurring, do not degrade model perfor-
mance. Firstly, one type of feature squeezing is Quantization compresses a wide range of values into
fewer representations (5), while spatial smoothing modifies pixel values based on their neighbors
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Table 3: ASR of multiple models under several transferable adversarial attacks for EVCS and
ENVM dataset

Dataset Model ASR 0.00 0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

E
V
C
S

CATBOOST
ASR1,3 1.22 1.30 2.38 3.69 4.69 5.62 6.37 6.92 7.33 7.52 7.61

ASR4 1.22 1.24 1.38 1.57 1.93 2.04 2.32 2.44 2.80 2.78 3.18

LGBM
ASR1,3 1.67 1.71 2.77 4.04 5.11 5.95 6.57 7.19 7.61 7.82 7.95

ASR4 1.67 1.65 1.77 2.06 2.42 2.58 2.80 3.12 3.23 3.28 3.61

MLP
ASR1,3 1.05 1.08 1.56 2.05 2.78 3.36 3.86 4.37 4.82 5.15 5.37

ASR4 1.05 1.05 1.07 1.19 1.34 1.41 1.60 1.78 1.98 2.07 2.26

RF
ASR1,3 1.39 1.48 2.54 3.67 4.71 5.55 6.29 6.87 7.35 7.53 7.69

ASR4 1.39 1.40 1.62 1.92 2.22 2.35 2.61 2.97 3.17 3.33 3.58

XGB
ASR1,3 1.41 1.49 2.43 3.62 4.54 5.45 6.20 6.82 7.23 7.47 7.59

ASR4 1.41 1.45 1.56 1.78 2.09 2.16 2.51 2.66 2.82 2.89 3.15

DNN
ASR1,3 5.11 5.19 5.70 6.21 6.67 7.06 7.41 7.74 7.94 8.12 8.25

ASR4 5.11 5.13 5.29 5.43 5.56 5.64 5.78 5.91 5.97 5.98 5.93

E
N

V
M

CATBOOST
ASR1,3 0.36 0.36 0.95 1.35 1.87 2.34 2.42 2.70 2.82 2.98 3.61

ASR4 0.36 0.36 0.71 0.71 0.95 1.55 1.67 1.67 1.90 2.14 2.50

LGBM
ASR1,3 0.60 0.60 1.43 1.79 2.14 3.06 3.65 3.81 3.81 4.21 4.40

ASR4 0.60 0.60 1.19 1.43 1.67 2.38 2.98 3.10 3.10 3.69 3.93

MLP
ASR1,3 6.07 6.19 6.51 6.55 6.55 6.67 6.79 6.90 7.02 7.02 7.14

ASR4 6.07 6.19 6.43 6.55 6.55 6.55 6.79 6.90 7.02 7.02 7.38

RF
ASR1,3 0.83 0.83 1.55 2.02 2.46 2.78 3.77 4.13 4.01 4.13 4.64

ASR4 0.83 0.83 1.31 1.43 1.31 2.02 2.50 2.86 2.62 2.74 2.74

XGB
ASR1,3 0.48 1.55 1.90 2.46 3.02 3.61 3.73 3.89 3.93 4.13 4.72

ASR4 0.48 0.95 1.55 1.79 2.38 2.74 3.10 3.10 3.33 3.69 4.29

DNN
ASR1,3 10.00 9.92 9.96 10.00 10.08 10.04 9.88 9.96 10.04 10.04 10.04

ASR4 10.00 9.88 10.00 9.88 10.00 10.24 9.88 9.88 10.00 10.00 10.00

with implementations such as median, mean, and Gaussian smoothing [29, 31]. Another approach
is bit-depth reduction, which lowers image color depth without compromising interpretability and
improves robust feature squeezing defenses [29].

Q(x) = Q(x)∆ ·
⌊

x

∆
+

1

2

⌋
(5)

Bit-depth reduction is a form of quantization where the bit level k controls precision and noise
reduction. In CV, it refers to color depth, while for tabular continuous data values are approxi-
mated to the nearest allowed level. The reduction level is defined in (6), with higher k producing
greater precision and lower k increasing noise suppression. As shown in [29], k < 4 causes human-
perceptible distortions; thus, we set k = 4 (24 = 16 levels) to balance precision and feature space
reduction. Data are first scaled to [0, 1] using (7), squeezed as in (8), and then reverted to the
original distribution, ensuring uniform quantization across features.

L = 2k − 1 (6)

xscaled =
x− xmin

xmax − xmin
(7)

Qbitdepth(x) =
round(xscaled · L)

L
· (xmax − xmin) + xmin (8)
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The final explored method for feature squeezing is smoothing, which in the practice in the CV
field, it results in a blurring filter due to the average of nearby pixels. However, in the case of our
tabular datasets, each feature is independent. Hence, temporal smoothing was applied column-wise,
averaging the neighboring values for each feature in periods of three seconds. In the literature,
median filter is widely used, but we explored more filters such as mean, median, and gaussian filter
to assess its effectiveness, as well as the differences in the detection of different attacks. Equations
(9), (10), and (11) represent the temporal smoothing functions adapted to tabular datasets whose
data is time-based. Firstly, (9) displays that for each time step t ∈ T , where T is the set of all
time indices (3 seconds window in our use case), the smoothed signal smean(x)(t) is obtained by
averaging the values x(τ) in the local window Wt ⊆ T centered at t, with |Wt| denoting the window
size. Likewise, (10) represents that for each time step t ∈ T , the smoothed signal smedian(x)(t) is
computed as the median of the values x(τ) in the local window Wt. Finally, (11) shows that for
each time step t ∈ T , the smoothed signal sgauss(x)(t) is obtained as a weighted average of the
values in the local window Wt, where the weights G(τ − t) follow a Gaussian distribution centered
at t (12), giving higher importance to nearby points and less to distant ones.

smean(x)(t) =
1

|Wt|
∑

τ∈Wt

x(τ), ∀ t ∈ T (9)

smedian(x)(t) = median{x(τ) | τ ∈ Wt}, ∀ t ∈ T (10)

sgaussian(x)(t) =
∑

τ∈Wt

x(τ) · w(τ, t), ∀ t ∈ T (11)

w(τ, t) = G(τ − t) =
1

√
2πσ

(
− (τ−t)2

2σ2

)
(12)

4.3 Discretization

Discretization (or binning) is an input transformation technique that reduces the feature space by
grouping values into intervals. While commonly applied in traditional ML preprocessing, it has also
been shown to improve robustness against adversarial attacks. Two prevalent approaches are Equal-
Width (EW) binning, which divides the feature range into fixed-size intervals, and Equal-Frequency
(EF) binning, which allocates samples evenly across bins, yielding variable interval widths. EW
binning preserves the numeric domain but may produce sparsely populated bins under skewed
distributions, whereas EF binning ensures balanced sample counts at the cost of uneven bin widths.
Prior work [32] finds discretization effective for simple image datasets but prejudicial to accuracy
and robustness on more complex ones. In contrast, [33] reports that, for IoT tabular data, EF
binning reduces performance, while EW binning improves both accuracy and robustness on clean
and adversarial inputs.

Discretization maps continuous features into a finite set of bins, reducing sensitivity to small
variations. In images, it typically operates on pixel intensities, but for tabular data discretization
methods such as EW or EF binning are already adapted since they operate per feature to address
skewed distributions and preserve meaningful intervals across heterogeneous measurements. EW
binning is represented in (13) where the numerical feature rage is divided into k intervals of equal
size, assigning each value to its corresponding interval. EF binning is the division of the total
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number of observations T into k bins so that each bin contains approximately the same number of
observations, which is represented in (14).

QEW(x) =
max(X)−min(X)

k
(13)

QEF(x) =
T

k
(14)

For input transformation methods such as feature squeezing or discretization, AE detection is
based on comparing the prediction probability distributions before and after the transformation.
More specifically, one distribution corresponds to the model’s output when the original sample is
provided, and the other corresponds to the transformed sample. The discrepancy between these
two distributions can be quantified using different distance metrics, including L1 and L2 norms or
the Kullback–Leibler (KL) divergence [29]. Because the detection strategy in this work is model-
and attack-agnostic and given that the adversarial attacks considered in this paper are constrained
by the L∞ norm, we adopt KL-divergence as the distance metric. A threshold τ = 0.1 is then
applied to decide whether an input is adversarial. Equation (15) defines the KL-divergence used in
our detection pipeline.

DKL(P ∥ Q) =
∑
x∈X

P (x) ln
P (x)

Q(x)
(15)

4.4 Auxiliary detectors

Auxiliary detectors comprise the training of a detector in order to detect adversarial samples. They
can be either embedded in the model or deployed as a different model that classifies adversarial
samples before inputting the samples to the main model. For instance, in [34] the authors propose
the use of an unsupervised detector built on a class-conditional Generative Adversarial Network
(GAN) trained exclusively on clean data, which reduces the computational cost of the defender since
no AEs have to be generated in order to train the detector. This detector uses the reconstruction
error of the image to detect the anomalies caused by AEs and it is embedded on a layer of the NN.
On the other hand, under the context of Medical IoT (MIoT), in [35] the authors train a detector
based on transformer architecture with AEs generated from specific medical datasets attacked with
closed- and glass-box approaches achieving a high performance of the detector. Other approaches
rely on simpler but still efficient ML models as in [36], where the authors train an unsupervised
model (Isolation Forest) combined with an autoencoder with benign data achieving detection of
AEs in a lightweight manner. In the case of supervised ML, in [37] they employ representation
learning to generate new representations of the data and train a tree based ensemble auxiliary
detector with eighteen different tabular datasets. Since our approach is model-agnostic and seeks
simplicity in deployment within existing ADS, we evaluate supervised models (including tree-based
and NN models), GAN-based semi-supervised detection, and Isolation Forest–based unsupervised
learning, while excluding modifications to already deployed models, as they fall outside the scope
of this study.

4.5 Other approaches

Several approaches utilize new or hybrid methods to detect AEs. Wu et al. use adversarial gradient
directions for detection and evaluate their method on ImageNet and CIFAR-10 against state-of-
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the-art detectors [38]. Based on adding noise to samples for adversarial detection, the authors
consider that gradient directions used to craft AEs are sufficiently discriminative to detect them.
Additionally, in [39] the authors propose a meta-learning framework using a prototypical network
trained on known AEs and extend to unknown attacks via feature transformation and finally few-
shot maximum a posteriori algorithm. These approaches are not aligned with the model- and
attack-agnostic perspective adopted in this paper. Hence, we consider the MANDA [21], discussed
in Section 2.

5 Evaluation results

5.1 Evaluation of input transformation methods

Tables 4 and 5 summarize F1-scores for adversarial detection by attack, ADS model, and dataset,
with accuracy or DR included in the following descriptions for context. Overall, input transforma-
tion methods effectiveness is limited. Despite some methods like quantization achieving relatively
high accuracy (∼ 0.84–0.85), low DR and precision indicate that accuracy alone is unreliable for
evaluating detection performance, especially in imbalanced anomaly detection datasets. For the
EVCS dataset, temporal smoothing with mean and Gaussian filters improves F1-scores and DR
(0.61) for the MLP model, though with higher false positives. In the ENVM dataset, bit-depth
reduction, median smoothing, and EW binning perform best, with EW binning providing the best
DR–false positive trade-off for MLP and bit-depth reduction for XGB. Median temporal smoothing
benefits CatBoost but achieves DR below 0.5. These results indicate that EW binning and bit-
depth reduction offer computationally efficient, easily integrated detection for ADS, while temporal
smoothing and median filters could be further optimized for MLP and CatBoost models.

Since input transformation is also regarded as a robustness technique against AEs, we evaluated
the F1 score to examine whether ADS trained on the EVCS and ENVM datasets demonstrate
improved robustness. The results, presented in Tables 6 and 7, show that overall performance
declines for most methods. Quantization yields slightly lower performance across both datasets,
while other methods perform significantly worse, indicating that input transformations do not
enhance robustness in the examined scenarios.

5.2 Evaluation of auxiliary detectors

Moving to auxiliary detectors, we evaluate both unsupervised and supervised learning approaches,
since directly modifying the architecture of the main models to incorporate adversarial detection
is complex and not model-agnostic. For the unsupervised approach, an Isolation Forest (IF) is
trained exclusively on clean benign and anomalous data, aiming to flag outliers, which in this
context correspond to AEs.

For supervised detection, ML and DL models are trained on clean and adversarial samples
to identify attacks at test time. CatBoost was chosen as the ML detector for its high detection
with few false positives. To limit adversarial training overhead [40], low-intensity perturbations
(0.003 ≤ ϵ ≤ 0.3) were used. Separate detectors were trained with MIFGSM + TIM and PGD+
TIM examples to evaluate generalization to unseen attacks [41]. DL detectors consist of Keras
feedforward DNNs with one hidden layer of 64 ReLU neurons and a sigmoid output, trained with
Adam and binary cross-entropy. Both ML and DL detectors were trained under the same procedure,
enabling systematic comparison.
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Table 4: Feature squeezing performance (F1) (EVCS)

Dataset Detector Model MIFGSM PGD TIM DIM

E
V
C
S

Q(x)

CB 0.187 0.203 0.190 0.176

LGBM 0.161 0.171 0.164 0.159

MLP 0.155 0.173 0.154 0.123

RF 0.090 0.108 0.093 0.082

XGB 0.174 0.182 0.172 0.164

DNN 0.129 0.128 0.132 0.136

Qbitdepth(x)

CB 0.158 0.158 0.157 0.149

LGBM 0.161 0.162 0.158 0.130

MLP 0.110 0.110 0.111 0.087

RF 0.159 0.158 0.155 0.130

XGB 0.143 0.144 0.142 0.108

DNN 0.168 0.168 0.168 0.153

smean(x)

CB 0.158 0.157 0.157 0.140

LGBM 0.161 0.160 0.161 0.149

MLP 0.419 0.425 0.441 0.461

RF 0.172 0.173 0.175 0.182

XGB 0.155 0.156 0.157 0.134

DNN 0.236 0.237 0.239 0.236

smedian(x)

CB 0.130 0.131 0.127 0.104

LGBM 0.140 0.141 0.139 0.121

MLP 0.199 0.199 0.202 0.198

RF 0.169 0.171 0.171 0.175

XGB 0.126 0.127 0.125 0.101

DNN 0.171 0.172 0.171 0.158

sgaussian(x)

CB 0.193 0.192 0.192 0.176

LGBM 0.203 0.200 0.201 0.191

MLP 0.474 0.480 0.496 0.517

RF 0.177 0.176 0.177 0.186

XGB 0.193 0.192 0.194 175

DNN 0.213 0.213 0.215 0.209

QEW (x)

CB 0.204 0.202 0.199 0.210

LGBM 0.152 0.153 0.149 0.118

MLP 0.244 0.244 0.243 0.273

RF 0.144 0.145 0.142 0.122

XGB 0.242 0.245 0.247 0.275

DNN 0.197 0.195 0.190 0.185

QEF (x)

CB 0.171 0.170 0.168 0.148

LGBM 0.178 0.178 0.140 0.158

MLP 0.112 0.113 0.115 0.094

RF 0.159 0.158 0.156 0.149

XGB 0.172 0.172 0.170 0.146

DNN 0.170 0.170 0.169 0.154

Other approaches for auxiliary detection were also evaluated. GAN reconstruction-based de-
tection was implemented using a PyTorch framework, where the architecture consists of three core
components: an encoder, a generator (decoder), and a discriminator. The encoder maps the input
data x, which lies in Rd (that is, a d-dimensional real-valued vector space representing the features
of each sample), into a lower-dimensional latent representation z. The generator then reconstructs
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Table 5: Feature squeezing performance (F1) (ENVM)

Dataset Detector Model MIFGSM PGD TIM DIM

E
N

V
M

Q(x)

CB 0.097 0.097 0.093 0.117

LGBM 0.095 0.095 0.096 0.125

MLP 0.000 0.000 0.000 0.000

RF 0.085 0.085 0.091 0.122

XGB 0.338 0.339 0.338 0.375

DNN 0.072 0.088 0.092 0.079

Qbitdepth(x)

CB 0.313 0.308 0.301 0.346

LGBM 0.635 0.635 0.641 0.607

MLP 0.458 0.458 0.458 0.472

RF 0.140 0.140 0.137 0.139

XGB 0.794 0.794 0.791 0.755

DNN 0.265 0.256 0.272 0.259

smean(x)

CB 0.163 0.163 0.166 0.169

LGBM 0.078 0.078 0.077 0.088

MLP 0.128 0.128 0.128 0.102

RF 0.112 0.112 0.113 0.142

XGB 0.148 0.149 0.152 0.140

DNN 0.150 0.147 0.142 0.133

smedian(x)

CB 0.591 0.591 0.593 0.569

LGBM 0.078 0.078 0.076 0.087

MLP 0.497 0.498 0.495 0.513

RF 0.103 0.103 0.110 0.142

XGB 0.543 0.543 0.517 0.503

DNN 0.340 0.327 0.329 0.325

sgaussian(x)

CB 0.073 0.073 0.073 0.077

LGBM 0.077 0.077 0.075 0.087

MLP 0.173 0.173 0.172 0.172

RF 0.103 0.103 0.104 0.130

XGB 0.097 0.097 0.095 0.113

DNN 0.104 0.118 0.119 0.119

QEW (x)

CB 0.254 0.254 0.253 0.254

LGBM 0.178 0.178 0.180 0.176

MLP 0.703 0.703 0.703 0.745

RF 0.145 0.145 0.151 0.173

XGB 0.252 0.252 0.252 0.245

DNN 0.227 0.227 0.228 0.212

QEF (x)

CB 0.251 0.251 0.252 0.243

LGBM 0.248 0.249 0.252 0.242

MLP 0.212 0.212 0.216 0.204

RF 0.146 0.146 0.152 0.173

XGB 0.250 0.250 0.251 0.234

DNN 0.244 0.245 0.243 0.247

the original input from this latent code, while the discriminator learns to distinguish between gen-
uine input-latent pairs and those produced by the generator. Training data consists of labeled
benign normal and anomalous data, allowing the model to learn reconstructions that are faithful
for benign inputs while producing larger reconstruction errors for anomalies. For detection, the
model leverages the reconstruction error, defined in (16) where E is the encoder and G is the gen-
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Table 6: Robustness (F1) for squeezed samples(EVCS)

Dataset Detector Model MIFGSM PGD TIM DIM

E
V
C
S

Q(x)

CB 0.70 0.71 0.72 0.83

LGBM 0.67 0.67 0.68 0.79

MLP 0.74 0.75 0.76 0.85

RF 0.69 0.70 0.72 0.81

XGB 0.69 0.69 0.70 0.81

DNN 0.70 0.70 0.71 0.76

Qbitdepth(x)

CB 0.28 0.28 0.28 0.27

LGBM 0.27 0.27 0.27 0.27

MLP 0.27 0.27 0.27 0.26

RF 0.28 0.28 0.28 0.28

XGB 0.27 0.27 0.27 0.27

DNN 0.26 0.27 0.27 0.26

smean(x)

CB 0.28 0.27 0.28 0.27

LGBM 0.29 0.29 0.29 0.29

MLP 0.33 0.33 0.33 0.34

RF 0.30 0.30 0.30 0.31

XGB 0.28 0.28 0.28 0.27

DNN 0.24 0.24 0.25 0.25

smedian(x)

CB 0.25 0.25 0.25 0.25

LGBM 0.24 0.24 0.24 0.24

MLP 0.21 0.21 0.20 0.20

RF 0.24 0.24 0.24 0.24

XGB 0.25 0.25 0.25 0.25

DNN 0.21 0.22 0.22 0.21

sgaussian(x)

CB 0.27 0.27 0.27 0.26

LGBM 0.29 0.28 0.29 0.29

MLP 0.28 0.28 0.27 0.27

RF 0.30 0.30 0.31 0.30

XGB 0.26 0.26 0.27 0.26

DNN 0.29 0.29 0.29 0.29

QEW (x)

CB 0.27 0.27 0.26 0.26

LGBM 0.26 0.26 0.26 0.26

MLP 0.28 0.27 0.25 0.25

RF 0.26 0.26 0.26 0.26

XGB 0.25 0.25 0.26 0.25

DNN 0.28 0.27 0.26 0.25

QEF (x)

CB 0.26 0.25 0.26 0.25

LGBM 0.26 0.26 0.26 0.26

MLP 0.25 0.25 0.25 0.25

RF 0.26 0.26 0.26 0.26

XGB 0.26 0.26 0.26 0.26

DNN 0.26 0.26 0.26 0.26

erator. This measures how different the reconstructed sample is from the original input. Samples
that belong to the normal data distribution are reconstructed accurately and thus produce small
values of r(x), whereas anomalous or out-of-distribution samples produce larger reconstruction er-
rors. By applying a threshold τ , samples with r(x) > τ are flagged as anomalies, enabling the GAN
to detect deviations from expected patterns in the data. The chosen threshold is set to τ = 0.6,
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Table 7: Robustness (F1) for squeezed samples (ENVM)

Dataset Detector Model MIFGSM PGD TIM DIM

E
N

V
M

Q(x)

CB 0.87 0.87 0.87 0.88

LGBM 0.84 0.84 0.85 0.83

MLP 0.68 0.68 0.68 0.69

RF 0.86 0.86 0.87 0.87

XGB 0.76 0.76 0.76 0.72

DNN 0.63 0.63 0.63 0.63

Qbitdepth(x)

CB 0.60 0.60 0.61 0.60

LGBM 0.59 0.59 0.59 0.59

MLP 0.54 0.54 0.54 0.54

RF 0.58 0.57 0.57 0.57

XGB 0.33 0.20 0.20 0.34

DNN 0.54 0.54 0.54 0.54

smean(x)

CB 0.27 0.27 0.27 0.27

LGBM 0.27 0.27 0.27 0.27

MLP 0.39 0.39 0.39 0.39

RF 0.27 0.27 0.27 0.27

XGB 0.26 0.26 0.25 0.26

DNN 0.46 0.47 0.46 0.46

smedian(x)

CB 0.69 0.69 0.69 0.72

LGBM 0.27 0.27 0.27 0.27

MLP 0.51 0.51 0.51 0.51

RF 0.61 0.61 0.61 0.63

XGB 0.54 0.54 0.56 0.54

DNN 0.36 0.36 0.36 0.36

sgaussian(x)

CB 0.27 0.27 0.27 0.27

LGBM 0.27 0.27 0.27 0.27

MLP 0.26 0.26 0.26 0.26

RF 0.27 0.27 0.27 0.27

XGB 0.27 0.27 0.27 0.27

DNN 0.52 0.52 0.52 0.52

QEW (x)

CB 0.02 0.02 0.02 0.02

LGBM 0.27 0.27 0.27 0.27

MLP 0.01 0.01 0.01 0.01

RF 0.27 0.27 0.27 0.27

XGB 0.27 0.27 0.27 0.27

DNN 0.17 0.17 0.16 0.19

QEF (x)

CB 0.30 0.30 0.29 0.30

LGBM 0.27 0.27 0.27 0.27

MLP 0.28 0.28 0.28 0.28

RF 0.27 0.27 0.27 0.27

XGB 0.27 0.27 0.27 0.27

DNN 0.27 0.27 0.27 0.27

as experimental evaluation indicated that this value provides the best balance between accurate
anomaly detection and a low false positive rate.

r(x) = ∥x−G(E(x))∥2, (16)

Table 8 presents detection results by detector, attack, and dataset. Target ADS are excluded, as
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detectors operate exclusively on AEs. Unsupervised IF and semi-supervised GAN reconstruction
perform poorly, indicating that detecting out-of-distribution AEs requires more advanced meth-
ods. ML and DL models trained with AEs perform significantly better and generalize to unseen
transferable attacks. CatBoost achieves the highest detection across both datasets, while the DNN
performs well on EVCS, particularly with PGD and TIM training, but shows lower performance
on ENVM, likely due to more realistic anomalies.

5.3 Evaluation of other methods

MANDA was described in Section 2 as a statistical adversarial detection method for NIDS. We
implement MANDA on both datasets following [12]. The method computes two scores for manifold
evaluation: score1, measuring inconsistency between manifold evaluation and ADS output, and
score2, capturing variance in model confidence. Detection proceeds in two stages: (i) a logistic
regression is trained on these scores, and (ii) test samples are classified using the trained model.
The authors also report strong performance using score1 alone, flagging a sample as adversarial
when score1 > τ1. The performance of MANDA and MAnifold-based AE detection is presented in
Table 9.Similar to input transformation, these statistical methods perform weakly overall. However,
the detection results for the MLP model and, especially the DNN model, are stronger on the ENVM
dataset. This observation aligns with the outcomes of squeezing and binning methods, which also
achieved better performance for the MLP model. These results suggest that such methods hold
potential and could be further refined and optimized for NN–based ADS.

5.4 Computational Efficiency

Overall, the best-performing models are CatBoost and the DNN trained with PGD and TIM attacks.
To evaluate real-time efficiency, we deployed the pretrained models in a simulation of sequential
inputs over time scenario with different ADS and measured CPU utilization, execution time, and
energy consumption across 10 perturbation levels and 4 attacks. Results show consistent efficiency
on both EVCS and ENVM datasets: CPU usage remains around 2.5–3%, execution time below 10−4

seconds, and energy consumption under 4 · 10−5 kWh. Such low computational and energy costs
confirm their practicality in resource-constrained or real-time industrial environments. However,
there are some particularities worth noting. For both datasets, the DNN model reveals occasional
peaks in execution time and energy consumption at specific points when processing perturbation
values associated with the TIM attack, as illustrated in Figures 1 and 2. These fluctuations suggest
that the DNN model is less stable under TIM attack scenarios and may require additional resources
at certain moments, making it slightly less efficient compared to the CatBoost model. Finally, Table
10 summarizes the detection results. Input transformation methods perform poorly, provide no
robustness gains over raw inputs, and incur high computational cost. Supervised auxiliary detectors
achieve the best performance at low cost, while unsupervised methods perform poorly. Hybrid
statistical–ML detectors show moderate performance but are more computationally expensive than
supervised detectors.

6 Conclusion and Future Work

Transferable adversarial evasion attacks on EVCI and IoT sensor environments were assessed across
ADS models, confirming their vulnerabilities. Among detection methods, adversarial learning with
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Table 8: Auxiliary detector performance (F1)

Dataset Detector MIFGSM PGD TIM DIM

E
V
C
S

Isolation Forest 0.33 0.33 0.33 0.34

Catboost MIFGSM/TIM 0.93 0.93 0.93 0.95

Catboost PGD/TIM 0.93 0.94 0.94 0.95

DNN MIFGSM/DIM 0.85 0.86 0.85 0.89

DNN PGD/TIM 0.89 0.90 0.90 0.92

GAN 0.35 0.35 0.35 0.36
E
N

V
M

Isolation Forest 0.42 0.42 0.40 0.40

Catboost MIFGSM/TIM 0.99 0.99 0.99 0.99

Catboost PGD/TIM 0.99 0.99 0.99 0.99

DNN MIFGSM/DIM 0.62 0.62 0.62 0.62

DNN PGD/TIM 0.66 0.66 0.65 0.66

GAN 0.28 0.28 0.28 0.28

Table 9: Hybrid detection performance (F1) (EVCS)

Dataset Detector Model MIFGSM PGD TIM DIM

E
V
C
S

MANDA

CB 0.34 0.34 0.34 0.44

LGBM 0.31 0.31 0.31 0.40

MLP 0.35 0.36 0.34 0.43

RF 0.24 0.25 0.25 0.34

XGB 0.31 0.32 0.32 0.41

DNN 0.22 0.22 0.23 0.27

MANIFOLD

CB 0.34 0.35 0.35 0.45

LGBM 0.34 0.34 0.34 0.43

MLP 0.40 0.41 0.39 0.47

RF 0.32 0.33 0.33 0.41

XGB 0.34 0.35 0.35 0.44

DNN 0.29 0.29 0.29 0.34

E
N

V
M

MANDA

CB 0.09 0.08 0.08 0.06

LGBM 0.01 0.00 0.01 0.02

MLP 0.42 0.42 0.42 0.44

RF 0.19 0.18 0.23 0.14

XGB 0.04 0.07 0.10 0.07

DNN 0.55 0.56 0.54 0.57

MANIFOLD

CB 0.12 0.12 0.11 0.11

LGBM 0.15 0.14 0.15 0.16

MLP 0.43 0.43 0.43 0.46

RF 0.11 0.10 0.10 0.08

XGB 0.19 0.19 0.20 0.18

DNN 0.60 0.61 0.60 0.64

CatBoost achieved the best performance and generalization, while input transformation and statis-
tical approaches were less effective but demonstrated potential when combined with NN outputs.
Limitations of this study include the exclusion of non–gradient-based attacks, untested robustness
under concept drift with retraining, unmeasured retraining overhead, and analysis of IDS datasets,
which will be addressed in future work.
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Table 10: Summary table of the results

Detector Detection Robustness Comp. Cost

Feature squeezing − − −−

Auxiliary
Supervised ++ / ++

Unsupervised − / ++

Hybrid + / −

++: Excellent +: Improvable −: Poor −−: Inefficient /: Not applicable
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Figure 1: DNN performance under TIM attack (EVCS)
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[19] I. Butun, P. Österberg, and H. Song, “Security of the internet of things: Vulnerabilities,
attacks, and countermeasures,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp.
616–644, 2020.

[20] M. Bai, P. Liu, F. Lv, D. Fang, S. Lv, W. Zhang, and L. Sun, “Adversarial attack against
intrusion detectors in cyber-physical systems with minimal perturbations,” in 2024 IEEE Inter-
national Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE,
2024, pp. 816–825.

[21] S. Mandal, “Defense against adversarial attacks using convolutional auto-encoders,” arXiv
preprint arXiv:2312.03520, 2023.

[22] N. Carlini and D. Wagner, “Adversarial examples are not easily detected: Bypassing ten
detection methods,” in Proceedings of the 10th ACM workshop on artificial intelligence and
security, 2017, pp. 3–14.

[23] D. McElfresh, S. Khandagale, J. Valverde, V. Prasad C, G. Ramakrishnan, M. Goldblum, and
C. White, “When do neural nets outperform boosted trees on tabular data?” Advances in
Neural Information Processing Systems, vol. 36, pp. 76 336–76 369, 2023.

[24] M. A. Shyaa, N. F. Ibrahim, Z. Zainol, R. Abdullah, M. Anbar, and L. Alzubaidi, “Evolv-
ing cybersecurity frontiers: A comprehensive survey on concept drift and feature dynamics
aware machine and deep learning in intrusion detection systems,” Engineering Applications of
Artificial Intelligence, vol. 137, p. 109143, 2024.

21



[25] S. Jha, U. Jang, S. Jha, and B. Jalaian, “Detecting adversarial examples using data manifolds,”
in MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM), 2018, pp.
547–552.

[26] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the (statistical)
detection of adversarial examples,” arXiv preprint arXiv:1702.06280, 2017.

[27] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting adversarial samples from
artifacts,” arXiv preprint arXiv:1703.00410, 2017.

[28] W. Chen, R. A. Yeh, S. Mou, and Y. Gu, “Leveraging perturbation robustness to enhance
out-of-distribution detection,” in Proceedings of the Computer Vision and Pattern Recognition
Conference, 2025, pp. 4724–4733.

[29] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in deep
neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[30] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang, “Detecting adversarial image examples in
deep neural networks with adaptive noise reduction,” IEEE Transactions on Dependable and
Secure Computing, vol. 18, no. 1, pp. 72–85, 2021.

[31] J. Wang, J. Zhao, Q. Yin, X. Luo, Y. Zheng, Y.-Q. Shi, and S. K. Jha, “Smsnet: A new deep
convolutional neural network model for adversarial example detection,” IEEE Transactions on
Multimedia, vol. 24, pp. 230–244, 2022.

[32] J. Chen, X. Wu, V. Rastogi, Y. Liang, and S. Jha, “Towards understanding limitations of pixel
discretization against adversarial attacks,” in 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), 2019, pp. 480–495.

[33] A. Namvar, C. Thapa, and S. S. Kanhere, “Discretization-based ensemble model for robust
learning in iot,” in International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services. Springer, 2023, pp. 353–367.

[34] H. Wang, D. J. Miller, and G. Kesidis, “Anomaly detection of adversarial examples using
class-conditional generative adversarial networks,” Computers & Security, vol. 124, p. 102956,
2023.

[35] S. Rahman, S. Pal, A. Fallah, R. Doss, and C. Karmakar, “Rad-iomt: Robust adversarial
defense mechanisms for iomt medical image analysis,” Ad Hoc Networks, p. 103935, 2025.

[36] H. Liu, B. Zhao, J. Guo, K. Zhang, and P. Liu, “A lightweight unsupervised adversarial detector
based on autoencoder and isolation forest,” Pattern Recognition, vol. 147, p. 110127, 2024.

[37] G. Braun, S. Cohen, and L. Rokach, “Adversarial evasion attacks detection for tree-based
ensembles: A representation learning approach,” Information Fusion, vol. 118, p. 102964,
2025.

[38] Y. Wu, S. S. Arora, Y. Wu, and H. Yang, “Beating attackers at their own games: Adver-
sarial example detection using adversarial gradient directions,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 2969–2977.

22



[39] W. Liu, W. Zhang, K. Yang, Y. Chen, K. Guo, and J. Wei, “Enhancing generalization in few-
shot learning for detecting unknown adversarial examples,” Neural Processing Letters, vol. 56,
no. 2, p. 85, 2024.

[40] H. Zheng, Z. Zhang, J. Gu, H. Lee, and A. Prakash, “Efficient adversarial training with transfer-
able adversarial examples,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[41] H. Zhang, H. Chen, Z. Song, D. Boning, I. S. Dhillon, and C.-J. Hsieh, “The limitations of
adversarial training and the blind-spot attack,” arXiv preprint arXiv:1901.04684, 2019.

23


	Introduction
	Related work
	Transferability of adversarial examples
	 Background on Evasion Attacks and Transferability 
	Datasets
	Threat model
	Evaluation of attacks

	Adversarial evasion detection
	Statistical methods
	Feature squeezing
	Discretization
	Auxiliary detectors
	Other approaches

	 Evaluation results 
	Evaluation of input transformation methods
	Evaluation of auxiliary detectors
	Evaluation of other methods
	Computational Efficiency

	Conclusion and Future Work
	Aknowledgements

