
Hash-based Cryptography

Fernando Javier Lopez Cerezo

1 Overview

Traditional digital signature algorithms, such as RSA, DSA, and ECDSA rely on
the hardness of number-theoretic problems like integer factorization and discrete
logarithms. These foundational assumptions, however, are rendered vulnerable
in the face of quantum computing, making such schemes unsuitable for a post-
quantum world.

In contrast, hash-based digital signature schemes present a promising alterna-
tive. Their security is grounded not in algebraic structures or number-theoretic
problems, but in the well-understood properties of cryptographic hash functions
(a core primitive also used in most other signature schemes). Because they de-
pend solely on symmetric cryptographic assumptions, hash-based schemes ex-
hibit strong resistance to quantum attacks.

Rompel’s seminal result [19] further strengthens the case for hash-based ap-
proaches by showing that the existence of one-way functions is both necessary
and sufficient for constructing secure digital signature schemes. This minimal
assumption underscores the robustness and simplicity of hash-based designs.
Moreover, the continual development of secure hash functions inherently leads
to new, viable signature constructions, ensuring adaptability and forward secu-
rity in a rapidly evolving cryptographic landscape.

This paper is structured as follows: Section 2 provides a brief overview of cryp-
tographic hash functions and their security properties. Section 3 introduces the
Lamport One-Time Signature scheme and Section 4 presents its improvements,
including Winternitz OTS and WOTS+. Section 5 presents Merkle Trees as a
means to aggregate one-time signatures into a scalable signature scheme. Sec-
tion 6 discusses few-time signature schemes such as HORS and HORST. Section
7 describes the SPHINCS and SPHINCS+ schemes, highlighting their stateless
design and use of hypertrees and FORS. Section 8 covers the standardization of
SPHINCS+ as SLH-DSA by NIST. Finally, Section 9 concludes the paper with
a discussion of the strengths and challenges of hash-based digital signatures in
a post-quantum context.

1



2 Reminder of Hash Functions

A cryptographic hash function h is a deterministic algorithm that takes an
input (or message) of arbitrary length and produces a fixed-size output, called
a hash value or digest. It is designed to be computationally efficient and, unlike
general-purpose hash functions, cryptographic hash functions are designed to
satisfy specific security properties:

1. Preimage Resistance (One-Wayness): For a given hash value y, it is com-
putationally infeasible to find any input x such that:

h(x) = y

2. Second Preimage Resistance: For a given input x1, it is computationally
infeasible to find a different input x2 ̸= x1 such that:

h(x1) = h(x2)

3. Collision Resistance: It is computationally infeasible to find any two dis-
tinct inputs x1 and x2 such that:

h(x1) = h(x2)

Additionally, a cryptographic hash function should exhibit an avalanche effect
(a small change in input drastically changes the output). The security of each
of these properties is thought to be well understood both in the classical and
quantum settings, as is shown in the following table by the best known attacks.

Security Property
Classical Complexity Quantum Complexity

With qRAM Without qRAM

One-wayness O(2n) No speedup O(2n/2) [11]
Preimage Resistance O(2n) No speedup O(2n/2) [11]

Collision Resistance O(2n/2)[20] O(2n/3)[6] Õ(22n/5) [10]

Table 1: Comparison of Classical and Quantum Complexity for Cryptographic
Hash Function Security Properties.

It should be noted that it has been proven that Grover’s speedup for one-
wayness and preimage resistance is optimal [1]. Also, in terms of time-space
complexity, the BHT algorithm is less efficient than the classical parallel rho
method [2].

For the rest of this paper, let f : {0, 1}n → {0, 1}n denote a one-way func-
tion and h : {0, 1}∗ → {0, 1}m a cryptographic hash function. We will denote
private key/values as sk, public key/values as pk and signatures as σ.

2



3 Lamport OTS

The Lamport One-Time Signature (OTS) scheme [14] was the first digital sig-
nature system based solely on the security of one-way functions. The signer
generates a private key consisting of 2m random bitstrings ski ∈ {0, 1}n, where
each message bit bi ∈ {0, 1} is associated with a pair (sk2i, sk2i+1). The
public key is defined as pki = f(ski) for i = 0, . . . , 2m − 1. To sign a mes-
sage digest b1, . . . , bm ∈ {0, 1}, the signature is the sequence σi = sk2i+bi for
i = 0, . . . ,m − 1, disclosing one preimage per bit. Verification consists of com-
puting f(σi) and checking that it matches the corresponding pk2i+bi . While
conceptually simple and secure under minimal assumptions, the scheme is highly
inefficient, requiring 2mn bits of private key material to sign each m-bit digest
and a fresh keypair for every message.

4 Winternitz OTS

The Winternitz1 One-Time Signature (W-OTS) scheme [7] enhances the Lam-
port approach by enabling each private key element to sign multiple message
bits using hash chains. The signer generates ℓ private key elements ski ∈ {0, 1}n,
and computes the public key as pki = f2w−1(ski), where the parameter w con-
trols the tradeoff between signature size and computational effort. To sign a
message M , its hash is divided into ℓ1 = ⌈n/w⌉ chunks of w bits, with each
chunk interpreted as an integer mi ∈ [0, 2w − 1]. The signature components are
computed as σi = fmi(ski). To prevent an attacker from modifying any chunk

mi to a larger value and forging signatures, a checksum C =
∑ℓ1

i=1(2
w − mi)

is appended to the message digest, ensuring that any increase in mi must be
offset by a decrease elsewhere and making the altered message require shorter
hash chains than available in the signature. The checksum is encoded into
ℓ2 = ⌈(log2 ℓ1 +w)/w⌉ additional chunks, resulting in a total of ℓ = ℓ1 + ℓ2 sig-
nature elements. Verification checks that pki = f2w−1−m′

i(σi) for each i, where
m′

i includes both message and checksum components.

Decades later, Hülsing independently published an upgradeWOTS+ that shorten
the signatures size and increase the security of the WOTS scheme [12]. This
variant introduces r = (r1, ..., rw−1) extra bitstrings (or a seed which pseudoran-
domly generates them) on the public key which act as bitmasks for f . Instead of
applying f(x) each time, we now define recursively ci(x, r) = f(ci−1(x, r)⊕ ri).
The trick is that if f is second preimage resistant then c is collision resistant.
Therefore WOTS+ reduces the signature size because you can use a hash func-
tion with shorter outputs than in WOTS at the same level of security or longer
hash chains.

1Suggested by Winternitz in 1979 but never published.

3



5 Merkle Trees

In 1979 Merkle proposed a way to identify a fixed number of one time verifica-
tion keys with a single public key using complete binary trees [15]. The signer
selects a height H ≥ 2, generating 2H OTS key pairs (skj , pkj) for 0 ≤ j < 2H ,
where skj is the private signing key and pkj the corresponding public verifica-
tion key (note that, for example, using using WOTS, skj would itself consist of
l private key elements). A Merkle tree is built over the public keys: each leaf is
the hash h(pkj), and each internal node is the hash of the concatenation of its
two child nodes. The root of this tree serves as the MSS public key, while the
collection of all skj values forms the MSS private key. To sign a message M ,
the signer hashes it to obtain a digest d = h(M), then signs d using the s-th
one-time signing key sks, producing σOTS. The Merkle signature includes σOTS,
the corresponding verification key pks, the index s, and the authentication path
As = (a0, . . . , aH−1), which is the set of sibling nodes needed to reconstruct
the path from g(pks) to the Merkle root. Verification proceeds in two steps: (1)
check that σOTS correctly signs the digest d using pks; (2) use the authentication
path and h(pks) to reconstruct the root of the Merkle tree. If the reconstructed
root matches the known public key, the signature is valid.

Figure 1: Merkle tree with public key pk15 to sign eight messages. Highlighted
nodes denote the authentication path for leaf pk6. Image from [5].

As with WOTS+, if, each time we hash a value we first XOR it with a random
bitmask, we don’t require collision resistance from the hash function, increasing
security. This variant is known as XMSS (eXtended Merkle Signature Scheme)
[8].

4



6 HORS

Notice that so far, all the signature schemes have been stateful, meaning the user
has to keep track of the private keys he has used. Stateful signature schemes
are problematic because they require the signer to maintain and correctly up-
date internal state information (such as counters or used key indices) across
all signing operations. Any state desynchronization (due to crashes, backups,
or concurrent signing) can lead to reused keys or invalid signatures, breaking
security guarantees and potentially enabling forgery.

The HORS (Hash to Obtain Random Subsets) signature scheme [18] is a few-
times stateless signature scheme defined over a one-way hash function and a
selection function H : {0, 1}∗ →

(
[t]
k

)
, where [t] = {1, 2, . . . , t}, and

(
[t]
k

)
de-

notes all subsets of [t] of size k. The private key is a list of random values
SK = {sk1, sk2, . . . , skt}, each ski ∈ {0, 1}n, and the public key is PK =
{pk1, pk2, . . . , pkt}, where pki = f(ski) for all i ∈ [t]. To sign a message
M ∈ {0, 1}∗, the signer computes H(M) = {i1, i2, . . . , ik} ⊂ [t] and outputs
the signature σ = {ski1 , ski2 , . . . , skik}. Verification involves computing H(M)
and checking that f(skij ) = pkij for all j = 1, . . . , k. The security of HORS
relies on the r-subset-resilient property of the function H: given any r messages
m1, . . . ,mr, it is computationally infeasible to find a new message m′ such that
H(m′) ⊆

⋃r
i=1 H(mi). This ensures that even after observing r signatures, an

adversary cannot forge a valid signature on a new message, assuming the hard-
ness of inverting f and the resilience of H.

Alternatively, one can sacrifice runtime to reduce the public key size and the
combined size of a signature and a public key by using a Merkle Tree but signing
using HORS instead of an OTS. This variant is known as HORST [3].

7 SPHINCS

The Merkle Signature Scheme requires computing a full Merkle tree with 2H

leaves and 2H − 1 internal nodes, which becomes computationally expensive
as the height H increases. To improve efficiency, a hyper-tree (or multi-tree)
structure can be used [9], consisting of T ≥ 2 layers of Merkle trees. Each
tree’s leaves are the public keys of OTS schemes and each tree’s root serves as
a public key: nodes in intermediate layers sign the roots of trees in the layer
below and the single top-layer root is the overall public key. To sign a message,
a private OTS key from a bottom-layer tree signs the message and the signa-
ture includes the corresponding authentication path and tree root. Since this
root is not known to the verifier, it is signed by an OTS key from the tree one
level above, along with its own authentication path. This process is repeated
layer by layer up to the top. Verification begins at the message and proceeds
upward, verifying each OTS signature and reconstructing each tree root via its
authentication path, until the top-level root is obtained and compared with the

5



known hyper-tree public key.

The SPHINCS (Stateless Practical Hash-Based Incredibly Nice Cryptographic
Signature) signature scheme [3] builds a virtual hyper-tree of total height h,
divided into d layers of Merkle trees, each of height h/d. The leaves of each
tree are derived from WOTS+ public keys, and each such tree can be used to
sign up to 2h/d messages. The structure is hierarchical: the top layer (d − 1)
contains a single Merkle tree whose WOTS+ keys are used to sign the roots of
the trees in the layer below. In general, layer i consists of 2(d−1−i)(h/d) trees,
and the WOTS+ keys from trees on layer i + 1 are used to sign the roots of
those in layer i. At the lowest layer (layer 0), each WOTS+ key signs a HORST
public key, which is then used to sign the actual message. The hyper-tree is
called “virtual” because none of it is precomputed or stored in full; instead, all
keys and nodes are generated on demand from a master seed and deterministic
algorithms, allowing for efficient, stateless signing.

Figure 2: Virtual structure of a SPHINCS signature. Image from [3]

SPHINCS+ [4] retains the high-level structure of SPHINCS but introduces sev-
eral internal optimizations, most notably the replacement of the few-time sig-
nature scheme HORST with FORS (Forest of Random Subsets). Instead of a
single large tree as in HORST, a FORS key consists of k binary trees, each
of height log t, with a total of kt secret key elements. The leaves are hashes
of these secret values, and the public key is computed as a tweakable hash (a

6



generalization of hashing using bitmasks for improved security analysis) over
the concatenation of the k tree roots. The big difference to HORST is that now
there is a dedicated set of secret key values per index derived from the mes-
sage. Although FORS may appear less efficient under identical parameters, its
structure allows the use of smaller parameters, ultimately reducing both signa-
ture size and computation time. Additionally, SPHINCS+ improves security by
eliminating unverifiable index selection. In SPHINCS, the index of the HORST
key was pseudorandom and not externally verifiable, enabling multi-target at-
tacks. SPHINCS+ addresses this by deriving both the message digest and the
FORS index as (md, |, idx) = H(R,PK,M), where R is a randomized value in-
cluded in the signature. This binds each message to a unique FORS instance,
preventing cross-instance attacks and allowing the index to be omitted from the
signature. Moreover, SPHINCS+ incorporates multi-target attack mitigation
techniques proposed in [13].

8 SLH-DSA

In 2024, SPHINCS+ was standardized by NIST [17] with some minor adjust-
ments, most notably regarding the accepted parameter sets. Specifically, 12
parameter sets were approved, differing on the hash family used (either SHA-2
or SHAKE), as well as two signature scheme variants: ’s’ for relatively small
signatures (‘s’) or ’f’ to have relatively fast signature generation. The parame-
ters are categorized for security levels 1, 3, and 5. Using this approach, security
strength is not described by a single number (e.g., ”128 bits of security”). In-
stead, each parameter set is claimed to offer security at least equivalent to a
generic block cipher with a prescribed key size. More precisely, the compu-
tational resources needed to break SLH-DSA are stated to be greater than or
equal to those required to break the block cipher when computational resources
are estimated using any realistic model of computation.

9 Conclusion

Hash-based cryptography stands out as one of the most conservative and well-
understood foundations for digital signatures in the post-quantum era. Among
its variants, SLH-DSA offers robust, stateless security based purely on the
second-preimage resistance of cryptographic hash functions, making it highly
reliable even in the face of evolving cryptanalytic threats. The primary tradeoff
with SLH-DSA is performance. It is significantly slower and produces much
larger signatures compared to lattice-based schemes like ML-DSA or Falcon.
However, its flexible parameter sets offer a balance between size and speed,
though it remains generally less efficient. This performance cost, however, is
justified by the unmatched long-term security confidence it provides, making it
particularly valuable for systems that require durable, long-lived signatures or
where updating is not feasible.

7



It is also worth noting that NIST has standardized stateful hash-based schemes
like XMSS and LMS [16], which offer better performance than SPHINCS+ but
come with the caveat of requiring careful state management. Mismanagement
of the signing state can render these schemes insecure, posing challenges for
secure deployment in certain environments.

In summary, while hash-based signature schemes may not be the fastest or
smallest, they represent the gold standard in conservative security. They are
particularly compelling for high-assurance use cases, where resilience against
both quantum and classical attacks, as well as the maturity of the cryptographic
foundation, are paramount.

References

[1] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the colli-
sion and the element distinctness problems. Journal of the ACM (JACM),
51(4):595–605, 2004.

[2] Daniel J Bernstein. Cost analysis of hash collisions: Will quantum com-
puters make sharcs obsolete. SHARCS, 9:105, 2009.

[3] Daniel J Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter
Schwabe, and Zooko Wilcox-O’Hearn. Sphincs: practical stateless hash-
based signatures. In Annual international conference on the theory and
applications of cryptographic techniques, pages 368–397. Springer, 2015.

[4] Daniel J Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The sphincs+ signature framework.
In Proceedings of the 2019 ACM SIGSAC conference on computer and com-
munications security, pages 2129–2146, 2019.

[5] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Nature,
549(7671):188–194, 2017.

[6] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of
hash and claw-free functions. ACM Sigact News, 28(2):14–19, 1997.

[7] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and
Markus Rückert. On the security of the winternitz one-time signature
scheme. International Journal of Applied Cryptography, 3(1):84–96, 2013.

[8] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss-a practical
forward secure signature scheme based on minimal security assumptions.
In Post-Quantum Cryptography: 4th International Workshop, PQCrypto
2011, Taipei, Taiwan, November 29–December 2, 2011. Proceedings 4,
pages 117–129. Springer, 2011.

8



[9] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya,
and Camille Vuillaume. Merkle signatures with virtually unlimited signa-
ture capacity. In Applied Cryptography and Network Security: 5th Interna-
tional Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007. Proceedings
5, pages 31–45. Springer, 2007.

[10] André Chailloux, Maŕıa Naya-Plasencia, and André Schrottenloher. An
efficient quantum collision search algorithm and implications on symmetric
cryptography. In Advances in Cryptology–ASIACRYPT 2017: 23rd Inter-
national Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II 23, pages 211–240. Springer, 2017.

[11] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the The-
ory of Computing (STOC), Philadelphia, Pennsylvania, USA, May 22-24,
1996, pages 212–219. ACM, 1996.

[12] Andreas Hülsing. W-ots+–shorter signatures for hash-based signature
schemes. In Progress in Cryptology–AFRICACRYPT 2013: 6th Interna-
tional Conference on Cryptology in Africa, Cairo, Egypt, June 22-24, 2013.
Proceedings 6, pages 173–188. Springer, 2013.

[13] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target
attacks in hash-based signatures. In Public-Key Cryptography–PKC 2016:
19th IACR International Conference on Practice and Theory in Public-Key
Cryptography, Taipei, Taiwan, March 6-9, 2016, Proceedings, Part I, pages
387–416. Springer, 2016.

[14] Leslie Lamport. Constructing digital signatures from a one way function.
Technical Report CSL-98, October 1979.

[15] Ralph C Merkle. A certified digital signature. In Conference on the Theory
and Application of Cryptology, pages 218–238. Springer, 1989.

[16] National Institute of Standards and Technology. Recommendation for
stateful hash-based signature schemes. Department of Commerce, Wash-
ington, D.C., 2020. Available: https://doi.org/10.6028/NIST.SP.800-208.

[17] National Institute of Standards and Technology. Stateless hash-based digi-
tal signature standard. Department of Commerce, Washington, D.C., 2024.
Available: https://doi.org/10.6028/NIST.FIPS.205.

[18] Leonid Reyzin and Natan Reyzin. Better than biba: Short one-time sig-
natures with fast signing and verifying. In Australasian Conference on
Information Security and Privacy, pages 144–153. Springer, 2002.

[19] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 387–394, 1990.

9



[20] Gideon Yuval. How to swindle rabin. Cryptologia, 3:187–189, 1979.

10


