
Lattice-Based Post-Quantum Cryptography

Enrique Pérez Haro and Pablo Gutiérrez Félix

1 Overview

As quantum computing hardware advances, its security implications are of paramount in-
terest to decision-makers in the field of cybersecurity, particularly in cryptography. Shor’s
algorithm has been shown to significantly reduce the computational hardness of widely
used public-key cryptosystems that rely on mathematical problems such as prime factor-
ization, the discrete logarithm problem, and elliptic curve cryptography. Consequently,
Post-Quantum Cryptography (PQC) aims to develop new cryptographic schemes based on
mathematical problems that remain computationally infeasible to solve, even with quantum
computers. Depending on the mathematical problem at hand, different paradigms within
PQC have emerged: hash-based, multivariate, code-based, isogeny-based, or lattice-based
cryptography. This report focuses on the latter, aiming to provide insights into its historical
development, mathematical underpinnings, key algorithms, and the challenges it faces.

As will be described later, lattice-based cryptography has emerged as the main can-
didate to lead the PQC migration from the various PQC paradigms already mentioned.
In fact, the National Institute of Standards and Technology (NIST) recently released the
standards for post-quantum algorithms, which are now recommended for cryptographic use.
Two out of the three standardized algorithms rely on lattice-based cryptographic schemes:
CRYSTALS-Kyber (renamed ML-KEM) as a Key Encapsulation Mechanism (KEM), and
CRYSTALS-Dilithium (renamed ML-DSA) for digital signatures. As a result, this explo-
ration aims to provide key insights into the mathematical functioning of such algorithms,
as well as an overview of the current investigative landscape within the field of lattice-based
cryptography.

The use of lattices in modern cryptosystems dates back to 1996 when Aijtai demon-
strated that solving a random instance of the Small Integer Solution (SIS) problem is as
challenging as solving certain problems that are believed to be difficult for all lattices [1].
This "reduction" reassures that the computational hardness found within the SIS problem
(and, therefore, the other believed-to-be complex lattice problems) is not a coincidence
linked to a specific instance, but rather linked to deep, fundamental properties of lattices,
making them suitable for cryptographic schemes. Aijtai and Dwork would later propose a
public-key encryption scheme based on these security guarantees but proved to be ineffi-
cient and complex in its implementation, providing more of a theoretical approach than a
tangible result [2]. During that time, in 1998, Hoffstein, Pipher, and Silverman developed
NTRU, a public-key encryption scheme based on a lattice problem over polynomial rings,
a new potentially hard lattice-based problem [6]. However, the security of NTRU is based
on its best-known attacks, rather than on a theoretical foundation.

In 2009, Regev suggested a new type of lattice-based problem, the Learning with Errors

1

(LWE) problem, a flexible problem that perfectly suits cryptographic systems [9]. Similar
to what Aijtai suggested slightly over a decade before, Regev proved that solving a particu-
lar instance of the LWE problem was as complex as any known-to-be-difficult lattice-based
problem. With this, cryptographers built upon these previously mentioned works, designing
new cryptosystems that were theoretically robust yet secure and efficient in their imple-
mentation. This is how lattice-based algorithms became the best-positioned proposal to
redesign public key cryptography for the quantum era.

2 Lattices

A lattice is an abstract mathematical structure that encompasses a set of points in an n-
dimensional space with a periodic structure. The points in the lattice (L) are generated
by a basis matrix B ∈ Rn×m which contains the vectors b1, . . . , bm ∈ Rn in its columns,
where m is the number of columns in B. The resultant lattice can be defined through the
following set

L(b1, . . . , bm) =

{
m∑
i=1

xibi : xi ∈ Z

}

The same expression can be described using its equivalent matrix definition

L(b1, . . . , bm) = {Bx⃗ : x⃗ ∈ Zm}

In any case, xi in Equation 1 and the elements within vector x in Equation 2 are integer
constants, which makes the lattice discrete. Therefore, these expressions define the lattice
as the set of all vectors (points in the lattice) that are integer linear combinations of B’s
columns [3].

A key characteristic about lattices is that the same lattice can be generated from two
different matrix bases, as depicted in Figure 1. In this case, the red basis (formed by
vector v and u) and the green basis (formed by w and a generate the same lattice. This is
better understood by introducing the concept of unimodular matrices: matrices with integer
coefficients whose determinant is 1 or -1. Two bases B and C will generate the same lattice
if and only if there exists a unimodular matrix U such that B = C · U . Recall that the
determinant of a matrix describes the area (or volume in higher dimensional scenarios)
of the fundamental region (parallelepiped) of a lattice, portrayed in Figure 1 as the red
and green areas of both bases. Therefore, B = C · U ensures that both bases have equal
determinant up to sign, which preserves the lattice structure. Equivalently, B and C will
generate the same lattice if C can be obtained by applying the following operations on B:
Column swapping, multiplying a column by -1, and adding a column’s multiple to the other
column. Any of these operations are equivalent to multiplying C by a unimodular matrix.

2

Figure 1: Two different bases generating the same lattice.

3 Lattice-Based Problems

3.1 SVP and CVP

There are certain problems related to lattices that are thought to be very hard. These
problems are the foundation for some well-known cryptographic schemes, like the Kyber
or Dilithium, two algorithms recently standardized by NIST. The first problem is known
as the Shortest Vector problem (SVP). It aims to find an integer linear combination of the
basis so that the resultant vector is the closest point to the origin (without counting the
origin) that belongs to the lattice. Essentially, the output of this problem is the nonzero
vector with the shortest norm (x) where

∥x∥ = min {∥x∥ : x ∈ L − {0}}

The closest vector problem (CVP) is very similar to the SVP, but instead of interacting
with the origin, a reference random point in the space is provided together with the lattice
basis. The aim is to find the closest lattice point to the reference point. For a given vector
w ∈ Rm and a lattice basis B, find the vector v∗ ∈ L(B) so that

∥w − v∗∥ = min {∥w − v∥ : v ∈ L(B)}

Finding the linear combination that outputs the correct vector for the SVP and the CVP
is thought to be very hard, particularly in certain instances. At least as complex as solving
an SIS problem, as Aijtai proved in 1996 [1].

3

3.1.1 Babai’s algorithm

An initial approach to solving the CVP is the well-known Babai’s algorithm. But before
outlining its functioning, we must introduce the concept of orthogonality of a lattice basis.

Given a basis v1, . . . , vm ∈ Rn for a lattice, the fundamental domain corresponding to
this basis is defined as:

F(v1, . . . , vm) = {
m∑
i=1

tivi : 0 ≤ ti < 1}

As it can be inferred, the n-dimensional volume of two fundamental domains correspond-
ing to bases of the same lattice is also the same. Then, this volume is an invariant of the
lattice called the determinant of the lattice, denoted as det(L).

If the matrix of a lattice basis is a square matrix (m = n), we can also compute the
determinant of the lattice as the determinant of that matrix. This is a particular case of
the general result

det(L(B)) =
√

det(BTB)

The determinant of a lattice allows us to calculate how "orthogonal" a lattice basis is.
This is due to the following inequality

det(L) ≤ ||v1|| · · · ||vm||

Moreover, the equality occurs only when the vectors vi are orthogonal. Therefore, we define
the Hadamard ratio of a lattice basis as

H(B) =

(
det(L)

||v1|| . . . ||vm||

) 1
m

which gives a number in (0,1]. The closer this number is to 1, the more orthogonal the
basis is considered to be.

We are interested in nearly orthogonal basis, since this makes SVP and CVP easier. This
is clear if we have an orthogonal basis, i.e., H(B) = 1. Since every vector of the lattice is
of the form a1v1 + · · ·+ amvm, with ai ∈ Z, using the orthogonality of vi,

||a1v1 + · · ·+ amvm||2 = a21||v1||2 + · · ·+ a2m||vm||2

Then it is obvious that the solution of SVP is in the set {±v1, . . . ,±vm}.

We can solve CVP similarly to the process outlined for SVP. If w ∈ Rn is a vector not
necessarily in the lattice, we can solve a linear system to find ti such that w = t1v1 + · · ·+
tmvm. If v = a1v1 + · · ·+ amvm is any lattice vector,

||v − w||2 = (a1 − t1)
2||v1||2 + · · ·+ (am − tm)

2||vm||2

The closest lattice vector to w can be obtained taking each ai as the nearest integer to
ti.

The process we made for solving CVP with an orthogonal basis is known as Babai’s
algorithm, and can be extended to any basis. Given a lattice basis v1, . . . , vm ∈ Rn and a
vector w ∈ Rn, execute the following steps:

4

• Find ti that verify w = t1v1 + · · ·+ tmvm.

• Calculate ai as the nearest integer to ti.

• We return the lattice vector v = a1v1 + · · ·+ amvm.

We then know that Babai’s algorithm solves CVP correctly when the basis of the lattice
is orthogonal. In general, this algorithm gives an approximated solution to CVP, and
the more orthogonal the basis is, the better the approximation obtained may be. Let us
illustrate the functioning of this algorithm with an example:

First, choose a lattice with basis B = (v1, v2), v1 = (137, 312), v2 = (215,−187). We
apply the algorithm to w = (53172, 81743) and obtain:

• t1 ≈ 296.85, t2 ≈ 58.15.

• a1 = 297, a2 = 58.

• We return v = 297v1 + 58v2 = (53159, 81818).

We see that ||v − w|| ≈ 76.12 and that H(B) ≈ 0.977.

Then, choose another basis B′ = (v′1, v
′
2) of the same lattice, with v′1 = 5v1 + 6v2 =

(1975, 438), v′2 = 19v1 + 23v2 = (7548, 1627). Applying Babai’s algorithm to w with this
basis, we obtain:

• t1 ≈ 5722.66, t2 ≈ −1490.34.

• a1 = 5723, a2 = −1490.

• We return v′ = 5723v1 − 1490v2 = (56405, 82444).

In this case, ||v′ − w|| ≈ 3308.12 and H(B′) ≈ 0.077.

This example naturally leads to the question of obtaining a nearly orthogonal basis
when starting with an arbitrary basis of a lattice. This is the purpose of another important
algorithm, known as LLL, which will be examined later in this section.

3.1.2 Gaussian reduction

When working with a 2-dimensional lattice, there is an algorithm which always solves SVP.
This algorithm is known as Gaussian reduction, and is an integer variant of the Gram-
Schmidt orthogonalization method.

Recall that when we have a vectorial space basis v1, . . . , vn ∈ Rn, the Gram-Schmidt
orthogonalization process gives us an orthogonal basis v∗1, . . . , v

∗
n, obtained as

v∗i = vi −
i−1∑
j=1

µi,jv
∗
j , µi,j =

vi · v∗j
v∗j · v∗j

The method can be also applied only to m linearly independent vectors, giving an or-
thogonal basis of the subspace generated by those vectors.

5

If we try to apply this method to a lattice basis, we find the problem that µi,j are not
necessarily integers, so the resultant vectors may not be in the lattice, and we do not obtain
a new lattice basis. However, if the µi,j were integers, the set obtained is an orthogonal
basis of the same lattice (it is easy to see that both bases are related by an upper triangular
unimodular matrix with 1’s in the main diagonal).

In Gaussian reduction algorithm, the integer version of Gram-Schmidt method is applied
to a lattice basis of dimension 2. The only difference with the method previously described
is that we use the nearest integer to each µ2,1 when calculating v∗2.

The Gaussian algorithm can be applied to a lattice basis v1, v2, through the following
steps:

1. If ||v2|| < ||v1||, swap v1 and v2.

2. Apply integer Gram-Schmidt to the basis {v1, v2}.

3. If the basis changed in step 2 (the nearest integer to µ2,1 is not zero, we go back to
step 1.

One important result about this algorithm is that the first vector of the final basis is
always a solution to SVP. Besides, as it can be inferred, the angle between the vectors of
the final basis is in [π

3
, 2π

3
].

3.1.3 LLL

In 1982, Lenstra, A.K., Lenstra, H.W. and Lovász, L. invented an algorithm for finding a
short, nearly orthogonal basis of a lattice in polynomial time [7]. In this algorithm, the
concept of LLL-reduced basis is used.

Given a lattice basis B = (v1, . . . , vn), B′ = (v∗1, . . . , v
∗
n) the set obtained after applying

Gram-Schmidt (not the integer version described previously, and then B′ not necessarily
being a basis of the lattice), and µi,j the coefficients of Gram-Schmidt. We say that the
lattice basis B is LLL-reduced if there exists δ ∈ (0.25, 1) such that:

1. |µi,j| ≤ 1
2
, for 1 ≤ j < i ≤ n (Size condition).

2. δ||v∗i−1||2 ≤ ||v∗i ||2 + µ2
i,i−1||v∗i−1||2, for 1 < i ≤ n (Lovász condition).

The interest in LLL-reduced bases comes from the fact that, if {v1, . . . , vn} is an LLL
reduced basis for a lattice L, then ||v1|| ≤ 2(n−1)/2λ, with λ = min {∥x∥ : x ∈ L − {0}}.

In addition,
n∏

i=1

||vi|| ≤ 2n(n−1)/4det(L)

The first inequality means that an LLL-reduced basis gives us an approximated solution
to SVP, and the second one gives a lower bound for Hadamard ratio, in both cases with an
exponential factor.

6

The LLL algorithm takes a lattice basis, and returns an LLL-reduced basis of the same
lattice in polynomial time. A description of this algorithm can be found in [7].

Hence, if we are given a lattice basis, a way of attempting to solve CVP is to obtain an
LLL-reduced basis of the lattice (which should be more orthogonal) and then apply Babai’s
algorithm.

3.2 LWE

The Learning with Errors (LWE) problem has a different nature, but cryptographers re-
framed it into a lattice problem to prove that LWE is as complex as hard lattice-based
problems like the SVP and CVP [9]. The key functionality of the LWE problem is its
versatility, making it perfectly suitable for cryptographic schemes. The fundamental con-
cept of the LWE problem involves a system of linear equations containing intentionally
added noise to the independent terms. It is important to note that these systems of equa-
tions are defined modulo a large prime number, reducing the problem to a finite structure.
The LWE problem demands finding the variables within the approximate equations, for
example, s1, s2, s3, s4 in the following system of equations, as described by Regev [10].

14s1 + 15s2 + 5s3 + 2s4 = 8 (mod 17)

13s1 + 14s2 + 14s3 + 6s4 = 16 (mod 17)

6s1 + 10s2 + 13s3 + 1s4 = 3 (mod 17)

10s1 + 4s2 + 12s3 + 16s4 = 12 (mod 17)

Note that this system of equations includes noise added to the independent terms. By
highlighting the added error in red, the correct independent terms (without the error) can
be identified for secrets s1 = 0, s2 = 13, s3 = 9, s4 = 11

14s1 + 15s2 + 5s3 + 2s4 = 7 + 1 (mod 17)

13s1 + 14s2 + 14s3 + 6s4 = 0 + 16 (mod 17)

6s1 + 10s2 + 13s3 + 1s4 = 3 + 0 (mod 17)

10s1 + 4s2 + 12s3 + 16s4 = 13 − 1 (mod 17)

The inclusion of noise within each equation of this system complicates the process of
finding the secrets substantially. Without the errors, Gaussian elimination can solve this
problem in polynomial time. With the errors, because Gaussian elimination takes linear
combinations of the equations within the system, the errors are spread throughout the
equations, making it significantly complicated to find the original secrets [10].

4 Lattice-Based Cryptographic Algorithms

4.1 GGH

The already mentioned lattice-based problems serve as the foundation for several known
cryptosystems. For example, Goldreich, Goldwasser, and Halevi suggested a scheme based

7

on the CVP [4]. In it, Alice generates two matrices, where both can be the basis of the
same lattice. On one basis, the vectors will be almost perpendicular (the "good" basis),
and the other will have both vectors close to parallel (the "bad" basis). Note that solving
the CVP is a significantly harder task when solving it with a bad basis. This is because, to
generate the same lattice, finding linear combinations of the vectors requires an extensive
amount of computations. Therefore, Alice keeps the good basis as a private key and shares
the bad basis as her public key. Bob, therefore, uses the bad basis to embed a message as
a lattice point. Then, he selects a non-lattice point close to the message point and sends
the coordinates to Alice. Alice can find the closest lattice point (Bob’s message) through
the use of the good basis. Nonetheless, an eavesdropper will have to do it on a bad basis,
a significantly harder task.

The following example describes the inner functioning of the GGH public-key crypto-
graphic scheme [5]. First Alice chooses a ser of linearly independent vectors which are
reasonably orthogonal. This vector basis will serve as her private key or her "good basis",
for example

v1 =

−97
19
19

 , v2 =

−36
30
86

 , v3 =

−184
−64
78

Alice can verify whether it is a good choice of vectors if computing the Hadamard ratio of
her basis (the set of vectors chosen) outputs a number relatively close to 1

H(v1, v2, v3) = (
859516

∥v1∥∥v2∥∥v3∥
)
1
3 ≈ 0.74620

Next, Alice chooses a unimodular matrix U with determinant det(U) = ±1, in this case

U =

4327 −15447 23454
3297 −11770 17871
5464 −19506 29617

With this, she multiplies her original basis (her private key) with U , obtaining her pubic
key or "bad basis"

w1 =

−4179163,
−1882253
583183

 , w2 =

−3184353
−1434201
444361

 , w3 =

−5277320
−2376852
736426

By calculating their Hadamard ratio of the public basis, it is possible to verify the non-
orthogonality of this basis

H(v1, v2, v3) = (
det(U)

∥w1∥∥w2∥∥w3∥
)
1
3 ≈ 0.0000208

Assume the message that Bob wants to send to Alice is the lattice point w1 =

 86,
−35
−32

. By

using the random element r =

−4,
−3
2

, Bob can generate the non-lattice point "close" to

his message. Thus, the corresponding ciphertext will be

e =

−4179163 −1882253 583183
−3184353 −1434201 444361
−5277320 −2376852 736426

 ·

 86,
−35
−32

+

−4,
−3
2

 =

−79081427,
−35617462
11035473

8

Using Babai’s algorithm described in section 3.1.1, Alice expresses e as a linear combination
of her private key with real coefficients

e ≈ 81878.97v1 − 292300.00v2 + 443815.04v3

Then, Alice rounds to the nearest integer and operates usign the values of her private key,
obtaining a lattice vector that is close to e

v =

−79081423,
−35617459
11035471

Alice now expresses v as a linear combination of her public key and m is found in the
coefficients

v = 86w1 − 35w2 − 32w3

Nonetheless, in the case of an eavesdropper Eve trying to decrypt m, after applying Babai’s
algorithm using Alice’s public key, the output is

e ≈ 75.76w1 − 34.52w2 − 24.18w3

Which, after rounding and computing the result

v′ =

−79508353,
−35809745
11095049

Expressing v′ as a linear combination of Alice’s public key will output the incorrect

m′ =

 76,
−35
−24

 instead of m =

 86,
−35
−32

. In fact, computing Babai’s algorithm on the public

basis produces a remarkably higher difference in norm when compared to computing it with
the private basis, where ∥e− v∥ ≈ 472004.09 and ∥e− v′∥ ≈ 5.39

4.2 Cryptographic schemes using LWE

It is worth noting that two of the NIST standardized algorithms (Kyber, which became
ML-KEM after the standardization process, and Dilithium, renamed ML-DSA) rely on the
LWE problem. In short, Kyber’s security is based on the Decisional Module Learning With
Errors (D-MLWE) problem. This problem is a variation of the classic LWE problem, and it
involves working with matrices and polynomials over a ring. In simple terms, the D-MLWE
problem asks whether it is possible to find the private key in the form of a polynomial
from a set of noisy equations derived from a different polynomial. Similarly, Dilithium
uses this approach together with the "Fiat-Shamir with Aborts" technique to generate a
quantum-resistant lattice-based Schnorr-like signature with several optimizations [8].

We will now show an implementation of the LWE problem in a cryptographic scheme, an
approach that serves as the foundation of several important algorithms like the standardized
ML-KEM algorithm mentioned earlier. For simplicity, we will use an example.

First of all, a prime modulo is selected (3329 in ML-KEM). We also have to select the
size of the system of equations (the number of equations). We will use the prime 47 and

9

4x4 systems in this example. Then, a random matrix modulo 47 (entries between 0 and 46)
and a random small secret vector (small in the sense of close to 0 modulo 47) are generated.

For example:

A =

44 20 2 41
36 35 11 27
11 12 3 34
16 45 33 29

 , s =

0
1
46
46

The following step is to compute As and to add a small random vector e:

As+ e =

44 20 2 41
36 35 11 27
11 12 3 34
16 45 33 29

0
1
46
46

+

1
2
0
0

 =

1999
1785
1714
2897

 ≡

25
46
22
30

 (mod 47)

The resultant vector will be denoted as

t =

25
46
22
30

The public key will be the system Ax = t, and s the private key. We recall that due to

the error e added to the linear system, the secret s is difficult to obtain from the system.
Until this point, we have just generated the keys to be used in encryption and decryption.
Let’s see how we can encrypt a bit.

For encryption, we first make a random linear combination, by small coefficients, of the
rows of the system. If we sum the first two equations and substract the fourth one:

(
1 1 0 −1

)
44 20 2 41
36 35 11 27
11 12 3 34
16 45 33 29

x1

x2

x3

x4

 ≡
(
1 1 0 −1

)
25
46
22
30

 (mod 47)

(
17 10 27 39

)
x1

x2

x3

x4

 ≡ 41 (mod 47)

We obtain the new equation

17x1 + 10x2 + 27x3 + 39x4 ≡ 41 (mod 47)

After obtaining the new equation, we add small random small errors in each coefficient:

16x1 + 11x2 + 28x3 + 41x4 ≡ 40 (mod 47)

10

Finally, if a 0 is encrypted, the previous equation is published, and if a 1 is encrypted
instead, a big error (normally half of the modulo) is added to the independent term, and
then the equation is published:

16x1 + 11x2 + 28x3 + 41x4 ≡ 40 + 23 (mod 47)

16x1 + 11x2 + 28x3 + 41x4 ≡ 16 (mod 47)

For decryption, we will just evaluate the secret key in the equation published by the
sender of the message:

16 · 0 + 11 · 1 + 28 · 46 + 41 · 46 = 3185 ≡ 36 (mod 47)

Finally, we compare the result of the previous operation with the independent term of
the published equation. If a 0 was encrypted, we see that both numbers are close (40 and
36). If a 1 was encrypted, there is a big difference between them (16 and 36). In practice,
we decrypt a 0 if the difference between both numbers is closer to 0 modulo 47 than to 23,
and we decrypt 1 otherwise.

The key part of decryption is that we know an approximated solution of the system,
that also has small coefficients. We could try to use the exact solution of the system, but
this solution will not have small coefficients in general. If we try to decrypt with the exact
solution, the small errors added after making a linear combination of the rows of the matrix
during encryption, will distort the result when evaluating the equation during decryption,
being unable to distinguish whether the result differs from the independent term because
the sender encrypted a 1 or because of the other errors added during encryption.

The generation, encryption and decryption in ML-KEM are very similar to the process
previously described, although the main difference is that instead of integer coefficients,
polynomials over a ring are used. For example, in one of the versions of ML-KEM, a 4x4
matrix is generated, and each element of the matrix is an element of the polynomial ring
Zp[X]/(X256 + 1), with p = 3329 as mentioned before. Then, each of this polynomials can
be described by 256 coefficients in Zp.

References

[1] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Comput-
ing, STOC ’96, page 99–108, New York, NY, USA, 1996. Association for Computing
Machinery.

[2] Miklos Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In Proceedings of the Twenty-Ninth Annual ACM Symposium on The-
ory of Computing, STOC ’97, page 284–293, New York, NY, USA, 1997. Association
for Computing Machinery.

[3] D.J. Bernstein, J. Buchmann, and E. Dahmen, editors. Post-quantum cryptography.
PQCrypto : international workshop on post-quantum cryptography. Springer, Ger-
many, 2009.

11

[4] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Burton S. Kaliski, editor, Advances in Cryptology —
CRYPTO ’97, pages 112–131, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[5] J. Hoffstein, J. Pipher, and J.H. Silverman. An Introduction to Mathematical Cryptog-
raphy. Undergraduate Texts in Mathematics. Springer, New York, NJ, USA, 2008.

[6] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key
cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–288,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[7] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261:515–534, 1982.

[8] Vadim Lyubashevsky. Basic lattice cryptography: The concepts behind kyber (ML-
KEM) and dilithium (ML-DSA). Cryptology ePrint Archive, Paper 2024/1287, 2024.

[9] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), September 2009.

[10] Oded Regev. The learning with errors problem (invited survey). In 2010 IEEE 25th
Annual Conference on Computational Complexity, pages 191–204, 2010.

12

	Overview
	Lattices
	Lattice-Based Problems
	SVP and CVP
	Babai's algorithm
	Gaussian reduction
	LLL

	LWE

	Lattice-Based Cryptographic Algorithms
	GGH
	Cryptographic schemes using LWE

