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Abstract

In recent years, Advanced Persistent Threats (APTs) have become
a major issue for critical infrastructures that are increasingly integrat-
ing modern IT technologies. This requires the development of advanced
cyber-security services that can holistically detect and trace these attacks,
beyond traditional solutions. In this sense, Opinion Dynamics has been
proven as an effective solution, as they can locate the most affected areas
within the industrial network. With this information, it is possible to put
in place accurate response techniques to limit the impact of attacks on
the infrastructure. In this paper, we analyze the applicability of Opinion
Dynamics to trace an APT throughout its entire life cycle, by correlat-
ing different anomalies over time and accounting for the persistence of
threats and the criticality of resources. Moreover, we run various experi-
ments with this novel technique over a testbed that models a real control
system, thereby assessing its effectiveness in an actual industrial scenario.
Keywords: Advanced Persistent Threat, Detection, Traceability, Opin-
ion Dynamics, Testbed

1 Introduction

Traditionally, SCADA (Supervisory Control and Data Acquisition) systems that
govern the critical infrastructures from all industrial sensors (e.g., nuclear plants,
Smart Grid or transport systems) have been working in isolation from external
networks. To a certain degree, their security was based on obscurity. Nowadays,
this contrasts with the advent of Industry 4.0, where the Industrial Control Sys-
tems have been increasingly connected to external networks (e.g., the Internet)
to outsource several applications and store data in the Cloud. In addition, new
technologies are being adopted to optimize the throughput while minimizing the
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costs, such as the Internet of Things (IoT) and Big Data. In consequence, the
number of cyber-security issues in these environments has increased dramati-
cally in recent years, as many reports show [1].

To date, one of the most critical hazards to industrial infrastructures is the
so-called Advanced Persistent Threats (APTs), which are specifically targeted
attacks perpetrated by well-resourced organizations, who in most cases make
use of zero-day vulnerabilities and stealthy techniques to go unnoticed over
a long period of time. Stuxnet was the first of these threats reported back
in 2010, which caused disruption to an Iranian nuclear plant for four years
without being detected [2]. After this, many others came into the spotlight [3],
but all of them have in common the difficulty to be detected and traced. It is
not surprising that traditional security mechanisms such as firewalls, Intrusion
Detection Systems (IDSs), antivirus, etc. do not successfully deter the effect of
these threats, so that they must be coupled with advanced services to protect
the entire infrastructure from a holistic point of view, during the life-cycle of
the APT within the organization.

In this context, graph theory can be leveraged to apply distributed algo-
rithms that correlate anomalies measured across the network that are potential
consequence of these attacks, while being able to locate the most affected areas
within the topology. This innovative approach was applied in [4], where Opinion
Dynamics was introduced. This is a multi-agent collaborative algorithm that
keeps track of the anomalies suffered by devices in order to provide valuable
information for the provisioning of accurate response techniques that minimize
the impact of the APT on the infrastructure. However, this publication only
focuses on the detection of changes in the topology of the network from a theo-
retical perspective (i.e., the removal/addition of edges between nodes), without
considering an actual set of attack vectors against nodes from a technical point
of view. This is the basis for our extended solution, that shows the feasibility of
this technique to include realistic sources of anomaly and successfully trace the
movement of an APT within a defined network architecture. For this reason,
in this article we review the literature of the most reported cases of APTs with
the aim to realistically represent their stages and the type of anomalies detected
in each step of their kill chain (i.e., the sequence of individual attacks). The
effectiveness of the solution is theoretically demonstrated, computing indicators
of the health status of the network. Finally, the technique is implemented and
executed over a real industrial environment, through the use of a testbed. We
can summarize our contributions as:

• Modeling of an APT and its attack actions considering the persistence
and criticality of resources.

• Adaptation and implementation of a distributed algorithm to detect real-
istic anomalies affecting the network nodes.

• Creation of indicators to inform the operators about the threat evolution
and the network health status.
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• Demonstration of the effectiveness of the Opinion Dynamics solution on a
testbed.

The remainder of this paper is organized as follows: Section 2 outlines the
proposed architecture and introduces the concept of Opinion Dynamics. In Sec-
tion 3 the literature is reviewed to extract information about the APT modus
operandi. Based on this extracted model, an algorithm that can detect and
trace the presence of APT is described in Section 4. Then, the approach is the-
oretically and experimentally analyzed in Section 5 and 6, respectively. Finally,
the conclusions drawn are presented in Section 7.

2 Preliminaries

In this section, we lay the theoretical base that permits, on one hand, the formal
representation of actual APT attacks over a defined network and, on the other
hand, the execution of the detection technique.

2.1 Proposed network architecture

As discussed in the Introduction, most industrial ecosystems are nowadays
adopting cutting-edge technologies into their production chain and monitor-
ing systems. The counterpart of the modernization of industrial technologies
(which we will refer to as ‘operational technologies’ or OT) and its integration
of IT (‘information technology’) in this context comes with the appearance of
new cyber-security threats. Some of them are inherited from the IT paradigm
and some other arise from the growing integration between IT and OT. We are
talking about attack vectors such as denial of service, presence of malware in
the control teams, exploitation of vulnerabilities in communication protocols,
phishing and social engineering, etc. that will be further described in Section
3.1. For this reason, since there are several reported APTs that attempt to
compromise resources belonging to both the IT and OT parts of the industrial
network, it makes sense that the whole industrial topology can be split into
these different sections: IT and OT, which will be interconnected by firewalls.

Traditionally, the architecture of a typical control network has adopted the
ISA-95 standard [5]. Following a rigid pyramidal architecture, the manufac-
turing components (i.e., sensors and actuators) are located at the base (level
0), whereas devices interacting with them (i.e., PLCs, RTUs) are set at level
1. Level 2 comprises those devices that control the production process (i.e.,
SCADAs, HMIs), while those that manage the workflow (i.e., Manufacturing
Execution Systems) belong to level 3. Finally, the highest level contains the
Enterprise Resource Planning (ERP), or resource management. However, due
to the aforementioned integration of cyber-physical systems, this architecture
is evolving towards a distributed and decentralized model. Therefore, the lines
that separate every level are getting blurred, which is more noticeable in the
highest level of the IT section, where several entities (e.g., ERP, SCADA sys-
tems) can be flexibly deployed in the Cloud, as shown in Figure 1.

3



Figure 1: Architecture of modern industrial organizations

The formalization of the proposed network architecture is explained in the
following. Let G(V,E) be a graph that represents the entire network topology,
that contains devices and communication links that transmit information and
control commands between them. This network is composed by the IT and OT
sections, which are respectively represented with subgraphs G(VIT , EIT ) and
G(VOT , EOT ). These sections are joined by a set of firewalls placed in between
(VFW henceforth), so that V = VIT ∪ VOT ∪ VFW . In order to understand how
these network sections are merged, we firstly must introduce a graph theory
concept related structural controllability [6] and power dominance [7]. The aim
is to select the set of those nodes within the network that have the maximum
dominance, which are called the driver nodes (denoted by ND). As introduced
in [7] and extended in [8], let us assume the following two observation rules over
a given network G(V,E), that result in two different subsets of nodes:

OR1 A driver node nd in DN observes itself and all its neighbors: this is, the
rest of nodes that share a communication link with nd. This conforms the
Dominating Set (DS) of G, and implies that every node not in DN is
adjacent to at least one member of DN.

OR2 If a driver node nd in DN of degree d ≥ 2 is adjacent to d − 1 observed
driver nodes, then the remaining un-observed vertex becomes observed as
well. This also implies that OR1 ⊆ OR2 given that the subset of nodes
that comply with OR1 becomes part of the set of nodes that complies
with OR2, conforming the Power Dominating Set (PDS). It means
that every edge in E is adjacent to at least one node of DN.

An example of the election of these driver nodes is depicted in Figure 2.
As we can see, the DS is a subset of the PDS, whose nodes are adjacent to all
edges in the graph. More specifically, the PDS will be used in the OT section of
the industrial topology to represent the set of devices that are connected to the
firewalls that also connect to the IT nodes, thereby merging both sections. The
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Figure 2: Observation rules for the election of the most dominating nodes

reason for such election is that in an operational environment multiple kinds
of devices coexist. However, apart from sensors and actuators, Programmable
Logic Controllers (PLCs) and Human-Machine Interfaces (HMIs), only SCADA
systems and high-level servers are actually connected to external networks (i.e.,
the IT section or Internet). Therefore, these last nodes are the ones that hier-
archically have more connectivity (so they will be linked to the firewall nodes),
which is equivalent to the controllability concept introduced before. As for the
IT section, since most of the devices range from ERP to customer-end systems
(whose computational capabilities are not as restricted as OT devices), we as-
sume that all nodes are connected to the firewalls and thereby can access the
operational area.

However, concerning the network topology of the IT and OT section, we must
note that each of these subnetworks is built with a different network distribution.
On the one hand, G(VOT , EOT ) follows a specific network construction centered
on power-law distributions of type y ∝ x−α, which is extensively used to model
the topological hierarchy of a electric power grid and their monitoring systems
[9]. These networks commonly contain substations, which are nodes with high
degree (i.e., the number of edges incident on the node) connected to nodes
with lower degree, like sensors and actuators. In turn, the IT section (given by
G(VIT , EIT )) is modeled according to a small-world network distribution, that
represents the conventional topology of TCP/IP networks [10].

Once we have established the architecture for the network, we are in position
to not only simulate attacks over the topology, but also to deploy the detection
system based on Opinion Dynamics, which is the main contribution of our work.

2.2 Opinion dynamics

In this section, we present the fundamentals behind the distributed detection
technique from a theoretical point of view. In order to better understand what
it measures and how it provides a valuable insight for further monitoring and
response procedures, we must pay attention to how an APT behaves. As in-
troduced in the first section, this type of threats comprises several stages over
which the attacker manages to compromise certain devices over the victim net-
work until he/she reaches an interest point. Then, the intruder usually chooses
to either disrupt the productive process or exfiltrate information to the attacker
headquarters, as described further in Section 3.1.
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This chain of individual attack actions commonly takes quite a long time to
penetrate the network resources; over this evolution, it would be of paramount
interest to extract two main pieces of information:

1. The portion of the network that is subject of attack at any time, being
possible to distinguish what set of devices are experiencing the same degree
of anomaly which can be produced by an attack. This information is
essential for applying effective response techniques and potentially isolate
the attack, while the rest of the areas can keep functioning as in normal
conditions, hence ensuring the continuity of the production.

2. The traceability of events occurred to the network with respect to the
evolution of the intrusion throughout the network since the very first mo-
ment it broke into it. In this sense, when it comes to APTs, we must also
take the persistence of attacks into special consideration at all times, since
an advanced threat can go unnoticed for months and suddenly perform
a new attack. In terms of the detection technique, this implies that it is
also necessary to keep track of old subtle anomalies noticed in the net-
work, to serve as feedback to the technique and correlate their relevance
with current detected anomalies, which altogether may be part of a more
ambitious threat. As it is described in Section 4, the importance given
to anomalies experienced on the network in the past devalues over time
depending on the criticality of the victim devices and the type of anomaly
detected.

This information is extracted by means of a distributed cooperative algo-
rithm called Opinion Dynamics [11], which models the actual opinion formation
among the individuals of a society: each of these individuals (agents in our
case) does not simply share or disregard the opinion of the rest of agents, but
he/she takes them into account to a certain extent in order to form his/her own
opinion. From this moment on, what the Opinion Dynamics process does is to
take an average over the opinions, which can be iteratively calculated over and
over again. This eventually leads to formed consensus of opinions belonging to
different agents closer to each other. Correspondingly, it is equivalent to ob-
taining a fragmentation of the different opinions within the society, which can
be applied to intrusion detection by representing the opinion according to the
level of anomaly that each agent (representing a device of the network) experi-
ences. This was shown in its original publication [4], where authors represent
this opinion value based on the ratio of change in the betweenness centrality that
is experienced in every node. This indicator represents the level of connectivity
that each device holds within the network architecture, which varies when the
topology changes due to attacks that add or remove new edges between nodes
(representing the alterations of the communication channels as consequence of
an APT). The same approach is also leveraged in [12], where Opinion Dynamics
is applied for the detection of intrusions in the Smart Grid domain. Compared
to these publications, which address the detection from a theoretical perspec-
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tive, we aim to define a more realistic attack model and enhance the original
approach to consider the persistence of threats.

In the following, we formalize the intrinsics of this multi-agent algorithm,
which constitutes a light modification of the approach proposed in [11] and an
extension of the work presented in [4]. Let A be the set of agents of the system
such that A = {a1, a2, ..., an}. Here, xi(t) (ranging from zero to one) represents
the individual opinion of each ai at time t, where t refers to the iteration of
the algorithm. On the other hand, the weight given to the opinion of any other
agent j is denoted by wij , where

∑n
k=1 wik = 1 (therefore, agent i also takes its

own opinion into account). Finally, the formation of the opinion for agent i in
the next iteration t+ 1 is described as follows:

n∑
j=1

xi(t+ 1) = wijxj(t)

Consequently, every agent adjusts its opinion in period t + 1 by taking a
weighted average of the opinions of the rest of agents. When t tends to infinity,
consensus of opinions are formed (so finally there are just a few opinions shared
by clusters of agents), which can also be represented visually. Conversely, what
we want to accomplish in our particular scenario is to represent anomalies de-
tected by some of the agents installed within the network, so that clusters of
agents returning similar high values (provoked by the same threats) correspond
to critically affected areas from a high-level perspective.

One aspect that needs to be clarified is the assignment of weight among
agents: for simplicity, for a given agent, we assume that the weight value as-
signed to its neighbors is uniformly divided into those agents whose opinion
is very close to its own value (we establish a epsilon value of 0.2 of deviation
between both opinions). This models the fact that agents close to each other
with the same degree of anomaly are likely to be detecting the same threat in
their surroundings.

In order to successfully apply this concept of a multi-agent algorithm to
the context of anomaly detection in an industrial setting, there are various
questions that need to be further addressed: i) who can play the role of agents
within the industrial network, considering that there should be as many virtual
agents as nodes within the network (|V | in our case); ii) how each anomaly
can be represented as an opinion held by an agent, and how to retrieve such
anomaly values; and iii) how the attacks affect the persistence and the anomaly
detection, depending on their severity and the criticality of the victim nodes,
which influences the persistence and the application of the Opinion Dynamics.
These questions will be reviewed and answered in Section 3 through the analysis
of real-word APTs and existing defense mechanisms and architectures. Finally,
Section 6 will show the implementation of a proof of concept using this approach
on a real industrial scenario.
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3 Attack and defense models

To improve the original Opinion Dynamics approach, it is necessary to study
how the attacks affect the detection of anomalies depending on their severity
and the criticality of the victim nodes, which influences the application of the al-
gorithm. For this reason, in the following we review some of the most important
APTs reported in recent years to define the attack and defense models.

3.1 Review of existing APTs, APT stages, and defenses

For the specification of the Opinion Dynamics algorithm, we need to provide an
accurate representation of APT attacks in the context of our network model.
Therefore, here we will first review the most important APT threats and groups
that have specifically targeted industrial control systems. For the interested
reader, a more detailed review of these APTs – including exploited vulnerabili-
ties, software modules, etc – is available at [3].

Stuxnet (2009) Stuxnet was one of the APTs that popularized this concept
and brought it to the limelight. Developed by a state agent, the main goal
of this worm was to hinder the enrichment of uranium in the Iranian nuclear
facility of Natanz [2]. It is believed that its primary infection vector, which
was used to infiltrate the facility, was USB flash drives. Once the malware was
installed in the ‘patient zero’ computer, it also used other mechanisms (network
shares, infected project files) to spread through the internal network, searching
for the computers that directly controlled the uranium enriching centrifuges.
Finally, the malware modified the code that controlled the centrifuges in order
to silently destroy them.

DragonFly group (2013-2014, 2015-) Active since 2010, this particular
APT actor has always focused on cyberespionage. On 2013, it started several
campaigns against energy suppliers [13]. In its first wave of attacks, the main
goal was to discover and map the existence of OPC (Open Platform Communi-
cations) SCADA servers located in the attacked network. For this purpose, after
the initial infection, the malware queried the network in search of OPC servers
using specific OPC DCOM (Distributed Component Object Model) calls. Its
second wave of attacks followed a more conservative approach: it retrieved in-
formation mostly by extracting documents and screenshots from the infected
computers.

BlackEnergy (2015-2016) The BlackEnergy malware, created by an APT
actor known as Sandworm, was used to attack the energy infrastructure of
Ukraine in December 2015 [14]. After the initial infection, the first goal of the
malware was to replicate to as much computers as possible through Windows
Admin Shares (e.g., through PsExec and remote file execution). The second goal
of the malware was to set up various connections to external command&control
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networks. Using these networks, malicious operators were able to activate var-
ious components (KillDisk, circuit breaker manipulator) that caused havoc in
electricity distribution companies.

ExPetr (2017) ExPetr was a wiper disguised as ransomware, which tar-
geted local administrations and various industrial companies in Russia and
Ukraine [15]. It used two primary infection vectors: a modified version of the
EternalBlue exploit used by WannaCry, and an trojanized version of the MEDoc
tax accounting software. Once ‘patient zero’ was infected, this malware used
both the EternalBlue exploit and the BlackEnergy propagation mechanisms to
propagate over the local network. Inmediately afterwards, the fake ransomware
component of the malware would be activated.

GreyEnergy (2018) GreyEnergy is the name of the group behind the APT
which is considered as the successor of BlackEnergy. It is believed to be ac-
tive since 2015, targeting energy companies and other critical infrastructure
organizations in Central and Eastern Europe [16]. GreyEnergy used more mod-
ern techniques than its predecessor, since the malware is built as a modular
framework that can adjust to different target infrastructures, mostly for recon-
naissance and information collection. Two infection vectors were used: compro-
mising public-facing web servers connected to the internal network, and sending
spear phishing emails with malicious attachments. Then, the network mapping
was performed and the malware was deployed.

Zebrocy (2018) This trojan was developed by Sednit, a Russian-linked hack-
ing group (also known as Sofacy) which is also allegedly associated to GreyEn-
ergy. The infection took place using spear-phishing emails, and then a backdoor
was installed on the victim computer to deploy further capabilities. Its targets
were widely spread across the Middle East, Europe and Asia, and the first
attacks were reported in Q3 2018. According to the first analysis, there are
actually in the wild multiple versions of this trojan that are implemented using
multiple languages, in order to make them differ structurally and visually – and
hence avoid their detection.

Another element that is essential for the formalization of the behavior of
APTs in our network model is the definition of the different attack stages (i.e.,
intrusion kill chains) that are performed by APTs. These attack stages have
been extensively studied and described by various academic and industrial re-
searchers [17, 18, 19], and can be summarized in the following steps:

• Reconnaissance . Adversaries gather information about the targeted
industrial network, and create an attacking plan.

• Delivery . After choosing a set of vulnerable computers (‘patient zero’) at
the targeted industrial network, adversaries deliver the malware to those
computers, either directly (e.g., through email or vulnerable services) or
indirectly (e.g., contaminating websites with malware) [20].
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• Compromise . At this stage, the malware is executed in the target ma-
chine and takes control of it. This stage involves several steps, such as
privilege escalation, maintaining persistence, and executing defense eva-
sion techniques.

• Command and Control . Once the malware controls ‘patient zero’, it
opens a communication channel with the remote attacker, which will be
used to send commands, extract information, etc.

• Lateral Movement . The concept of lateral movement encompasses the
different steps that the malware takes in order to control other comput-
ers located in the targeted network. Lateral movement includes internal
reconnaissance, compromise of additional systems, and collection of sen-
sitive information.

• Execution . The malware finally performs the attack against the targeted
industrial network. Attacks range from exfiltration (extraction of sensitive
data) to destruction of resources.

While this classification describes the most common attack path for indus-
trial APTs, it is necessary to point out that not all APTs need to follow this
particular template from beginning to end, or to implement all stages. For ex-
ample, certain APTs only need to take control of a ‘patient zero’, and then
they will proceed to extract sensitive information. Other APTs (like Black-
Energy) focus on creating a network of compromised nodes connected to the
command&control centers, which allows malicious operators to cripple all the
elements of the targeted network (both hardware and software) simultaneously.

Finally, in order to define our defense model, and to provide an answer to the
questions raised in the previous section, it is necessary to provide a brief overview
on the actual state of the art of the existing defense mechanisms against the
attack stages defined above. This information is extracted from more detailed
reviews that are already available in the literature, such as [21]. Here, we will
only highlight the most important aspects that will influence over the defense
model of our network and the different detection probabilities:

• Detection coverage. As of 2018, there are multiple intrusion detection and
prevention mechanisms, both commercial and academic, that are able to
analyze the state of all elements and communication systems in industrial
networks, including the field devices.

• Central correlator systems. There are several commercial platforms, such
as [22], whose goal is to provide support for event correlation. These
platforms can retrieve events and alerts from various domains (e.g., IT,
OT networks) and from various sources (e.g., SIEM systems, vulnerability
scanners) in a distributed way.

• Beyond attack signatures. There exist several solutions that are able to
indicate the potential existence of anomalous situations, even if the at-
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tack signatures are unknown. Examples include not only diverse statis-
tics (e.g., traffic volume, network connections, protocols used), but also
machine learning mechanisms, specification-based systems, and industrial
honeypots.

• Network features. in comparison to the IT infrastructure, OT networks
exhibit a more consistent behavior. This feature is actually used by cer-
tain detection mechanisms to pinpoint the existence of anomalies more
accurately.

3.2 Representation of APT attacks and detection proba-
bilities

After reviewing the behavior of industrial APTs and the state of the intrusion
detection mechanisms, we can define a realistic attack and defense model for
our network architecture, thereby addressing the questions raised in Section
2.2. Our attack model is simple: we assume that, given a certain goal (exfiltra-
tion and/or destruction), adversaries are able to successfully perform an APT
attack against the network architecture defined in Section 2.1 using any set of
the attack stages defined in Section 3.1. As for the defense model, and given
the actual state of the art in the area, we assume that all the elements of the
network are covered by anomaly detection mechanisms; in other words, we as-
sume that there is one agent per node that is monitored within the network.
Each agent should measure the anomaly for itself and convey its opinion to its
neighbors for the execution of the Opinion Dynamics according to the original
topological model. However, we must note that, in some extent, this election of
agents depends on the implementation policy: for example, although assigning
every node with an agent is theoretically valid, it would not be feasible in con-
ditions where they are integrated in the software of the own devices or deployed
in form of physical devices connected to the real nodes. We must recall that
the function of the agents is to measure the anomaly degree (and then exchange
its value with the others), which implies that it must have access to the com-
munications and internal status of the device it is monitoring. However, this is
not always guaranteed in isolated environments, or when sensors or PLCs with
rigid software do not allow the execution of third party programs. An acceptable
solution for these cases is the election of a subset of nodes within the control
system to play the role of agents, depending on how easy is their integration
via software/hardware. This way, those agents (which should be strategically
dispersed over the network) would be the only ones in charge of detecting the
anomaly in their devices and also in those other surrounding devices that lack an
agent. In this regard, the concept of the Dominating Set introduced in Section
2.1 would be suitable for the agent election.

Despite its contribution, the solution that was firstly proposed in [4] loses
granularity as just a few agents are in position to successfully detect the anoma-
lies for the entire set of nodes. An alternative for this shortcoming consists in
retrieving those outputs (i.e., the opinions) by a correlation system similar to
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the ones described in [21], so that the traffic of all nodes is captured without
causing any delay or interference over the actual resources. This permits us
to centralize the computation of the Opinion Dynamics algorithm in a more
computationally powerful node, compared to its execution in limited-resources
devices like in the solution presented before. As described later in Section 6,
this kind of correlation system is used for our simulation in a real industrial
environment.

The description of the potential implementation leads us to the question of
how to extract the value of abnormality that represents the individual opinion
of each agent, which is represented in a scale from 0 to 1 of continuous val-
ues. It contains the ratio of change that an agent has experienced at a given
time, compared to the initial state of the device it is monitoring (under normal
conditions). By assuming the existence of a centralized correlation system, the
agents can be instantiated as virtual agents (i.e., one software component per
agent), whose inputs will be retrieved from the different outputs of the anomaly
detection mechanisms. From those inputs, every agent can now derive a certain
opinion xi(0), or detection probability (i.e., the probability that an attack is
taking place) anytime. These opinions are in turn influenced by the amount
of alerts and their criticality. For example, a combination of anomalous statis-
tics will slightly raise the opinion of an agent, and the existence of a confirmed
attack (e.g., through the detection of an attack signature) will maximize that
opinion. Compared to traditional detection mechanisms, the effectiveness of
this approach resides in the ability to correlate anomalies throughout the net-
work and hence trace the location of attacks, also considering their severity and
persistence.

To formalize the attacker model, we can provide a representation of the
intrusion kill chain of APT attacks. Let attackStages be a set of potential attack
stages that an APT can perform against the industrial control network G(V,E)
as defined in Section 2.1, such that attackStages = {attack stage1, attack stage2

, ..., attack stagen}. This set comprises the following elements:

• initialIntrusion(IT,OT,FW ). The initial access that affects a node n0

(known as ‘patient zero’) of the IT network, OT network, and firewall,
respectively.

• compromise . The adversary takes control of a certain node ni, obtaining
higher privileges, maintaining persistence, and executing defense evasion
techniques. Moreover, this stage also includes the internal reconnaissance
of the direct neighbourhood of ni, neighbours(ni).

• targetedLateralMovement(IT,OT,FW ). From a certain node ni, the ad-
versary chooses a FW, IT, or OT node nj from the set neighbours(ni),
and executes a lateral movement towards that node. Note that, in this
model, the concept of lateral movement only encompasses the delivery of
malware towards the target node.

• controlLateralMovement . From a certain node ni, the adversary chooses
the node nj from the set neighbours(ni) with the highest betweeness (i.e.,
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the node with more connectivity), and executes a lateral movement to-
wards that node.

• randomLateralMovement . From a certain node ni, the adversary chooses
a random node nj from the set neighbours(ni), and executes a lateral
movement towards that node.

• spreadLateralMovement . From a certain node ni, the adversary exe-
cutes a lateral movement towards all nodes from the set neighbours(ni).

• exfiltration . From a certain node ni, the adversary establishes a connec-
tion to an external command&control network, and extracts information
using that connection.

• destruction . The adversary either destroys node ni, or manipulates
the physical equipment (e.g., uranium enriching centrifuges) controlled
by node ni.

• idle . In this phase, no operation is performed.

Once the set attackStages is defined, it is possible to represent APT attacks
that target our particular network model G(V,E). In particular, for every APT
APT , there can be an ordered set attackSetAPT , composed by one or more
elements of the attackStages set, that represent the APT chain of attack actions.
As an example, the attack set of Stuxnet can be represented as follows:

attackSetStuxnet = {initialIntrusionIT , compromise, exfiltration,
targetedLatMoveFW , compromise, targetedLatMoveOT ,

..., targetedLatMoveOT , idle, ..., destruction}

These particular instances are defined taking into consideration the overall
goal of every APT. For example, in the case of the Stuxnet malware, its goal
is to find a particular node nOT ′ ∈ VOT that manages an uranium enriching
centrifuge. Therefore, after infecting patient zero nIT 0 ∈ VIT , it seeks the
location of a firewall node nFW ∈ VFW that connects the G(VIT , EIT ) and
G(VOT , EOT ) regions. Afterwards, it moves inside the G(VOT , EOT ) region until
it finds node nOT ′ . Finally, after waiting for some time, the malware executes
its payload, manipulating the centrifuge.

Regarding how the different attack stages influence the calculation of the de-
tection probabilities, we need to consider that certain attack stages will generate
more security alerts. This, in turn, will increase the probability of detecting that
particular attack stage. Therefore, we need to consider the existence of differ-
ent classes of detection probabilities. Here, we define Θ as an ordered set of
detection probabilities of size d, where Θ = {θ1, ..., θd} and θi = [0, 1], such that
∀θi, θi > θi+1.

Once Θ is defined, we can create a model that maps every element of the
set attackStages to the elements of Θ. Such model, where d = 5 and Θ =
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initialIntrusion(n0) θ3
compromise(ni → neighbours(ni)) θ2 → θ5
∗LateralMovementIT,FW (ni → nj) θ5 → θ4
∗LateralMovementOT (ni → nj) θ5 → θ3

spreadLateralMovement(ni → neighbours(ni)) θ5 → θ4
exfiltration(ni) θ4
destruction(ni) θ1

Table 1: Map of attackStages to Θ

{θ1, θ2, θ3, θ4, θ5}, is described in Table 1. The rationale behind this mapping is
as follows:

• We assign θ1 only to the destruction stage, because any major disruption
in the functionality of a device (e.g., unavailable resources, device turned
off) will trigger multiple high priority alerts. Note that, as explained in
our defense model, we assume that all field devices are also covered by
detection mechanisms, thus any attack (e.g., the Stuxnet final payload)
against these sensitive devices can be easily detected.

• θ2 is only assigned to the element at the left side of the compromise stage
(ni → neighbours(ni)). The reason is simple: the act of compromising
and taking control of ni will not only trigger various host alerts, but also
multiple network alerts due to the various discovery queries targeting all
neighbours(ni). The correlation of all these events will draw attention to
the state of ni.

• For θ4, we consider the security alerts caused by combination of a sin-
gle anomalous connection to a node plus the delivery of malware to that
node. As such, this θ covers all the elements at the right side of the
lateralMovement stages. Note, however, that in some particular cases
(like the initialIntrusion stage and the ∗LateralMovementOT stages),
additional anomalies will be detected: a potentially anomalous external
connection, and a certain instability in the otherwise stable OT communi-
cation environment, respectively. Therefore, the θ assigned to the elements
of those stages will be θ3.

• Finally, θ5 is assigned to those stages where the nodes produce or receive
anomalous traffic (e.g., a connection that deviates from what is considered
as normal traffic). Again, in situations where a connection with the outside
world is made (e.g., exfiltration stage), as the possibility of anomalous
traffic will increase, the θ will be increase as well.

4 Detection of APTs

After formally representing the attack stages, plus their relation to the detection
probabilities, we can now use the proposed detection probabilities as inputs to
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the Opinion Dynamics algorithm, and hence simulate its response in an indus-
trial architecture when it faces a particular instance of APT.

Algorithm 1 describes the life cycle of an APT composed by a set of attack
actions against a given network. Each of these attacks generates an anomaly
that is detected by the corresponding agents (and possibly by their neighbors),
increasing their opinion in a value defined by the previously introduced Θ. After
this, as commented in earlier sections, we also introduce a attenuation value on
the opinion that represents the effect of old attacks in order to reduce their
influence when computing the current opinion. This ”decay” value, applied
in the UpdateOpinionsWithDecay function, depends on the attack stages
suffered in the past by the agent and the criticality of its monitored device: the
more devastating the alert generated is (during the detection phase), the longer
its effect will take to disappear. Consequently, we define Φ as an ordered set of
decay values, where Φ = {φ1, ..., φd} and φi = [0, 1], such that ∀φi, φi < φi+1.
Therefore, for all i ∈ d, φi is inversely proportional to the θi value, and both
are applied to the detected anomaly value after each stage. This procedure,
explained in Algorithm 2, is a way to account for the persistence when computing
the Opinion Dynamics. It is important to note that both the respective anomaly
and decay addition or reduction implies a normalization of the opinion value,
from 0 to 1.

Algorithm 1 APT life cycle - anomaly calculation

output: δ representing the delta value
local: Graph G(V,E) representing the network, where V = VIT ∪ VOT ∪ VFW

input: attackSet← attackStageAPTx , representing the APT chain of attack actions

x← zeros(|V |) (initial opinion vector)
{performedAttacks← �}
{attack ← firstattackfromattackSet}
while attackSet 6= � do

if attack == initialIntrusion(IT,OT, FW ) then
attackedNode← random v ∈ V(IT,OT,FW )

x(attackedNode)← x(attackedNode) + θ3
else if attack == compromise then

x(attackedNode)← x(attackedNode) + θ2
for neighbour in neighbours(attackedNode) do

x(attackedNode)← x(attackedNode) + θ5
end for

else if type(attack) == LateralMovement then
previousAttackedNode← attackedNode
attackedNode← SelectNextNode(G, attackedNode)
x(previousAttackedNode)← x(previousAttackedNode) + θ5
x(attackedNode)← x(attackedNode) + θ3,4

else if attack == exfiltration then
x(attackedNode)← x(attackedNode) + θ4

else if attack == destruction then
x(attackedNode)← x(attackedNode) + θ1

else if attack == idle then
No attack performed

end if

x← UpdateOpinionsWithDecay(x, performedAttacks)
performedAttacks← performedAttacks ∪ attack
mergedOpinions← ComputeOpinionDynamics(x)
δ ← ComputeDelta(mergedOpinions)
attackSet← attackSet \ attack

end while
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Algorithm 2 Decay of anomaly values over time depending on the attack action

function UpdateOpinionsWithDecay(x,performedAttacks)
for attack in performedAttacks do

affectedNode← getAffectedNode(attack)
if attack == initialIntrusionIT,OT,FW then

x(affectedNode)← x(affectedNode)− φ3

else if attack == compromise then
x(affectedNode)← x(affectedNode)− φ2

for neighbour in neighbours(affectedNode) do
x(affectedNode)← x(affectedNode)− φ5

end for
else if type(attack) == LateralMovement then

origin← getOriginOfMovement(attack)
x(origin)← x(origin)− φ5

x(affectedNode)← x(affectedNode)− φ3,4

else if attack == exfiltration then
x(affectedNode)← x(affectedNode)− φ4

else if attack == destruction then
x(affectedNode)← x(affectedNode)− φ1

end if
end for
return x

end function

Once the x vector of opinions is updated with the new attack action (with θ)
and attenuated due to old stages (through Φ), the Opinion Dynamics algorithm
is executed to identify the affected areas of nodes and the level of severity of these
attacks. However, although this gives insight of the location of threats (as it is
visualized in the experimentation section), it would be also necessary to obtain
an overall value of the network health from the Opinion Dynamics processing.
Therefore, we have created the so-called delta indicator, which represents a
global anomaly value and is computed in the ComputeDelta function. This
value is calculated with the weighted average of opinions by the amount of agents
that hold the same detected abnormality, as described in Algorithm 3. However,
since this aggregated value is dependent on the number of agents to calculate
the average, in practice we can compute it over different sections of the network
(i.e., IT or OT), thereby increasing its granularity. Using these values, we can
quickly know the overall anomaly degree of every portion of the network. These
algorithms and the approach itself are validated in the following.

Algorithm 3 Computation of delta value

function ComputeDelta(mergedOpinions)
opinionClusters← uniqueValues(mergedOpinions)
frequencyV ector ← zeros(|opinionClusters|)
for i:=1 to size(opinionClusters) step 1 do

frequencyV ector(i)← CountOccurrencesOfOpinion(opinionClusters(i),mergedOpinions)
end for
δ ← 0
for j:=1 to size(opinionClusters) step 1 do

δ ← δ + frequencyV ector(j) ∗ uniqueV alues(j)
end for
δ ← δ/size(mergedOpinions)
return δ

end function
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4.1 Correctness proof: consensus-based detection and trace-
ability

This section presents the correctness proof of the consensus-based detection
and traceability problem for APTs. This problem is solved when the following
conditions are met:

1. The attacker is able to find an IT/OT device in the system and attack it.

2. The detection system is able to trace the threat, thanks in part to the
consensus (detection and traceability).

3. The system is able to properly finish in a finite time (termination).

4. The algorithm is capable of terminating and providing advanced detection
at any moment (validity).

The first requirement is satisfied because we assume that the attacker is
capable (i) declaring the chain of attacks in advance, such as scanning, lateral
movement, exfiltration or destruction (see Section 3.2), and (ii) identifying kinds
of devices (e.g., IT/OT nodes and firewalls) by their functionalities. The modus
operandi of the attacker is systematic except when the attacker needs to make a
specific lateral movement, either through the selection of a new random neigh-
bor node within the network or the selection of the neighbor with the highest
betweeness. To comply with the predefined attack patterns, the attacker first
needs to identify the first target node, which generally belongs to IT network
− evidently, this characteristic depends on the type of attacker (insider or out-
sider) and their skills. If the attacker is an outsider, her goal is to find a vITi

∈ VIT in order to penetrate by itself within the system, and to advance until
reaching those nodes serving as firewalls such that vFWi

∈ VFW . Once a vFWi

is finally reached, the attacker tries to gain access in the operative network to
compromise the most critical devices, i.e., vOTi

∈ VOT . If the attacker is an out-
sider, the compromises relies, in this case, on the pre-established APT threat
chain; i.e., on attackSet.

The second requirement is also found due to the software prevention agents,
ai ∈ A, integrated as part of vITi

, vFWi
and vOTi

of G(V,E). These agents
present capacities to detect anomalies and trace the intrusive presence by means
of opinion dynamic parameters, the values of the which are attenuated according
to time and aggressiveness of the threat (the decay factor). This attenuation,
dependent on Φi, does not means to completely forget an incident in past.
But rather, in remembering the most significant aftermaths of the previous
attacks in order to show the advance of the threat in real time, and therefore
its traceability.

Through induction we demonstrate the third requirement, corresponding
to termination of the approach. To do this, we specify the initial and final
conditions together with the base case. Namely:

17



Precondition: by assumptions, we assume that the attacker is an advanced
expert with skills to reach the IT-OT communication channels belonging
to G(V,E). However, this capacity depends on the set attackSet defined
in Algorithm 1, which defines threat chain such that attackSet 6= �.

Postcondition: (i) the attacker reaches the networkG(V,E) and compromises
at least a node in V such that attackSet = � after the loop in Algorithm
1. And (ii) the system successful detects the threat such that δ > 0 and
marks the traceability according to the real consensus state of G(V,E),
registered in the array vector x.

Case 1: attackSet 6= �, but | attackSet | = 1. In this case, the attacker
needs to launch the unique attack defined in attackSet. As mentioned, if
the attack does not imply a lateral movement, the success of the threat is
concentrated on just one node in V , since the following iteration of the loop
implies that attackSet← attackSet\attack, and therefore attackSet = �.
To the contrary, if the attack entails a lateral movement, then the attacker
has to select a new neighbor node, either from a random or target point
of view.

Any attack in V means an impact on the attacked node with a significant
influence in its opinion dynamic (i.e., x(attackednode)). If, in addition,
the decay factor is activated, the system weakens, but does not delete, the
aggressiveness of the threat to stress the current trace of threat over the
time. This computation is possible through Φi in Algorithm 2. Once x is
updated, the system computes the δ value taking into account the weighted
average of the Opinion Dynamics of the entire system (see Algorithm 3).

Induction: if we assume that we are in step k (k ≥ 1) of the loop where
attackSet 6= �, then Case 1 is going to be considered each time. When
k = | attackSet |, the system computes Case 1 and ends the detection
algorithm with δ > 0 since attackSet = �, showing the traceability of the
threat through x and complying with the postcondition.

Finally, the latter requirement is also satisfied since the algorithm finalizes
and detects the threat through opinion dynamic (either individual or collective)
and shows the traceability of the threat over the time.

5 Theoretical simulations

In the following, we present a test case for illustrating how we can apply the
Opinion Dynamics-based technique while representing an APT against a given
IT/OT industrial topology, as described in the paper. For this test case, we
have implemented the network topology and algorithms 1, 2 and 3 in Matlab.

Let us assume that we have a topology composed by three OT nodes and
three IT nodes connected by a firewall, as explained in Section 2.1. We will take
Stuxnet for the attacker model, since it is one of the most documented APTs.
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(a) Exfiltration (b) FW compro-
mise

(c) OT compro-
mise

(d) Destruction

Figure 3: Network topology used in the test case

According to Section 3.2, it comprises a set of nine different attack actions that
will be perpetrated against the proposed network, where each node counts on an
individual agent to monitor its anomalies. If we execute the Opinion Dynamics
algorithm after each stage, we can analyze the different clusters of anomalies
detected by sets of agents. Following the model presented in Section 3.2, we have
assigned values for each θ and φ according to the ordered set of probabilities in
Table 2, considering a realistic scenario. We have also introduced a deviation of
0.1 to values in θ to simulate a low level of noise or probability of detecting the
corresponding anomaly after each attack stage. Figure 3 visually represents the
resulting values in each agent after the four of the most representative stages,
where (1) the attacker compromises the IT node and exfiltrates information,
(2) compromises the firewall and then (3) moves to the last OT of the network
and remains idle, right before the destruction of this node is performed (4).
Four different idle operations are performed in this point, with a total of twelve
attack actions. Numbers by the name of nodes represent the value of anomaly
(opinions) that each agents holds.

i 1 2 3 4 5
θi 0.9 0.7 0.5 0.3 0.1
φi 0.01 0.025 0.05 0.075 0.1

Table 2: Detection probability and decay values used in the Stuxnet test case

As we can also see in Figure 3, the attacker traverses the whole network
according to the Stuxnet behavior (where the current attacked node appears
rounded), while the agents and its neighbors are able to detect the anomalies
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Figure 4: Opinion dynamics after the second stage

that consequently take place (the more red the node is, the greater the detected
anomaly is). At the same time, we see how attenuation of anomalies also occurs,
especially visible when the attacker leaves a node. In this example, the first IT
node compromised is the number 1 while the final one is the OT number 3; the
former is gradually attenuating its value as the attack evolves, according to the
behavior explained in Section 4.

This ability to identify where the threat is active within the network is
enabled by Opinion Dynamics. If we have a look at its value in form of a plot in
some point, we obtain the graph in Figure 4. This corresponds to the execution
of the algorithm (with 20 inner iterations) after the second stage depicted in
Figure 3, where the FW is compromised after attacking the first IT nodes. As
we can rapidly see in the resulting graph, there are two agents (the aFW and
the aIT node) that successfully detect the same level of critical abnormality
in their area; this is also detected by some of their neighbors mildly, which is
represented with the central consensus. Apart from these, the rest of nodes only
detect a negligible value of anomaly.

By this means, we can statically identify where the threat is located and
which severity it experiences. However, as commented in Section 2.2, it would
be also necessary to trace all the events of the APT and highlight the most
affected nodes it has traversed. In this sense, if we represent the succession of
opinions agreed by agents over time for the Stuxnet attack described previously,
we easily have such information, which is represented with Figure 5.

As we can see there, the opinion profile for all agents evolves over the set
of APT attack actions, showing a more pronounced value in the IT section in
earlier stages and the OT in latter phases of the Stuxnet APT, as the attack aims
to ultimately compromise a PLC by firstly intruding the network through a IT
node. A similar effect is seen when we study the change in the delta value, which
can be calculated either in the whole network or on any of its subnetworks (i.e.,
IT or OT). Figure 6 shows the progression of this indicator in each case, which
also shows us how IT delta decreases over time and its value in OT increases
according to the chain of attacks. In general, the value acquires the highest
value when the last OT node is compromised, since the network has suffered
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Figure 6: Evolution of delta opinions over the network for the Stuxnet attack

most of the attacks in the previous stages. Beyond that point, delta decreases
(due to the idle operations) and then it finally increases with the destruction of
the node.

6 Experimental simulations on an industrial
testbed

In this section we will go beyond the theoretical experiments described in the
previous section, and provide the experimental results of a proof of concept
implementation of the Opinion Dynamics system. This proof of concept was
integrated on a tesbed that simulates an industrial environment using realistic
hardware and protocols. For this proof of concept, rather than integrating a full-
fledged network-based and host-based intrusion detection system as an input for
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Figure 7: Overall architecture of the I4Testbed testbed

the Opinion Dynamics algorithm, we deployed a set of simple heuristics that
searched for anomalies in the communication channel. The reason for this is
simple: this experiment aims to provide a baseline that shows how the Opinion
Dynamics system can help to provide the trace of a kill chain while using as an
input only lightweight anomaly detection rules.

As for the structure of this section, firstly we present and provide the
technical specifications of the testbed used for the simulations (the so-called
I4Testbed). Then, we explain how the Opinion Dynamics system has been ap-
plied in this context. Finally, we describe the execution of the different attacks
cases, and analyze the results provided by the Opinion Dynamics system.

6.1 I4Testbed - An Industry 4.0 Testbed

The advent of the Industry 4.0 paradigm is basically a consequence of a plethora
of technologies that are being imported from the IT world (e.g., the Internet
of Things, Cloud Computing, Big Data) to industrial control systems, which
have been working in an isolated way for decades. This has also caused the
appearance of new attack vectors against these infrastructures, which has fos-
tered the research of advanced cyber-security solutions. Precisely, the I4Testbed
testbed has been developed in the University of Malaga to provide a realistic
environment where novel detection mechanisms can be assessed without facing
the whole investment of deploying a complete industrial infrastructure.

The overall architecture of the I4Testbed is depicted in Figure 7. It is de-
signed to accommodate different industrial applications in a realistic fashion.
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For this particular case, we model a solar, hydraulic and wind electricity gen-
eration system. Each of the three sources are virtually simulated by using an
open API that retrieves the climate conditions in Malaga in real time [23]. These
values are then fed to the physical sensors, so that the turbines are ultimately
activated from the SCADA system depending on specific conditions of humidity
and temperature.

As shown in Figure 7, different devices are placed in the lowest level of the
topology, which includes light indicators, emergency buttons, industrial sensors
(using protocols such as IO-Link, WirelessHART and ISA100.11a) and IoT sen-
sors (TelosB using 6LoWPAN over IEEE 802.15.4). These sensors are connected
to their respective gateways which, along with other field devices based on Intel
Galileo Gen1, RevPi Core 3 and Raspberry Pi, gather the different measures
of the generation process and then relay them to three different PLCs: one
SIMATIC S7-1200 (using Profinet) that governs the hydraulic generator, one
PLC based on Raspberry Pi 3 (using ModBus TCP) that controls the eolic and
solar generator, and another one implemented purely via software, that controls
the AC system of the power transformer. These three PLCs are then operated
by the SCADA system (which is based on Linux with Python) and two different
HMIs: one SIMATIC KTP700 and another one implemented with a Raspberry
Pi. This SCADA system, that also works as HMI (as shown in Figure 8), and
the IBH Link UA Gateway can be accessed by local entities through TCP/IP
and OPC UA; and by external entities through a virtual private network (VPN)
connection. Additionally, the testbed also integrates a backup server, a corpo-
rate computer and another one for development purposes.

As for the monitoring capabilities of the I4Testbed, the previously presented
topology contains a security server with high computational resources that is
able to capture all the information from the communication channels via a
network switch in port mirroring mode. Despite the logical topology, as all
devices are physically connected through one switch, the security server can
retrieve all the traffic from the nodes. This way, the security server can also
function as a centralized entity (as discussed in Section 3.1), where we can
deploy a virtual agent for each physical node that must be monitored. Such
agents will then perform the different computations of the Opinion Dynamics
algorithm.

6.2 Implementation of the virtual agents

Within the Opinion Dynamics system, every agent will process the traffic han-
dled by its associated physical node, and study the security state of its neigh-
bourhood. As a result, it will create a quantitative value (i.e., the opinion of
that agent) which will be used as an input to the Opinion Dynamics algorithm.
For the purpose of our experiments, in this proof of concept implementation
we will make use of an heuristic to compute the unique anomaly value, which
considers the following characteristics:

• Variation of traffic volume: By analyzing the number of packets per pro-
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Figure 8: Interaction panel GUI on the SCADA system

tocol and device connected with each channel: Enabling the detection of
added/removed devices within the topology, in addition to non-frequent
communications.

• Variation of the commands received by the industrial protocols: Through
the analysis of the number and type of commands, with the aim of detect-
ing anomalous actions performed by potentially compromised devices.

• Variation of the delays experienced between received commands by the
industrial protocols: To infer the presence of anomalous processes running
in each device.

For the computation of an unique anomaly value, the average and standard
deviation of the different characteristics monitored (e.g., number of connections,
packets exchanged) are calculated in normal conditions. For the sake of sim-
plicity, we have assumed that, for a given characteristic, a value sensed at any
time is considered as anomalous when it exceeds the standard deviation of such
characteristic in normal conditions. Finally, the opinion of each agent is chosen
as the highest anomaly value for all the characteristics monitored. Even though
this criteria is an adjustable parameter for the simulations, we have specifically
considered the following equation to compute the anomaly value for a given
characteristic:

(
(NormalV alue− CurrentV alue)− 2 ∗ StdDev

StdDev
)2 ∗ 5 (1)

Then, the process is analyzed periodically to sense multiple anomalies across
the entire topology. For this test case, we have considered slots of 5 minutes:
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during this period, each pair of devices that exchange information are considered
as neighbours, and all characteristics of the communications are gathered by
each agent to compute its anomaly degree. Lastly, these anomalies (i.e., the
agents opinions) are correlated using Opinion Dynamics, to ultimately output
the health status of the industrial system.

In order to implement the virtual agents, we have deployed three different
components (cf. Figure 9) in the security server. These components are as
follows:

1. A collector component retrieves the raw traffic from all devices of the
testbed to generate a list of events that are of interest for the analysis of
the variation in each characteristic.

2. Then, the detector component creates one agent for each of the compo-
nents that are deployed over the network. This agent analyzes the different
characteristics involved for its monitored node and computes Equation 1
to finally obtain an opinion value.

3. Finally, a correlator executes the Opinion Dynamics algorithm to accu-
rately identify the most affected areas of the infrastructure, as explained
in Section 2.2. In addition, the δ value is also returned to represent the
overall health status of the network.

For this particular experiment, these three components have been developed
using Python 2.7.13. In order to capture the network traffic, we have also used
the scapy library and several dissectors such as scapy-cip-enip.

6.3 APT test case with I4Testbed

In this section we show how the Opinion Dynamics-based technique performs
against a test case of an APT composed by four different attack stages. The
aim is to check how the different agents that are spread over the topology sense
the different anomalies caused by these vectors. As a result of this analysis, the
system should provide a trace of the whole attack, plus an aggregated indicator
of the health of all resources of the I4Testbed. In order to i) achieve an accept-
able degree of realism, and ii) provide as many sources of anomalies as possible,
the entire kill chain has been defined as a sequence of the following stages:

1. First intrusion: An initial access to the network is perpetrated. More
specifically, the adversary (potentially an insider) steals some access cre-
dentials (e.g., with social engineering) and takes over the HMI/SCADA
by accessing it from the IT network via SSH.

2. Network scanning and lateral movement: Once higher privileges
have been obtained and the SCADA system has been compromised, the
attacker performs a reconnaisance of the node neighbourhood, seeking for
vulnerable services running in each device. This is achieved issuing a nmap
command on Linux. At this point, we assume that a vulnerability is found
on the Raspberry Pi-based PLC and is exploited to take over that node.
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Figure 9: Components of the Opinion Dynamics System

3. Establishment of a covert-channel: After the PLC has been com-
promised, the adversary establishes a covert-channel attack against the
Modbus communication link. Through this channel, the adversary sends
a shutdown command that is expected to be executed in a latter phase.
This is perpetrated in a stealthy way, delaying the transmission of a Mod-
bus message, as explained in [24]. There are various publications available
in the literature that also explain potential implementations of this attack,
such as [25] and [26].

4. Node disruption: Finally, the PLC executes the shutdown command
and closes the communication links with the rest of devices.

In order to visualize how these attacks are detected and reported by the
Opinion Dynamics System, the experimentation has been carried out according
to the following methodology: firstly, the industrial system is left to work for an
hour without taking any special action on the testbed, except for computing the
detection algorithm periodically every 5 minutes. This helps the virtual agents
(one per device) to compute the average and standard deviation of the different
characteristics introduced before (traffic volume, number of connections and
communication commands, etc) in normal conditions. Afterwards, the entire
kill chain is executed in sequence, with a waiting time of approximately one
hour between the various stages of the attack. During the execution of the kill
chain, the Opinion Dynamics system keeps being executed, so that we can keep
track of the multiple anomalies measured as attacks take place.
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Figure 10: Evolution of the Opinion Dynamics values over the test case attack
stages
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Figure 11: Evolution of delta opinions over the test case attack stages
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As a result, Figure 10 shows an abstract representation of the I4Testbed
devices and their connections, along with the respective correlated opinion of
all virtual agents, which is computed immediately after each individual attack.
Note that, in our experiments, two devices are considered as neighbours by the
Opinion Dynamics as long as they exchange information during the last period
analyzed (i.e., every 5 minutes, as explained before). This way, the system can
detect when a device has been removed from the topology, which affects the
anomaly calculation due to a variation on the number of connections. Note
also that, in Figure 10, dotted lines represent connections that are not used
frequently.

As we can see, the correlation of the different opinions of the virtual agents
provide helpful information that is of interest to network security mechanisms
and services, as it provides an accurate visualization tool to easily identify the
most affected resources at all times. First, Figure 10(a) shows that an important
anomaly was detected by the virtual agent assigned to the corporate PC when
the SSH connection was opened to communicate with the HMI/SCADA, since
its notices an unexpected connection involving that target device. Besides, if
host-based IDS were available, the virtual agent assigned to the HMI/SCADA
would also have signalled the existence of an anomaly. Note that this corporate
PC is opted out for the Opinion Dynamics computation after this first step
because it will not have any more interactions with the rest of the devices
during the entire simulation. Then, as seen in Figure 10(b), the search for
victim devices within the network results in a mild increase in the opinion of
most agents, since the network is flooded with TCP connections.

Thirdly, the adversary establishes the covert-channel between the HMI /
SCADA and the Modbus PLC, with the aim to issue commands without firing
any alert. However, this attack is also detected when the variation of the packet
delays is analyzed by the agents involved, which is leveraged to embed the
shutdown command for the target PLC; in other words, different clusters of
opinions appear as consequence of the correlation of similar opinions due to
similar delays experienced in their surroundings links. These are represented
in orange in Figure 10(c). Lastly, the attacker sends a shutdown command to
the RPi3 PLC, paralyzing the production chain. As expected, this generates a
critical anomaly (cf. Figure 10(d)) that is measured by all devices that work
closely to that device. Such anomaly is a consequence of the variation in the
traffic volume, caused by delays and requests issued by the industrial devices;
namely, the WirelessHART and ISA100.11a gateways, the field devices, the
HMI/SCADA system, and the Software PLC.

Apart from providing a detailed analysis of the security status of all devices,
the Opinion Dynamics System can also provide the health status for the entire
network by calculating the δ indicator, as introduced in section 4. In particular,
Figure 11 shows the resulting value of the global anomaly (1 minus the delta
indicator), calculated as the weighted average of all individual opinions (also
represented in the graph) during the entire simulation. In the figure, each mark
in the X axis represents a single computation of the Opinion Dynamics algo-
rithm. There are two important aspects that must be highlighted in this figure.
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First, as all agents run a training phase to determine the normal conditions of
the system, every event is considered as an anomaly during that process until
they stabilize around zero value. Second, the four different attack stages are
actually shown in the figure as peaks in the y-axis. As explained before, the
highest peak occurs with the ultimate disruption of the PLC, which results in
a global anomaly of 68.83% (so that δ=31.17%).

7 Conclusions

APTs nowadays represent a dramatic source of economic losses and reputation
damage for the industry, which obligates researchers, managers and operators to
make a great effort to analyze them to trace their behavior and anticipate their
effect. It then becomes mandatory to explore new ways of detecting and trac-
ing anomalies beyond traditional detection techniques. In this paper, we have
described the feasible application of an already available theoretical approach
based on a distributed collaborative algorithm (Opinion Dynamics). We review
the literature to gather the set of attack vectors that these threats leverage with
the aim of representing the anomalies and show the effectiveness of the algo-
rithm in a realistic setting, which also considers the influence of persistence over
time. As a result, we have valuable information about the status of the network
at all times. Finally, we have implemented and validated a proof of concept of
this approach in a real testbed that integrates several kinds of industrial devices
and protocols.

Future work will involve the enhancement of this algorithm when applied to
a fully distributed environment of the Industry 4.0. This is a especially volatile
context where heterogeneous devices interact with any other element within
the local infrastructure or between industrial organizations, thereby involving
a cloud-based network of partners. In this sense, it worth investigating the
design of trust management procedures that allow the escalation of the Opinion
Dynamics in a decentralized way while preventing against the manipulation of
the detection system or the agents’ opinions. Likewise, the analysis of new
sources of anomalies to accurately detect APTs in such innovative scenarios,
plus the integration of alerts provided by more traditional intrusion detection
mechanisms, will be subject of research.
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