
1

Towards the Quantum-Safe Web:
Benchmarking Post-Quantum TLS

Ruben Rios, José A. Montenegro, Antonio Muñoz, Davide Ferraris

Abstract—The transition to a quantum-resistant Internet is a
complex process that depends on the integration of post-quantum
cryptographic primitives into existing security protocols. This
paper analyzes the impact that the primitives selected by NIST
in their post-quantum cryptography competition has on a critical
Internet security protocol, the TLS protocol. The analysis is
facilitated by a framework that enables the implementation
of an evaluation scenario in which different post-quantum
primitives can be tested under identical conditions, ensuring
a fair comparison. Our results indicate that the computational
overhead introduced by current post-quantum standards in TLS
is comparable to that of traditional algorithms, and even more
efficient at high security levels. However, their significant impact
on data transmission constrains the transition to a full-fledged
quantum-safe web.

Keywords: Cybersecurity, Transport Layer Security, Post-
Quantum Cryptography.

I. INTRODUCTION

QUANTUM computing has been touted as the next great
technological revolution, with major companies invest-

ing heavily in its development. Although it is still under
development, its huge potential can already be envisaged in
applications such as industrial process optimization, artificial
intelligence and the design of new drugs and materials. Quan-
tum computing will also revolutionize cybersecurity.

The principles of quantum physics will enable quantum
computers to create virtually unbreakable communication sys-
tems, thanks to mechanisms such as quantum key distribution,
which can detect any attempt to intercept or modify the
quantum particles used for the exchange. The randomness of
quantum systems will also make it possible to generate high-
quality random numbers, which are essential for cryptography.
However, the downside of quantum systems is that they will
also be able to drastically reduce the level of security of
today’s cryptography, thus undermining the foundations of
Internet security [1].

In response to this daunting threat, the research community
is developing new cryptographic primitives that can withstand
quantum attacks. This area of research has been referred to as
post-quantum cryptography (PQC), but also as quantum-safe,
or quantum-resistant cryptography. In fact, the US National
Institute of Standards and Technology (NIST) initiated a
competition in 2016 to standardize PQC algorithms [2]. After
over 80 initial submissions and three rounds of competition
submissions, four algorithms were selected for standardisation.

Despite the availability of PQC standard primitives, inte-
grating them into current systems and networks requires a
substantial amount of research and engineering [3]. These

primitives encompass a considerable number of configuration
options, each of which not only has security implications but
also impacts the performance of systems and protocols, being
particularly relevant the case of the Transport Layer Security
(TLS) protocol, which is the security backbone of the world’s
online activities, including web browsing, e-commerce and
numerous other applications.

While some progress has been made in integrating PQC into
TLS, these efforts are still in the early stages. For example, the
IETF is drafting new standards [4], and several major browsers
have started offering partial support for PQC, however, only
a small fraction of clients currently use it, and compatibility
issues exist. These initial steps would greatly benefit from tools
and frameworks that enables the assessment and comparison
of TLS configurations involving PQC primitives before imple-
menting them in real settings.

This is precisely one of the primary goals of this paper, to
provide a framework for evaluating the impact of integrating
PQC primitives into TLS. Although some efforts have been
made in this direction [5], our framework provides flexible sce-
narios that can be adapted to different network conditions, and
can be easily extended with new PQC primitives as they are
developed. In fact, it has been used to evaluate the performance
and transmission overhead of TLS handshakes incorporating
the latest PQC primitives, including NIST standards.

II. TRADITIONAL WEB SECURITY

TLS is a fundamental security protocol of the Internet.
Whenever someone visits a website, prior to the transmission
of any data, a secure connection is established to ensure that
third parties are unable to eavesdrop, tamper with, or forge
messages. Consequently, the authenticity, confidentiality, and
integrity of web-based communications are guaranteed. The
most recent version of the protocol is TLS 1.3 (defined in
RFC 8446), but TLS 1.2 is still in use. All previous versions
have been deprecated.

Generally speaking, TLS consists of two parts: handshake
and data transmission. Fig. 1 illustrates the message flow in
TLS 1.3, with the dashed boxes representing messages that
are not always sent. The handshake can be divided in three
phases: key exchange, server parameters and authentication. In
the key exchange phase, which includes the ClientHello
and ServerHello messages, the client and the server nego-
tiate the protocol version, determine appropriate cryptographic
parameters and establish shared secret keys. All handshake
message after the key exchange phase will be encrypted using
the agreed keys.

R. Rios, J. A. Montenegro, A. Muoz and D. Ferraris, “Toward the Quantum-Safe Web: Benchmarking Post-Quantum TLS”, IEEE Network, 2025.
http://doi.org/10.1109/MNET.2025.3531116
NICS Lab. Publications: https://www.nics.uma.es/publications



2

Client Server

EncryptedExtensions

CertificateRequest

CertificateVerify

Finished

Application Data

Certificate

Application Data

CertificateVerify

Certificate

Finished

Application Data

ServerHello

ClientHello

Fig. 1: TLS 1.3 Message Flow (based on RFC 8446)

The ClientHello message contains a list of supported
algorithms in descending order of client preference: Ephemeral
Diffie-Hellman (DHE) or Pre-Shared Key (PSK). DHE can
be used over finite fields (FFDHE) or over elliptic curves
(ECDHE), being the latter usually preferable as it can achieve
the same security guarantees with significantly shorter key
shares (see TABLE I). The elliptic curves used in TLS 1.3
are secp256r1, secp384r1, and secp521r1 (or NIST P-256,
P-384, and P-521) as well as x25519 and x448. Note that
a unique key share value for each of the listed algorithms
can be added to the message. In contrast, the ServerHello
message contains only a key share for the algorithm selected
by the server from those offered by the client. In scenarios
where a secret key is pre-established, no values are shared
between the client and the server.

The server parameters phase comprises two messages,
EncryptedExtensions and CertificateRequest,
the latter being sent only in case the server requires client
authentication. During the authentication phase, the client may
authenticate the server (server-only) or they may mutually
authenticate by exchanging three types of messages. The
Certificate message typically contains the certificate of
the endpoint and CertificateVerify contains a signature
over the entire handshake using the private key associated with
the certificate in the previous message. These messages will
only be present if authentication is done via certificates and
not by means of a pre-shared key. The signature algorithms
used for authentication are either RSA, Elliptic Curve Digital
Signature Algorithm (ECDSA) or the Edwards-Curve Digital
Signature Algorithm (EdDSA). The elliptic curves used in both
cases are the same as those used during the key exchange
phase.

The Finished message is always present and serves to
confirm the secret key and identity of the other endpoint. At
this point, the client and server derive the keying material
necessary to exchange application-level data protected with
authenticated encryption.

III. SECURITY LEVELS

The security level or strength of cryptographic primitives is
typically expressed as number of bits. A primitive with n bits
of security requires an effort equivalent to 2n runs of the most

effective attack to break it. For example, the security of AES
is based on the need to brute-force the key space, while the
security of RSA is based on the execution complexity of the
best known algorithm for factoring large primes. This is why
two primitives may have comparable strength despite having
different key sizes.

TABLE I: Security strength comparison
(based on NIST SP 800-57 Part 1 Rev. 5)

Security Symmetric Key Public Key Cryptography
strength Cryptography Finite Fields Elliptic Curves
<80 2TDEA 1024 160-223
112 3TDEA 2048 224-255
128 AES-128 3072 256-383
192 AES-192 7680 384-512
256 AES-256 15360 ≥512

The equivalence shown in TABLE I provides an accurate
framework for comparing different types of cryptosystems.
However, in view of the uncertainties associated with post-
quantum primitives, including the potential for new quan-
tum attacks and the difficulty of predicting the performance
of quantum computers, NIST established a new framework
comprising broader security categories. These categories are
based on estimations of the necessary resources to successfully
attack primitives which are deemed to be reasonably robust
against quantum attacks, namely AES and SHA3. Five security
categories or levels are considered [2]:

• Level I: key search on AES-128.
• Level II: collision search on SHA3-256.
• Level III: key search on AES-192.
• Level IV: collision search on SHA3-384.
• Level V: key search on AES-256.
The computational resources needed to launch these attacks

can be quantified in terms of circuit complexity or circuit depth
as running extremely long serial computations in quantum
computers is a extremely challenging process. Consequently,
a post-quantum primitive belongs to security level I if the
computational resources required to break it are comparable to
those required to perform a key search attack against AES 128-
bit using the best known attack, which in this case is Grover’s
quantum algorithm [6]. Although Grover’s algorithm achieves
a quadratic speedup over a classical brute-force attack, the
complexity of the attack lies in the implementation of the
quantum circuit needed to run it.

Participants to the post-quantum standarization contest or-
ganized by NIST were asked to classify their algorithms
according to this framework.

IV. POST-QUANTUM STANDARDS

The first quantum algorithms with the potential to com-
promise the security of current cryptographic primitives were
devised in the mid-1990s. One particularly noteworthy exam-
ple is Shor’s algorithm [7]. The algorithm is capable of per-
forming the prime factorisation of large integers and solving
discrete logarithms, which serve as the foundation of public-
key cryptosystems, in polynomial time. However, it was not
until recent years, with the recent technological developments



3

TABLE II: Security Level of Selected PQC Algorithms

NIST Security Category
Algorithm name Level I Level III Level V

PKE/KEM CRYSTALS-KYBER / KYBER512 / KYBER768 / KYBER1024 /
ML-KEM ML-KEM512 ML-KEM768 ML-KEM1024

Signature

CRYSTALS-DILITHIUM / − DILITHIUM3 / DILITHIUM5 /
ML-DSA ML-DSA65 ML-DSA87
FALCON FALCON512 − FALCON1024

SPHINCS+ / SLH-DSA

SPHINCS+-128S / SPHINCS+-192S / SPHINCS+-256S /
SLH-DSA-128S SLH-DSA-192S SLH-DSA-256S

SPHINCS+-128F / SPHINCS+-192F / SPHINCS+-256F /
SLH-DSA-128F SLH-DSA-192F SLH-DSA-256F

in quantum computing, that the necessity for standardisation
of quantum-resistant algorithms became apparent.

Despite the existence of several standardization initiatives
(e.g., [8], [9]), the most notable effort has been led by
NIST [2]. In 2016, the agency launched a worldwide com-
petition with the aim of evaluating and standardizing PQC
algorithms that could replace current public-key cryptosystems
as they are particularly vulnerable to Shor’s algorithm.

Following the initial submission of 69 algorithms and
three rounds of competition, which led to the discovery of
vulnerabilities and the refinement of proposals [10], the first
PQC algorithms selected for standardisation were announced
by NIST in July 2022. The selection included:

• CRYSTALS-KYBER for key encapsulation and public-
key encryption.

• CRYSTALS-DILITHIUM, FALCON, and SPHINCS+

for digital signatures.

With the exception of SPHINCS+, which is based on
cryptographic hash functions, all of the aforementioned algo-
rithms are based on problems over mathematical structures
called lattices. Although lattice-based algorithms were the
most efficient ones, the hash-based algorithm was included
as a safeguard mechanism. Following the same rationale, a
fourth round of the competition started with algorithms based
on different problems, including elliptic curve isogenies and
error-correction codes.

The algorithms submitted for evaluation were required to
include an security strength estimate for each parameter set
according to the categories defined by NIST (see Section III),
as shown in TABLE II. In the particular case of SPHINCS+,
the authors submitted two optimized versions for each security
level: one optimized in size (ending on ‘s’ for small) and one
optimized in performance (ending on ‘f’ for fast). Moreover,
each version of the algorithm can be instantiated with three
different hash functions: SHA-256, SHAKE256 and Haraka.
On top of that, there are simple and robust instantiations,
where the difference lies in the input to the hash functions.
This results in numerous signature schemes.

In the summer of 2023, three Federal Information Process-
ing Standards (FIPS) drafts were published for use by all non-
military US government agencies and government contractors,
but they also have international relevance [11]. These drafts
are based on the selected algorithms with minor changes [2]:

• FIPS 203: Module-Lattice-Based Key-Encapsulation
Mechanism Standard (ML-KEM), based on KYBER.

• FIPS 204: Module-Lattice-Based Digital Signature Stan-
dard (ML-DSA), based on CRYSTALS-DILITHIUM.

• FIPS 205: Stateless Hash-Based Digital Signature Stan-
dard (SLH-DSA), based on SPHINCS+.

One year later, during the summer of 2024, these drafts were
finally designated as FIPS standards. Currently, NIST is also
working on the development of a FIPS for the standardisation
of a digital signature algorithm derived from FALCON. New
FIPS standards may eventually emerge from the fourth round
of the competition, which focuses on digital signatures.

V. QUANTUM-SAFE WEB

As of 2021, over 90% of web traffic used HTTPS, which
is secured by TLS [12]. This figure is corroborated by the
Google Transparency Report, which indicates that 96% of
their products are accessed via HTTPS in 2024 [13]. However,
the cryptographic algorithms currently used in TLS during the
handshake phase (mainly Level I Curve 25519 and RSA) are
vulnerable to quantum attacks.

The transition towards a quantum-safe web is not with-
out challenges. The process involves the integration of PQC
primitives into the TLS protocol while ensuring compatibility,
and maintaining performance efficiency. In early 2024, only
a small fraction (below 2%) of TLS clients supports post-
quantum key agreements, but implementing post-quantum
signatures is considered to be much more challenging, and
will thus require more time [14].

A. Evaluation Framework

The core component of our evaluation framework is
OpenSSL1. OpenSSL is a widely used open-source library that
provides all the necessary algorithms and tools for securing
communications over networks, such as the generation of
the public and private keys and their corresponding certifi-
cates used during the TLS protocol handshake. Furthermore,
OpenSSL provides three commands for testing TLS connec-
tions. The s_server command is responsible for creating
a TLS server, while s_client and s_time commands are
used for the establishment of connections with the server and

1https://github.com/openssl/openssl



4

measuring the performance of TLS connections. The version
of the OpenSSL library used is 3.3.1, which is the latest stable
version at the time of writing.

Another key component of our framework is the liboqs2

library. This library is part of the Open Quantum Safe (OQS)
project, whose primary goal is to develop quantum-safe cryp-
tography for real-world applications. It provides us with the
implementation of PQC primitives.

The final component is the oqsprovider3, which enables
the integration of the PQC algorithms available in liboqs
into OpenSSL. It should be noted that not all PQC standards
are currently available in this component. For example, there
is still no implementation of SLH-DSA, although an earlier
version, SPHINCS+, is available. However, these standards
could be easily integrated into our framework as soon as they
are implemented.

In order to facilitate the creation of an environment for
testing all the cryptographic primitives under the same con-
ditions, a Docker image has been created that includes the
core elements of our framework, as well as all the scripts for
the execution of our tests.

A particular script can be initiated via Docker, specifying
the cryptographic algorithms to be employed by TLS for key
establishment and authentication.

docker run -e KEM_ALG=<kem_selected>
-e SIG_ALG=<sign_selected>
-it oqs-curlv331 <script_selected>

Although in this paper we concentrate on an ideal scenario,
the proposal can be adapted to more realistic scenarios by
using environment variables representing packet delay and
packet loss, (TC_DELAY and TC_LOSS, respectively) that the
script use to modify its behavior.

docker run --cap-add=NET_ADMIN
-e TC_DELAY=<delay>
-e TC_LOSS=<loss>
-e KEM_ALG=<kem_selected>
-e SIG_ALG=<sign_selected>
-it oqs-curlv331 <script_selected>

Internally, the scripts use the aforementioned OpenSSL
commands. On the server side, the command used to measure
the number of connections established per second and the
quantity of data transmitted is OpenSSL’s s_server. The
following line generates a TLS 1.3 server on port 4433 with
the certificates created for the server:

openssl s_server -cert <server_crt> -key <server_key>
-www -tls1_3
-accept <server_ip>:<server_port>

To determine the number of successful connections, the
client uses the s_time command to establish TLS connec-
tions to the previously created server. A time parameter is
used to indicate to the client the number of seconds it should
initiate new connections with the server. We use this parameter
to compare the performance of TLS when using different
cryptographic primitives. In our tests, a 10-second interval was
selected.

2https://github.com/open-quantum-safe/liboqs
3https://github.com/open-quantum-safe/oqs-provider

openssl s_time -connect <server_ip>:<server_port>
-new -time <exec_time> -verify 1
-CAfile <CA_crt>

Although the s_time command establishes multiple con-
nections, we decided to run it 100 times to perform a statisti-
cally significant analysis of the results.

Finally, to evaluate the transmission overhead, our scripts
use the s_client command, which is employed to establish
a connection with the server. This command provides infor-
mation about the number of kilobytes transmitted during the
handshake. The transmission overhead is primarily influenced
by the size of the certificates being exchanged, but also the
secret shares used during the key exchange phase.
openssl s_client -connect <server_ip>:<server_port>

-state -servername <cname>
-CAfile <CA_crt> -showcerts

The source code required to replicate our tests, along with
the corresponding results, is available for download from
our public GitHub repository4. The repository also includes
the results of executions conducted under different network
conditions.

B. Handshake Performance Impact

This section examines the impact that selecting traditional or
post-quantum algorithms has on TLS performance, measured
by the number of successfully completed handshakes over a
ten-second period. The results are shown in Fig. 2, where
different TLS configurations are compared. Each configuration
consists of a KEM algorithm along with one of the signature
algorithms listed on the x axis. When available, we evaluate
the standard PQC algorithm, rather than the finalist from the
NIST competition5. The figure uses box plots to highlight the
most representative values of the distribution, including the
median, quartiles and outliers, represented by the + symbol.

At Level I (Fig. 2a), the choice of KEM algorithms does
not significantly impact the number of connections established.
Using the traditional P-256 as KEM exhibits slightly lower
performance (below 20%) than X25519 and the post-quantum
ML-KEM512. With respect to post-quantum signatures, FAL-
CON would be the best option as it offering a performance
that lies between the traditional RSA and ED25519. On the
other hand, a transition based on SPHINCS+ would have a
significant impact on performance compared to FALCON. In
particular, the fast and small variants of SPHINCS+ reduce
their capacity to establish connections by a factor of approx-
imately 10 and 140, respectively. The boxplot shows that
the distribution of results exhibit a relatively low dispersion,
with RSA and SPHINCS+ being the most stable distributions
although some outliers exist for all TLS configurations.

At Level III (Fig. 2b), the choice of ML-KEM leads
to a significant enhancement in performance when used in
conjunction with a signature algorithm based on traditional (P-
384) or post-quantum (ML-DSA). This combination of post-
quantum algorithms results in a six-fold performance increase
compared to traditional algorithms. Again, the selection of

4https://github.com/montenegro-montes/TLS-PQ
5According to our tests the standard versions perform slightly better.



5

(a) Level I (b) Level III (c) Level V

Fig. 2: TLS Handshake connections during 10 seconds

SPHINCS+ is not recommended at Level III. The fast variant
exhibits a performance reduction by a factor of 17, while
the small variant is around 286 times less efficient, with an
average of 25 connections over 10 seconds. According to the
boxplot, most executions present similar performance but there
are still some atypical executions where the performance is
notably lower. This is most evident in configurations with
higher average performance.

At Level V (Fig. 2c), the choice of ML-DSA as the
signature algorithm ensures optimal performance, irrespec-
tive of whether a traditional (P-521) or post-quantum (ML-
KEM1024) key exchange algorithm is employed, outperform-
ing the FALCON algorithm. Finally, if SPHINCS+ fast and
small variants are considered, their performance is respectively
33 and 272 times inferior than the optimal choice of ML-
KEM and ML-DSA. In terms of dispersion, the results are
consistent with lower security levels.

In conclusion, at all security levels, there is a well-
performing fully post-quantum TLS configuration (i.e., based
solely on PQC). Interestingly, traditional TLS configurations
(based on elliptic curves and RSA) only perform better than
post-quantum TLS configurations at Level I, when Curve
25519 is used for authentication, but not for RSA. The best-
performing TLS configurations at Levels III and V are fully
post-quantum. However, the use of either SPHINCS+ variant
consistently results in significant performance degradation.

C. Data Transmission Impact

This section explores the number of kilobytes transmitted
during a TLS handshake when combining different algorithms
for key exchange and for authentication, including both classi-
cal and post-quantum primitives. The results, shown in Fig. 3,
are organized based on the security level of the algorithms and
show client-side and server-side transmissions separately. We
concentrate on server authentication as it represents the most
common scenario in web communications.

As shown in Fig. 3, the total number of kilobytes transferred
during a full handshake is consistently lower when classical
primitives are employed in comparison to post-quantum primi-
tives. The use of ML-KEM for key exchange results in larger
data transmissions in comparison to classical primitives. At
Level I, the increase in data transmission is approximately
155% when it replaces RSA and up to 227% when it is
used instead of X25519. At Level III, the increase remains
consistent with the previous level. At Level V, when replacing

P-521 by ML-KEM, the transmission overhead increases by
a factor of 2.5, with a handshake that amounts to a total of
approximately 4700 kilobytes.

On the other hand, the transmission overhead of post-
quantum signature algorithms is significantly higher, being
FALCON the most affordable solution. At Level I (see Fig. 3a),
the combination of ML-KEM and FALCON yields an increase
in data transmission around 177% in comparison to the com-
bination of P-256 and RSA, and a four-fold increase with
respect to X25519 and ED25519. In contrast, SPHINCS+

presents the highest overhead for all security levels, even for
the size-optimized variant, which involves approximately half
the overhead of the performance-optimized version. In the
worst case scenario, SPHINCS+ transfers over 100 kilobytes
during a single TLS handshake (see Fig. 3c) compared to
approximately 1.5 kilobytes for classical primitives. ML-DSA
lies in between, being approximately 5.7 times worse than a
classical handshake with curve P-384 (Fig. 3b) and up to 7
times worse for the highest security level (Fig. 3c).

In summary, traditional TLS configurations impose a rel-
atively low overhead compared to post-quantum TLS. In
more detail, the transmission impact of post-quantum KEM
primitives is not significant, whereas the associated costs for
signatures are substantially higher. The most favorable post-
quantum combination is the use of ML-KEM and FALCON,
which yields results comparable to classical primitives. Con-
versely, SPHINCS+ is extremely costly irrespective of the
security level. In general, the volume of data transmitted grows
with higher security levels.

VI. DISCUSSION

The evaluation of TLS configurations presented in the pre-
vious section focuses on handshake performance and volume
of data transmitted under ideal network conditions. A key
consideration is that while some algorithms may excel in
performance, they often result in significantly larger data
transmissions, which can congest communication channels
and reduce network efficiency. Therefore, it is essential to
consider both parameters together, as balancing performance
with transmission efficiency is critical.

At Level I, the performance of FALCON is superior to that
of RSA, although it does not reach the level of ED25519.
Furthermore, there is no discernible impact on the volume
of data transmitted during TLS handshakes. In contrast, the



6

(a) Level I (b) Level III (c) Level V

Fig. 3: Data Transmission in Kilobytes During TLS handshake

selection of SPHINCS+ has a substantial impact on both per-
formance and the volume of kilobytes transmitted. Moreover,
the combination of FALCON and ML-KEM can provide a se-
cure and efficient solution for transitioning from traditional to
post-quantum TLS at Level I, as ML-KEM has a performance
similar to that of currently used key exchange mechanisms.

At Level III, there is no FALCON implementation, making
ML-DSA the most advantageous post-quantum signature op-
tion. Combined with ML-KEM, significantly improves perfor-
mance over traditional algorithms. The downside of this choice
is that the information transfer is almost 6 times higher than
the traditional one. In the case of SPHINCS+, its performance
is notably inferior to that of traditional algorithms. Moreover,
it imposes a significant data transmission overhead, rendering
it unsuitable for TLS. Regarding the KEM algorithm, the tran-
sition is guaranteed by choosing ML-KEM. This is one of the
reasons why the IETF is currently working on standardizing
the inclusion of ML-KEM in TLS, with preliminary support
already implemented in some web browsers.

The performance of ML-KEM remains reasonable at Level
V. Regarding signature algorithms, both ML-DSA and FAL-
CON outperform traditional schemes; however, it is worth
highlighting the outstanding improvement demonstrated by
ML-DSA. When evaluating the volume of data transmitted,
FALCON is the preferred choice as it only introduces a slight
increase in transmission compared to traditional algorithms,
significantly lower than the overhead introduced by ML-
DSA. The choice of the SPHINCS+ algorithm is discouraged
due to its inadequate performance and the increase in data
transmission by a factor of more than 50.

In summary, the use of ML-KEM in TLS is highly recom-
mended as it introduces performance benefits at all security
levels, although it comes with a reasonable increase in the
volume of data transmitted. With regard to post-quantum sig-
natures, the optimal choice at Level I is the FALCON algorithm,
offering approximately twice the performance of RSA and
nearing the efficiency of ED25519. This advantage becomes
particularly evident when paired with ML-KEM, resulting in
only a modest increase in the volume of data transmitted.
The ML-DSA algorithm also brings a significant performance
improvement at Levels III and V, but this comes at the cost of
a substantial increase in data transmission, rendering its use
inadvisable for TLS. The communication overhead observed
in our tests is primarily attributed to the authentication phase,
which is precluding the use of post-quantum signatures in

TLS. Some initiatives [15] are underway to address this issue
and facilitate a full transition to post-quantum TLS.

When packet delays and losses are introduced, the perfor-
mance of TLS decreases significantly for all configurations.
Our internal tests6 show that the performance, measured
in terms of the number of connections, degrades as the
delay grows, and all TLS configurations tend to the same
performance since the computational cost becomes negligi-
ble compared to the delay. In contrast, configurations using
SPHINCS+ are not notably affected by the delay because
their bottleneck is on the execution of the algorithm primi-
tives. The same behavior is observed as the packet loss rate
increases, but it also impacts the volume of data transmitted.

Consequently, in the presence of packet loss and delay, the
choice of the algorithm is not so crucial in terms of perfor-
mance. However, it is even more critical in terms of transmis-
sion overhead, especially for configurations using SPHINCS+

signatures and higher security level configurations.

VII. CONCLUSION

The imminent threat of quantum computers is driving the
need to transition to an Internet secured by post-quantum
technologies. While post-quantum cryptographic primitives are
already available, a successful transition to a quantum-safe
Internet requires a thorough understanding of how integrating
these primitives affects existing secure communications pro-
tocols.

This paper focuses on analyzing the impact of state-of-the-
art post-quantum key exchange and signature mechanisms on
the TLS protocol. To this end, a comprehensive evaluation
framework is proposed, allowing different TLS configurations
to be tested under identical conditions. This framework is
highly valuable for making informed decisions on the use of
traditional or post-quantum cryptographic primitives in TLS,
as it simplifies the selection, testing and comparison of various
primitives.

Our results indicate that the transition from traditional
to post-quantum KEM primitives is assured with the ML-
KEM algorithm, as it matches the performance of traditional
algorithms at Level I, and significantly enhances it at Levels
III and V, despite an affordable increase in data transfer. For
the signature algorithms, FALCON would be our preferred
choice for a transition at Level I and ML-DSA at Levels

6Results can be found in our GitHub repository.



7

III and V, although it is important to consider the traffic
increase associated with this option. Finally, SPHINCS+

is discouraged due to its performance limitations and the
excessive amount of traffic it requires.

Future work will focus on several key areas to further
advance this field. One critical direction involves evaluating
the energy consumption of post-quantum algorithms, which is
particularly relevant in resource-constraint scenarios. In addi-
tion, we plan to further investigate more realistic scenarios that
account for factors such as packet loss and delay, as this will
provide valuable insights into the performance and reliability
of post-quantum TLS implementations. Similarly, scenarios
involving mutual authentication deserves attention to ensure
robust two-way authentication in quantum-safe environments.
Finally, the evaluation hybrid schemes, in which traditional
and post-quantum primitives coexist for key exchange and
digital signatures, is another area for further exploration as
this approach is expected to enable a more secure transition
to a quantum-safe Internet.

ACKNOWLEDGMENT

This work has been partially supported by project
SecTwin 5.0 (TED2021-129830B-I00), funded by
MCIN/AEI/10.13039/501100011033 and by the European
Union ”NextGenerationEU”/PRTR. Funding for open access
charge: Universidad de Málaga / CBUA.

REFERENCES

[1] A. Kramer, “Quantum algorithm offers faster way to hack internet
encryption,” Science, vol. 381, no. 6664, pp. 1270 – 1270, 2023.

[2] NIST CSRC, “Post-quantum cryptography,” https://csrc.nist.gov/
projects/post-quantum-cryptography, Accessed: 2024-07.

[3] D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Assessing the
overhead of post-quantum cryptography in TLS 1.3 and SSH,” in Pro-
ceedings of the 16th International Conference on emerging Networking
EXperiments and Technologies, 2020, pp. 149–156.

[4] Internet Engineering Task Force (IETF), “Post-quantum hybrid ECDHE-
MLKEM key agreement for TLSv1.3,” https://datatracker.ietf.org/doc/
draft-kwiatkowski-tls-ecdhe-mlkem/, Accessed: 2024-10.

[5] C. Paquin, D. Stebila, and G. Tamvada, “Benchmarking post-quantum
cryptography in TLS,” in Post-Quantum Cryptography: 11th Interna-
tional Conference, PQCrypto 2020, Paris, France, April 15–17, 2020,
Proceedings 11. Springer, 2020, pp. 72–91.

[6] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’96. New York, NY, USA:
Association for Computing Machinery, 1996, p. 212–219.

[7] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring,” in Proceedings 35th Annual Symposium on Foundations of
Computer Science, 1994, pp. 124–134.

[8] European Telecommunications Standards Institute (ETSI), “Quantum-
Safe Cryptography (QSC),” https://www.etsi.org/technologies/
quantum-safe-cryptography, Accessed: 2024-10.

[9] Internet Engineering Task Force (IETF), “Post-Quantum Use In Proto-
cols,” https://datatracker.ietf.org/wg/pquip/about/, Accessed: 2024-10.

[10] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. M. Kelsey,
J. Lichtinger, Y.-K. Liu, C. A. Miller, D. Moody, R. Peralta, R. Perlner,
A. Robinson, and D. Smith-Tone, “Status report on the third round of
the NIST Post-Quantum cryptography standardization process,” National
Institute of Standards and Technology, Tech. Rep. NIST IR 8413-upd1,
2022.

[11] Post-Quantum Cryptography Coalition, “International PQC Require-
ments,” https://pqcc.org/international-pqc-requirements/, August 28
2024, Accessed: 2024-10.

[12] Electronic Frontier Foundation, “Encrypting the Web,” https://www.eff.
org/encrypt-the-web, Accessed: 2024-07.

[13] Google, “HTTPS encryption on the web,” https://transparencyreport.
google.com/https/, Accessed: 2024-07.

[14] The Cloudfare Blog, “The state of the post-quantum Internet,” https:
//blog.cloudflare.com/pq-2024, Accessed: 2024-07.

[15] P. Schwabe, D. Stebila, and T. Wiggers, “Post-quantum TLS without
handshake signatures,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’20.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1461–1480. [Online]. Available: https://thomwiggers.nl/publication/
kemtls/


