
Computers & Security 142 (2024) 103856

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Malware similarity and a new fuzzy hash: Compound Code Block Hash

(CCBHash)

Jose A. Onieva a,∗, Pablo Pérez Jiménez b, Javier López a

a Network, Information and Computer Security (NICS) Lab, University of Malaga, Spain
b VirusTotal, Malaga, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Hashes

Fuzzy hashes

Code similarity

Malware

In the last few years, malware analysis has become increasingly important due to the rise of sophisticated
cyberattacks. One of the objectives of this cybersecurity branch is to find similarities between different files
or functions used by malware programmers, thus allowing malware detection, classification and even attribution
in a timely manner. In this article we survey the state of the art in this area, reviewing the different techniques
that can be applied to the field, with the objective of studying similarity, and therefore detecting, classifying and
attributing malware samples. We have developed a fuzzy hash capable of characterizing malware by generating
an easily comparable and storable signature of its functions. Since our goal is to detect these similarities in huge
amounts of data within a reasonable time-frame, the size of the hash must be limited while retaining as much
information as possible.

J. A. Onieva, P. Prez and J. Lopez, “Malware similarity and a new fuzzy hash: Compound Code Block Hash (CCBHash)”, Computers & Security,
vol. 142, 2024.
http://doi.org/10.1016/j.cose.2024.103856
NICS Lab. Publications: https://www.nics.uma.es/publications
1. Introduction

In current cybersecurity threats, there exists a persistent endeavor
by malevolent entities to elude detection mechanisms. For instance,
the deployment of polymorphic and metamorphic malware (Rad et al.,
2012) by cybercriminals exploits the capacity of even minor alterations
in binary code or script to circumvent conventional antivirus software.
For this reason, traditional signature-based methods face challenges in
identifying variants and polymorphic strains. Threat actors tailor their
malicious payloads to specific target organizations, thereby enhancing
the likelihood of infiltrating and traversing an entire corporate network
and orchestrating data exfiltration with minimal traces of their activ-

ities. The clandestine market thrives on an array of tools, including
malware builders, trojanized versions of legitimate applications, and
assorted services facilitating the deployment of highly elusive malware.

The escalating volume of threats in the wild brings up a shift from
evaluating security solutions solely based on their proficiency in detect-

ing unique malware instances. Instead, contemporary security frame-

works must embody resilient architectures capable of defending against
both prevailing and future attack vectors. It is clear to the community
that AI (Artificial Intelligence) will play a key role in this mission, but
the needed data can be pre-processed or enriched so as to give even

* Corresponding author.

faster responses or to enrich already available data with similarity in-

formation.

The underlying objective of characterizing the similarity of samples
is to elevate the overall accuracy in classifying malware and dimin-

ish the temporal gap between malware release and subsequent detec-

tion and classification. Its proficiency in recognizing and obstructing
malware at first encounter holds critical significance in safeguarding
against a diverse spectrum of threats, including sophisticated cyberat-

tacks. This objective has been displayed as an important tool already
avoiding newly created attacks (Lazo, 2021).

This is of paramount importance. For instance, over the course of
the first six months in 2022, Fortinet documented 10,666 ransomware
variants across its platform (Labs, 2022). Obviously, not each of them
belongs to a different malware family. On the contrary, all of these vari-

ants belong to about a hundred malware families. In each family, there
are similar features that characterize all their samples. And these simi-

lar features are key to catch as soon as possible new samples belonging
to known malware families.

There are several tools that allow a large number of samples to be
simultaneously compared trying to find similarities among them. Simi-

larly, other tools take two files and analyze their assembly code in order
to detect whether there are comparable functions in both samples. How-
Available online 21 April 2024
0167-4048/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
nc-nd/4.0/).

E-mail addresses: onieva@uma.es (J.A. Onieva), pablopj@virustotal.com (P. Pére

https://doi.org/10.1016/j.cose.2024.103856

Received 26 January 2024; Received in revised form 24 March 2024; Accepted 15 A
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

z Jiménez), javierlopez@uma.es (J. López).

pril 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:onieva@uma.es
mailto:pablopj@virustotal.com
mailto:javierlopez@uma.es
https://doi.org/10.1016/j.cose.2024.103856
https://doi.org/10.1016/j.cose.2024.103856
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103856&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers & Security 142 (2024) 103856J.A. Onieva, P. Pérez Jiménez and J. López

Fig. 1. Code transposition (Ször and Ferrie, 2001).
ever, if we want to find similar code functions in a large number of
samples, the number and efficiency of these tools is reduced drastically.

Our aim is to create a signature for each malware sample’s assembly
code function, in such a way that for each function, similar functions
can be detected in a database (e.g. VirusTotal database) storing a very
large number of functions. In addition, for the same sample, the gener-

ated signatures can be concatenated to form a single hash that identifies
the whole file. For this purpose, we used fuzzy hashing strategies, where
a final hash is composed of the concatenation of partial hashes. In this
way, we have the opportunity to detect those functions that are reused
in different files, being able to find samples with similar functionalities,
different versions of the same malware or that have been developed by
the same actors.

We do not aim at providing machine learning (ML) techniques to
search for similarities among samples, but rather to produce a similarity
signature that can be stored, integrated with malware (or fragments of
it) and ready to be used for the search of similarity among petabytes of
information.

In this article we survey, analyze and categorize the theoretical and
practical foundations of malware similarity that we esteem more rele-

vant for the design of a new algorithm. All of this effort has been based
in related and referenced work. This provides two differentiated blocks
in the corpus text of this article. In the first block, more concretely we
differentiate between techniques in Section 2, in which we present tech-

niques used by malware authors in order to thwart detection as well
as techniques used for general similarity search; tools in section 4 in
which we provide a brief overview of existing implementations for mal-

ware similarity; and metrics in section 3 in which comparison metrics
are presented and categorized.

In the second block of contributions we detailed our design, imple-

mentation and analysis of CCBHash. More concretely, in section 5 we
propose the design and implementation of the second iteration of a new
tool (the first one was published in (Jiménez et al., 2022)) that fulfills
our aim. In section 6 we detailed the experiments carried out in order
to validate our design.

In this paper, we present several contributions to the field of mal-

ware similarity that to the best of our knowledge is not present in
similar works:

• We identify three types of components to work with when treating
with malware similarity: techniques, metrics and tools.

• We categorize these components and analyze them from the mal-

ware investigation perspective, highlighting those more accurate
and valid for malware similarity

• We use these theoretical and practical foundations to design and
implement a new fuzzy hash.

• We extensively analyze and compare this new hash with similar
approaches, identifying its main advantages.

Additionally, we discuss the implications of these contributions and
2

their potential impact in malware characterization in Section 7.
2. Techniques

As we already mentioned in section 1, it is key for malware devel-

opers and campaigns to reduce the probability of detection. With this
objective, these actors use known techniques in order to change mal-

ware code while retaining its functionality. Among the commonly used
strategies (Eresheim et al., 2017; Caviglione et al., 2020; Gao et al.,
2014), the most common ones are:

• Instruction replacement. Some instructions are replaced by other
equivalent ones, generating a different code but with the same
functionality. For instance, a multiplication can be reduced to a
number of additions.

• Instruction reordering. The attacker changes the order of certain
instructions, obtaining an apparently different sample but with the
same functionality. Even different functions can be called into the
code in different order without affecting the final functionality.

• Junk code insertion. Sometimes the attacker adds multiple oper-

ations, or even NOP statements,1 which do not change the func-

tionality of the malware but make it more difficult for defenders
to understand. This not only obstructs the malware analyst job,
but also allows for the generation of different code for the same
malware family. These operations may be also inverse operations
(i.e. one cancels the other), and in general any operation that does
change functionality (e.g. setting to zero a register that is not used).

• Register reassignment. Although this action, on some occasions,
is not caused by the attacker, we must bear in mind that two iden-

tical samples may have different information depending on the
system for which they are compiled and linked. That is, compil-

ing and linking of the same source code can generate different final
binary code depending on compiler and linker options.

• Code transposition. Attackers sometimes change the Control Flow
Graph (CFG, see section 2.2) of malware, introducing unnecessary
unconditional jumps. That is, the instructions are rearranged dif-

ferently in the code but are executed in the same order making use
of these jumps. For example, this is achieved by splitting a func-

tion into smaller functions, or by creating functions whose only
instruction is a function call, thus changing the schema of executed
functions. See Fig. 1 for a graphic example.

• Insertion of Conditional jumps. Like in the previous strategy, the
attacker makes changes to the CFG but, in this case, through condi-

tional jumps. Normally, the new code blocks introduced after these
jumps are not executed, or else they are in charge of redirecting
the flow towards the desired direction.

Our hash design needs to take into account these techniques in order
to minimize their impact. In this way, we will be able to detect what are
the really important characteristics that different samples that behave
in the same way have in common.

It is worth noting that there are additional techniques, such us en-

crypting or program packing that helps in avoiding detection. In such

1 The assembler nop instruction commands the processor to do an empty op-
eration.

J.A. Onieva, P. Pérez Jiménez and J. López

Table 1

Techniques comparison.

Technique Effectiveness Complexity Detectability

Instruction Replacement High Moderate Low

Instruction Reordering Moderate Moderate Low

Junk Code Insertion High High Moderate

Register Reassignment Low Low Low

Code Transposition Moderate Moderate Moderate

Insertion of Cond. Jumps Moderate High Moderate

Code Obfuscation High High High

cases, the malware generally has a decryption/unpacking engine (and
optionally a encrypting engine if the malware wants to mutate after
the infection process), encrypted/packed code and, if encrypted, a de-

cryption key embedded in its code. The malware uses its engine to
unpack/decrypt the code in memory before execution. As similarity
search in malware focuses on functionality, and functionality is impos-

sible to be extracted from encrypted/packed samples, all the techniques
assume that, if needed, these samples are preprocessed in order to ob-

tain the code even if this is further obfuscated. Unfortunately in some
cases, this process needs to be performed manually (Monnappa, 2018).

These techniques present different degrees of effectiveness; that is,
how well a particular technique achieves its intended goal of chang-

ing the code without altering its functionality, complexity; that is, the
level of difficulty or intricacy involved in implementing and applying
that particular technique and detectability; that is, the likelihood or ease
with which the modified code can be detected or identified by tools,
techniques, or human analysts. A comparison table for these techniques
and criteria is provided in Table 1.

Taking this into consideration, the community has developed differ-

ent techniques to improve detection among modifications of the same
sample or to search for similarities among different pieces of software so
as to identify analogous (even if partial) functionality which could de-

note partial re-utilization of code or even collaboration among different
groups of malware developers. Note that both, the software and mal-

ware defense communities push forward this research, since the same
techniques and algorithms can be used for software plagiarism and in-

tellectual property protection. In the following we briefly survey some
of these techniques used for malware similarity search.

2.1. N-grams

There are several solutions that use n-grams to compare different
files. The n-grams are sliding windows of variable size, 𝑛 in this case,
where the goal is to store all possible windows of 𝑛 elements for later
comparison. These elements can be very diverse. As far as malware is
concerned, these elements are usually bytes or assembler instructions,
the latter allowing a higher lever of functionality comparison.

However, many of the existing studies have gone a step further
and do not try to use only bytes or exact instructions, but do a little
analysis of the input by filtering out those features that are more rel-

evant. For example, there are solutions (Liu et al., 2017) where the
elements used for the n-grams are the instruction opcodes without reg-

isters and operands. This method allows for a comparison focusing on
the malware functionality, rejecting other characteristics. In fact, this
instruction normalization process is generally applied in most of the
solutions we have reviewed and can be better understood in Table 2.

While the above solution may be interesting in many contexts, it
also has some weaknesses. One of the main disadvantages is the accu-

racy required to be able to find similarities. It will be better understood
with two examples. As we know, in many occasions the execution or-

der of a group of instructions produces the same result. For example,
when performing inverse operations (e.g. a consecutive addition and
subtraction by a constant) the final result will be equivalent regardless
of the order in which they are performed. In the same way, there are
3

several opcodes in assembly code that are used to perform the same op-
Computers & Security 142 (2024) 103856

Table 2

Normalization process.

Original instructions Normalized instructions

push ebp push reg

mov ebp, esp mov reg, reg

sub esp, 0C0h sub reg, value

push ebx push reg

lea edi, [ebp+12] lea reg, mem

mov ecx, 30h mov reg, value

erations, being able to achieve identical goals with different patterns.
In both cases, this technique will struggle to find similarities. Another
limitation of short n-grams is the loss of long-range information within
analyzed binaries, that is, significant relationships between distant code
will not be detected.

To solve some of the existing problems with n-grams of opcodes,
there are studies that introduce the concept of n-perms. The n-perms
are a version of n-grams but using permutations. Thus, if there are sev-

eral identical n-grams stored, the repeated ones are removed leaving
only one n-perm of each class. This technique of eliminating repetitions
is used in different similarity search techniques (see, for instance, (Ko-

rnblum, 2006)). In addition, n-perms are insensitive to execution order,
so two n-grams containing the same elements in different order will be
treated as the same n-perm.

Using n-perms results in higher similarity detection for files using
the same opcodes. However, this higher level of abstraction can also
lead to a higher number of false positives where two files with different
functionalities use similar instructions. We thus arrive at a point where
we must decide between two models. One where there is a lower but
more accurate detection of positives, and another where detection is
higher but the false positives rate may be increased.

2.2. Graphs

Control Flow Graphs store the execution flow that follows a given
executable, usually at the assembly code level. Several disassemblers
and decompilers (e.g. IDA Pro (Hex-Rays, 2022)) use this representation
of the samples in order to ease their analysis.

As in all graphs, there are two types of elements: nodes and edges.
The directed edges store the information about the existing jumps in
the execution. Thus, each jump, conditional or unconditional, will be
reflected with one or more edges. As for the nodes, they can store very
diverse information. Some studies leave them practically empty (Bon-

fante et al., 2007), giving all the importance to the flow. However, in
other solutions, such nodes are used to store more valuable information.
For instance, in (Kruegel et al., 2006), authors proposed a fingerprint
based on k-subgraphs of CFGs. For this generated subgraph, a finger-

print is calculated using an adjacency matrix which is then applied for
searching similarities in polymorphic worms.

In an effort to enrich these graphs, (Yan et al., 2019) proposes the
use of attributes to characterize each node, creating the Attributed CFG
(ACFG). This approach tries to take the nodes generated by a tool like
IDA Pro and creates a signature based on a vector of attributes for each
of these nodes. The attributes used in this case are those listed in Ta-

ble 3.

The use of ACFG is very interesting since it allows to store very
diverse information in the nodes and at the same time it allows to com-

bine this strategy with others. For example, (Li et al., 2019) proposes
to use n-grams of the CFG, where the elements over which the win-

dows advances are the nodes, which, in this work, are characterized by
the number of incoming and outgoing edges, covering all possible paths
of 𝑛 consecutive nodes following the established flow. Another simpler
technique is to use the CFG to sort the code and then take n-grams of
opcodes.

Other authors (Bergeron et al., 2001) try to combine CFGs with sub-
system API calls, creating a graph where the nodes are characterized by

J.A. Onieva, P. Pérez Jiménez and J. López

Table 3

Some attributes to characterize nodes in CFG in (Yan
et al., 2019).

Attribute type Attribute description

From code sequence # Numeric constants

Transfer instructions

Call instructions

Arithmetic instructions

Compare instructions

Mov instructions

Termination instructions

Data declaration instructions

Total instructions

From vertex
structure

Offspring, i.e., degree

Instructions in the vertex

the API calls made by the sample to the subsystem. This method, though
advantageous for non-malicious executables, has serious drawbacks if
we take into account that malware is many times created specifically
not to use subsystem API calls.

Finally, there are solutions like those in (Mayrand et al., 1996; Kim
et al., 2016; Krinke, 2001) that also use Data Flow Graphs (DFGs) and
Program Dependence Graphs (PDGs), where a graph about the data
dependency is stored (i.e. the processor registers used in the code).
Although these approaches provide great results, they require high
computation times (due to the computational complexity of extracting,
finding and searching operations). Additionally, while an n-gram strat-

egy needs linear computation time, any graph approach increases the
cost to 𝑂(𝑛3) (Liu et al., 2016).

Among the tools analyzed in this Section, there are two that par-

ticularly catch our attention, Machoc (Berre et al., 2022) and Machoke
(Bogard, 2022). Both are very similar in functionality, but differ slightly
in their design. These tools obtain the CFG of each function of an exe-

cutable, calculate a hash code for each one and concatenate the hashes
to form a fuzzy hash.

2.3. Fuzzy hashing

There are some works that study the precision of the aforementioned
strategies (Song, 2014). However, there are other types of approaches
with very interesting characteristics, such as fuzzy hashes. Fuzzy hash-

ing emerges as a promising solution, allowing for the identification of
similarities even in the presence of slight modifications. It retains the
capacity to yield similar hashes for comparable inputs, crucial for iden-

tifying previously unseen malware with resemblances to already known
instances.

A fuzzy hash is a type of hash that is used to summarize a sample
into a relatively small signature and allows similarities to be detected
between samples that are similar but not identical. Therefore, they are
commonly used in malware detection. Fuzzy hashes differ from tra-

ditional hashes in that they do not seek to unambiguously identify a
sample, but instead to summarize a sample into a signature that is
small enough to be stored and compared quickly, and at the same
time allows to identify similarities. There are different types of fuzzy
hashing algorithms, such as the Block Based Hashing algorithms (BBH)
like (Harbour, 2006), the Context Triggered Piece wise Hashing algo-

rithms (CTPH) like (Kornblum, 2006), the Statistically-Improbable Fea-

tures (SIF) like sdhash (Roussev, 2010), Block Based Rebuilding (BBR)
like (Breitinger et al., 2013) and Locality Sensitive Hashing (LSH) like
(Oliver et al., 2013). Many well-known tools use fuzzy hashes to find
similarities between different files. However, none of these hashes are
fully effective as it depends on the nature of the sample being treated.
In VirusTotal (VirusTotal, 2022) we can find numerous samples where,
depending on the fuzzy hash used, the similarity varies drastically.

While fuzzy hashing proves to be a valuable asset, it is not with-
4

out challenges. Obfuscation techniques, false positives, and scalability
Computers & Security 142 (2024) 103856

concerns are among the key issues. An awareness of these challenges
is imperative for cybersecurity professionals adopting fuzzy hashing as
part of their analytical toolkit.

2.4. Similarity based on training and ML algorithms

As numerous machine learning algorithms have been developed for
clustering and this, in turn, serves the purpose of grouping samples by
similarity, there is a myriad of ML algorithms and techniques that can
be used in the field of malware similarity.

Singular value decomposition (SVD) is a very popular linear algebra
technique to break down a matrix into the product of a few smaller
matrices. In fact, it is a technique that has many uses. One example is
that we can use SVD to discover the relationship between items. This is
done reducing the malware test and training samples to matrices that
allow the generation of SVDs. The SVDs of malware samples are used
for comparison using different metrics like the cosine or the Euclidean
distance (see Section 3).

In (de Geus and Grégio, 2015), authors use Profile Hidden Markov
Models (PHMM) to create statistical models using supervised learning.
Inspired by DNA sequencing, the models are generated by applying
a Multiple Sequence Alignment (PSA) algorithm to the sequence of
actions executed by the malware sample inside a dynamic analysis en-

vironment, being able to identify similar behavior among different mal-

ware families by comparing the labeling results present in the confusion
matrix. Before similarity calculation the possible behaviors performed
by malware are encoded and a specific HMM allowing multiple ob-

servation sequences is applied. As the authors state, in their model,
metamorphic malware that do permutation of the order of the actions
executed to change its behavior can not be modeled well with PHMMs
simply due to the fact that this kind of transformations is not common
in a bioinformatics scenario of DNA Sequencing and thus PHMM states
are no designed to model it. Nevertheless, other types of metamorphic
behavior can successfully be classified (Attaluri et al., 2009). Authors
have developed the code which can be accessed at (Baruque, 2015).

3. Similarity metrics

Once the samples have been reduced to some form of representa-

tion (strings, vectors, graphs, etc.), different similarity metrics can be
applied in order to compare them. Any metric designed for calculating
similarity can be used. There are many of them depending on the repre-

sentation used. It is worth noting that some of these similarity metrics
could be applied to detect similarity directly to code without the need
for a previous representation of its characteristics. This is not however
the best option, since when working with malware we would miss the
semantic meaning of its functions.

3.1. Strings

Since some similarity techniques reduce the malware samples to
(fuzzy) hashes and these, in turn, are sometimes2 a classic string repre-

sentation, all the metrics valid for string comparison can be used. There
are many of them, the most common being:

• Edit distance: The edit distance between two strings defines the
number of edit operations that must be performed to transform one
string into the other. The operations can be weighted, that is, some
of them may be given more importance than others when analyzing
the difference between hashes. For instance, (Kornblum, 2006) de-

fines four types of edit operations: insertion, deletion, substitution
ans swaps and give more weight to the latter.

2 Note that some string representations may be a digest representing sets or

blocks and not necessarily encoded bytes.

J.A. Onieva, P. Pérez Jiménez and J. López

• Normalized compression distance (NCD): It is used to quantify
how similar two entities are by considering the compressibility
of their concatenated representation compared to their individual
compressibility. The NCD is derived from the idea that similar ob-

jects can be compressed into similar representations better suited
for calculating their true information distance. Different compres-

sion algorithms can be used (e.g., gzip, zlib, Huffman, etc.) and the
choice of the compression algorithm impacts the NCD results.

• Smith-Waterman Algorithm: The local sequence alignment of bio-

logical sequences is a general technique that can be equivalently
used for string similarity. This is the case of the Smith-Waterman
Algorithm, which is a local sequence alignment algorithm that
finds the optimal local alignment between two strings, consider-

ing insertions, deletions, and substitutions. As many of the string
similarity metrics, it uses dynamic programming and a scoring sys-

tem to assign values to match, mismatch, insertion, and deletion
events. A positive score is assigned to matches, a negative score to
mismatches, and penalties for insertions and deletions. Given two
strings of length 𝑖 and 𝑗, 𝐻(𝑖, 𝑗) represents the score of the best
alignment ending at positions 𝑖 and 𝑗 with:

𝐻(𝑖, 𝑗) = max
⎧
⎪
⎨
⎪
⎩

𝐻(𝑖− 1, 𝑗 − 1) + Score(𝑖, 𝑗),
𝐻(𝑖− 1, 𝑗) +Gap Penalty,

𝐻(𝑖, 𝑗 − 1) +Gap Penalty,

0

3.2. Vectors

A program, graph and raw data in general can be represented with
feature vectors. Therefore, any metric that calculates the proximity of
two (or several) feature vectors in its multidimensional feature space
can also be used for similarity comparison. There are many of them,
the most common being:

• Cosine similarity: It calculates the similarity of two non-zero vec-

tors based on the cosine of the angle between them. The cosine
similarity ranges from −1 to 1, with 1 indicating that the vec-

tors are identical in direction (perfect similarity), 0 indicating that
the vectors are orthogonal (no similarity), and −1 indicating that
the vectors are exactly opposite in direction (perfect dissimilarity).
The cosine similarity is particularly useful when the magnitude of
the vectors is not important, and the focus is on the direction or
orientation of the vectors. In natural language processing, cosine
similarity is often applied to represent documents as vectors in a
high-dimensional space, with each dimension corresponding to a
term frequency or other relevant feature. The similarity between
documents is then calculated using the cosine similarity measure.
This could also be applied to assembly code similarity.

• Descriptional entropy: This technique, presented in (Desnos and
Erra, 2013) tries to capture the notion of complexity (the exis-

tence of patterns) into an entropy measure in such a way that
two malware functions (or files) that share similar complex sub-

sequences are considered with a high degree of similarity. We
consider this metric to be a vector metric since entropy is calcu-

lated with the well-known entropy formula over the occurrence
vector distributions representing the different subsequences exist-

ing in a sequence of objects (which could be bytes, instructions,
etc.). Although any entropy related measure suffers with intelligent
instruction reordering, the descriptional entropy is more resilient
since the reordering needs to be done ensuring that the complexity
is not maintained, which reduces the number of possible configu-

rations.

There are other well known vector metrics like the Manhattan, Eu-

clidean or Minkowski distance, all of them distance metrics between
vectors in ℝ𝑛, each of them with its own characteristics, that can be
5

used in similarity calculation.
Computers & Security 142 (2024) 103856

3.3. Sets

Many of the malware features can be represented in different forms.
Such a representation structure are sets, specially when order of the
features to be represented is not critical (similarities in different parts
of the malware sample or function are still similarities worth spotting).
Among these sets’ metrics we consider the following to be more relevant
to malware:

• Dice’s coefficient: The Dice’s coefficient is particularly useful when
dealing with binary data, such as presence or absence of features.
It is calculated using the following formula:

𝐷(𝐴,𝐵) = 2|𝐴 ∩𝐵|
|𝐴|+ |𝐵|

where A and B are two sets.

Dice’s coefficient ranges from 0 to 1, where 0 indicates no overlap
between sets, and 1 indicates complete overlap. It provides a mea-

sure of the proportion of elements that are common between the
sets relative to the total number of elements in the sets. In natural
language processing, Dice’s coefficient can be used to compare the
similarity of two texts by treating words or n-grams as sets. Dice’s
coefficient is particularly effective when dealing with imbalanced
datasets, where one set is much larger than the other. It is less
sensitive to the size of the sets compared to some other similarity
metrics. Like other set-based similarity measures, Dice’s coefficient
does not consider the order or frequency of elements within the
sets and it can be sensitive to small differences in the set size.

• Bloom filters: It can be used for (fuzzy) hash comparisons (see
(Roussev, 2010)). While it is primarily used for membership
queries, it can be adapted for similarity search. A Bloom filter con-

sists of a bit array of size m and k hash functions. Initially, all bits
are set to 0. To insert an element x into the Bloom filter, we apply
each of the k hash functions to the element and set the correspond-

ing bits to 1 in the bit array. To check if a given element y is in the
set, we apply each of the k hash functions to this new element and
if all corresponding bits are set to 1, the element is considered pos-

sibly in the set. However, false positives are possible. To query for
similarity instead, we apply the same hash functions to the query
element and then check the set bits in the Bloom filter. The more
matching bits, the higher the similarity. The choice of hash func-

tions and the number of hash functions impact the performance
and accuracy of the similarity search.

• Common n-grams3: Once we have two sets of n-grams, the number
of common n-grams gives a similarity metric. Therefore, applying,
for instance, Jaccard definition over two sets 𝐴 and 𝐵 as |𝐴∩𝐵|

|𝐴∪𝐵| , we
get a similarity value for the n-grams. In the weighted version, each
common n-gram is assigned a weight that reflects its importance or
relevance. The weights are determined based on specific criteria,
and they provide a more refined measure of similarity. If applied
only to malware instructions and those are normalized as described
in 2.1, weights can be assigned depending on, for instance, the en-

tropy of the common n-grams (since common rare n-grams explain
a higher degree of similarity). Other criteria can be selected (e.g.
term frequency or inverse document frequency for more general
contexts).

3.4. Graphs

Graph similarity techniques are methods used to compare and mea-

sure the similarity between graphs, which consist of nodes and edges.
As we already described in 2.2, graphs can be used to represent mal-

3 This metric (and many others) can alternatively be categorized as a string

metric if n-grams are generated by sub-strings.

J.A. Onieva, P. Pérez Jiménez and J. López

Table 4

A comparison of similarity metrics.

Metric Effectiveness Complexity

Edit Distance High Moderate

Normalized Compression Distance (NCD) High High

Smith-Waterman Algorithm High Moderate

Cosine Similarity High Low

Descriptional Entropy Moderate Low

Dice’s Coefficient High Moderate

Bloom Filters High Low

Common n-grams Moderate Moderate

Graph Edit Distance High High

Graph Isomorphism High High

Jaccard Similarity for Graphs High Moderate

Graph Kernel High High

Maximum Common Subgraph (MCS) High High

ware code and, consequently, having metrics to compare then is crucial
for malware similarity search.

• Edit distance: Graph Edit Distance measures the minimum cost of
transforming one graph into another through a series of edit op-

erations (e.g., insertion, deletion, substitution of nodes or edges),
similar to the edit distance metric already explained for strings.

• Graph Isomorphism: Graph Isomorphism checks whether two
graphs are structurally identical, i.e., whether there exists a one-

to-one correspondence between their nodes that preserves edge re-

lationships. Formally, two graphs 𝐺 = (𝑉𝐺, 𝐸𝐺) and 𝐻 = (𝑉𝐻, 𝐸𝐻)
are isomorphic if there exists a bijective function 𝑓 ∶ 𝑉𝐺 → 𝑉𝐻
such that for every pair of vertices 𝑢 and 𝑣 in 𝐺, (𝑢, 𝑣) ∈𝐸𝐺 if and
only if (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸𝐻 .

• Jaccard Similarity for Graphs: Jaccard Similarity measures the sim-

ilarity between two graphs based on the shared nodes divided by
the total number of distinct nodes in both graphs. Formally Jaccard
similarity’s score is |𝑉𝐺∩𝑉𝐻 |

|𝑉𝐺∪𝑉𝐻 |
.

• Graph Kernel: Graph Kernels map graphs into high-dimensional
feature spaces and compute the similarity based on inner prod-

ucts in that space. Common types include the Random Walk Graph
Kernel, Graphlet Kernel and Shortest Path Kernel.

• Maximum Common Subgraph (MCS): Maximum Common Sub-

graph finds the largest common subgraph between two graphs. The
goal is to identify the maximum set of nodes and edges that are
shared by both graphs. It can be formally depicted as:

𝑀𝐶𝑆(𝐺1,𝐺2) = max
common subgraphs

|𝑉common|+ |𝐸common|

These metrics present different degrees of effectiveness, that is, how
well a code similarity metric can accurately measure the similarity be-

tween two pieces of code and complexity, the level of computational
resources or algorithmic sophistication required to implement and use
a code similarity metric. These characteristics can be compared in Ta-

ble 4.

4. Tools

The presented theoretical foundations for similarity search have
been already applied to the implementation of tools. We introduce here
some of them, highlighting their use case scenarios.

4.1. Elsim

The ELSIM (ELement SIMilarity) library (Desnos et al., 2023) offers
Python functions designed for evaluating the similarity of byte strings
through the utilization of Normalized Compression Distance (NCD).
While the library itself is not confined to the comparison of any spe-
6

cific byte sequence, many tools have been designed to facilitate the
Computers & Security 142 (2024) 103856

comparison of Android applications in the form of APK or DEX files. To
implement a novel method for comparing objects of choice, a wrapper
and specific filter dictionaries are employed to structure the data within
the Elsim module. It was initially integrated into Androguard android
app (Desnos, 2023), a tool to analyze android applications.

4.2. BinDiff and diaphora

The main goal of these tools is to find similarities and differences be-

tween two files, more specifically between the assembly code functions
of these files. To do this, BinDiff and Diaphora make a comparison be-

tween the different functions both at function level, i.e. using attributes
of the function such as its name or its CFG, and at block level, i.e. using
characteristics of the block such as the position it occupies in the CFG.
Finally, accuracy and confidence are obtained for the similarities found
between each pair of functions, depending on the quality and quantity
of attributes that matched in the comparison.

These tools use a variety of attributes to find similarities between
the functions of two files, many of them based on ideas extracted from
the previous Sections. These attributes include: different graphs, such
as the CFG or the callgraph, the MD-index (Dullien et al., 2010) for
their representation, the name of the function, the existing strings, the
instructions of each code block and so on. The use of so many heuris-

tics makes the comparison carried out quite accurate and costly, both
in space and time. However, this can be done because only two samples
are being compared. If the number of files is increased, this approach
would be totally unfeasible due to the required time to compute simi-

larities.

If we focus on the differences between both tools, the first thing to
note is that Diaphora is open source while BinDiff is not. Although Bin-

Diff usually gets better results (Arutunian et al., 2021), many cyberse-

curity engineers prefer to use Diaphora because the use of technologies
such as SQL and SQLite to model the heuristics. Also, these heuristics
differ slightly between the two tools.

The last difference is the graphical user interface presented. Both of
them work as a plugin for IDA Pro, but BinDiff also does so for GHidra
(Eagle and Nance, 2020) and Binary Ninja (Vector35, 2022) (Diaphora
works as an IDA plugin). While this may seem at first to be a major
disadvantage for Diaphora, IDA Pro is, so far, the ultimate tool for mal-

ware analysts who want to study a sample, so it does not affect the vast
majority of users.

5. A new fuzzy hash: CCBHash

Two files can be similar when the result of their execution is the
same, or when it is different but resembling or similar functions are used
in the process. We need to consider both possibilities. The objective is to
be able to identify similarities in a large number of malicious files at the
level of code blocks. When faced with petabytes of malware samples,
we must look for a solution that is capable of storing the similarity
information as compacted as possible and allowing a fast comparison.

To do this, we must be able to characterize a complete malware sam-

ple by breaking it into smaller pieces of assembly code and generating a
compound hash for each of them. These hashes, which will identify each
code segment, will later be joined in a single hash that will identify the
entire sample, just like the fuzzy hashes presented in Section 2.3. These
hashes are calculated offline, that is, once the CCBHash has been ob-

tained, it is stored for later use. CCBHash calculation time is a limiting
factor in our tool, but it is important to distinguish between the CCB-

Hash computation time and the comparison time of these hashes. The
latter is the really important one in our scenario.

As our proposal includes both the creation of a hash that identi-

fies a function, and another hash formed by the concatenation of these
that identifies the complete sample, in order to avoid confusion we will

call the hash of the function CCBHash of the function, formed by the

Computers & Security 142 (2024) 103856J.A. Onieva, P. Pérez Jiménez and J. López

Fig. 2. Opcode types.
concatenation of attributes, and CCBHash of the sample to that of the
complete file.

For the purpose of finding similarities in assembler code blocks,
we must define the size of these blocks, or rather, the start and the
end of each block. Since our goal is to store the resulting hashes in
a database, calculating the signatures for all possible blocks of instruc-

tions (like in n-grams) would be somewhat unfeasible, both due to space
and comparison time. For this reason, CCBHash will use the assembly
code functions.

There are tools that look for differences (or similarities) in assem-

bly code segments between two files, such as BinDiff and Diaphora.
On the other hand, there are numerous studies and solutions that fo-

cus on the similarities between complete malware samples. However,
the alternatives to search for similarities at the level of the assembler
code block, or functions, among a very large number of malware sam-

ples are scarce. Some of these options, in particular fuzzy hashes like
ssdeep, achieve acceptable execution times but must find exact matches.
That is, they divide a sample into smaller blocks, usually bytes, which
must be the same in order to detect similarities. Unlike ssdeep, in CCB-

Hash the hash of each function will in turn be a fuzzy hash made up of
its attributes, making it possible to find similarities between different
functions.

In short, our goal is to combine two of these ideas: finding similarity
between functions using as much information from the code as possible,
as BinDiff and Diaphora do, and compacting that information into a
fuzzy hash as ssdeep does. In this way, we would achieve a similarity
analysis that is as accurate and fast as possible on petabytes of functions,
which, in turn, and as a side benefit, would allow us to find similarities
between samples.

5.1. CCBHash design

The first step in our fuzzy hash design is to characterize each code
block function after extraction. We create a signature for each of them,
which will be made up of a series of attributes represented by a hash or
a numerical value (individually) and which will be concatenated into
a single hash. That is, the hash of a sample will be made up of hashes
of functions that in turn will be made up of attributes represented as
hashes or numeric values. In this way, we will make each attribute
individually comparable and as compacted as possible.

These attributes must be chosen carefully. Choosing attributes with
too much semantic information could mean that, if all this information
is not very similar for two samples, the attribute does not match and
is discarded. In the same way, a choice of attributes that is too weak

will cause matches to occur too often. For this reason, we will try to
use heuristics that are somewhere in between, or else, separate certain
features into various attributes. This approach will allow us to use some
weak similarities. Although this may seem like a problem and may seem
to encourage False Positives (FP), the combination of all of them will
7

avoid it. In any case, our concern is not with the FP rate, but with the
False Negative (FN) one, since what is really important is that we do
not miss any similarity. Therefore, allowing weak attributes is essential
in our tool.

We proceed selecting some high-level attributes, which treat the
function as a black box, and other lower-level ones that we can find
within the function itself. These are:

• Function’s name. Although the names assigned by a disassembler
are not relevant, the existence of debug information in the exe-

cutable might make this attribute significant enough.

• Function’s CFG. The CFG includes the execution flow of the func-

tion, so that two equal graphs can be a good indication that the
functions are similar. To calculate the CFG, a procedure similar
to that of (Bogard, 2022) has been followed, but without includ-

ing the calls to other functions since this information will be in-

cluded in the following attribute. The reason why this procedure
has been used and not the MD-index is basically due to computa-

tion time. This attribute is, in most cases, insensitive to garbage
embedding and instruction substitution or permutation, as well as
register/variable remapping.

• Function’s callgraph. This graph follows the flow of functions
calls generated from the current block. The representation of this
attribute is carried out in a very similar way to that of the CFG
since the same procedure is followed but replacing the nodes with
functions and the edges with calls to functions.

• Number of inputs (indegree) and outputs (outdegree). It provides
a function’s degree of use within the malware as well as the num-

ber of functions used within it. This attribute will be in charge of
collecting weak similarities related to function calls, that is, those
that escape from the callgraph.

• Cyclomatic complexity. Understood as 𝐴 −𝑁 + 2𝐶 where 𝐴 is
the number of edges, 𝑁 the number of nodes and 𝐶 the number
of output nodes. It tries to collect those similarities related to the
execution flow that the CFG cannot detect.

• Types of function opcodes. The opcode collects the part of the
instruction that indicates the operation to perform. With this at-

tribute we collect all the types of opcodes of the function, being
able to detect those functions with similar functionalities. This fea-

ture is insensitive to instruction reordering and register/variable
reallocation. In Fig. 2 we see how the construction of this attribute
would be carried out, ordering the opcodes alphabetically.

• Number of instructions. Returns the total number of instructions
of the function. It complements the types of opcodes.

• Number of blocks inside the function. It reflects an intermediate
point between the number of instructions and the CFG, detecting
those similarities that these attributes do not detect.

• Type of local variables and function arguments. Both features
(local variables and arguments) are collected separately and try to
detect, among other things, information related to the function’s

prototype.

J.A. Onieva, P. Pérez Jiménez and J. López

Table 5

Size according to attribute.

Attribute Size

Function name 2 bytes

Function’s CFG 2 bytes

Function callgraph 2 bytes

Types of opcodes 2 bytes

Type of local variables 2 bytes

Type of function arguments 2 bytes

Number of instructions 1 byte

Number of entries (indegree) 4 bits

Number of outputs (outdegree) 4 bits

Cyclomatic complexity 4 bits

Number of blocks 4 bits

Number of arguments and local variables 4 bits

Stack’s size 4 bits

Total 16 bytes

Fig. 3. Prototype of the function’s CCBHash. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

• Joint number of local variables and function arguments. In this
case, only the quantity of both characteristics is taken and they are
added, giving rise to a single attribute. This heuristic is insensitive
to possible type changes made by the attacker.

• Stack’s size. This variable provides information about the size of
the stackframe, which includes, among other things, the size re-

served for the aforementioned variables and may find hitherto
undetected similarities.

The choice of the mentioned attributes has taken into account three
simultaneous requirements. Firstly, find code that acts in a similar way,
that is, that performs similar operations. Secondly, detect code that per-

forms operations in the same way (even if not identical). And the third
and last approach tries to make the tool insensitive to the strategies used
by the attackers, discussed in Section 2. This choice has been strongly
influenced by tools such as BinDiff and Diaphora, which make use of
a large number of high-quality attributes but require storage and com-

parison times that exceed our requirements.

Once we have gathered the necessary attributes, in order to calculate
the fuzzy hash of the function, we generate a hash, or numerical value,
for each of the attributes prior to their concatenation. The size of the
representation of each attribute should be as small as possible keeping
a probability of collision low enough. In Table 5 we present the size of
the chosen attributes.

Attributes with a size of 2 bytes will be represented by a hash cal-

culated on the attributes themselves. The rest of the attributes, will be
stored with numeric values, either the value of the attribute itself, or an
adaptation calculated by means of a piecewise defined function. These
values will be defined in Section 5.2. In Fig. 3 we can see the result of
the proposed prototype. Each color represents a different attribute.

CCBHash is limited by the choice of attributes. The more attributes
are selected, the better the comparison will be, the worse the hash size
and needed time for comparison. The same happens if we increase the
space allocated to each of them. In this way, it has been necessary to
reach a balance between quality, space and speed. Since sizes are fixed
by design, function comparison can be made by attribute. In this way,
given the fuzzy hashes of two functions, we can compare the fuzzy hash
part corresponding to each attribute in parallel. Finally, we would know
which attributes have presented coincidences, being able to determine
8

a similarity percentage based on the number of identical attributes, as
Computers & Security 142 (2024) 103856

Fig. 4. Search for similarities between functions.

Fig. 5. Similarity calculation between functions.

well as the quality of the result based on said attributes, since some
attributes are more semantically important than others.

Depending on the scenario where this fuzzy hash is used, the result
of the comparison can be used differently. For example, we may be
interested in knowing which function in our database is the most similar
to the function studied, as we can see in Fig. 4. Additionally, we may be
interested in finding similarities among complete samples. To do this,
all the functions of the file would be studied and, for each sample in the
database, they would be compared with all the functions of the target
sample, storing the maximum similarity found for each function and
calculating a similarity percentage for the file.

As previously stated, not all attributes have the same importance.
Attributes such as the CFG or the type of instructions used should have
a higher score than others such as the function’s variables or name since
the latter ones are more easily modifiable. Therefore, the attributes need
to be weighted. The values used for these weights are collected in Sec-

tion 5.2 and the operating scheme appears in Fig. 5.

Since our goal is to compare malware samples, and functions, it
would be interesting to include a filter that discards those functions
that are not interesting from the point of view of the malware analyst,
such as, for instance, functions in which the only instruction is a call to
another function, or legitimate functions from known libraries.

Finally, all that remains is to calculate the CCBHash of the sample.
Once we have the hashes of each function, we concatenate them and
we already have the CCBhash of the file as a result. Because the hash

size of each function is known, different functions can be compared

J.A. Onieva, P. Pérez Jiménez and J. López

simultaneously. In this way, the sample’s CCBHash will be variable in
size since it depends on the number of functions. Specifically, its size is
𝑛 × 𝑓 bytes, where 𝑛 is the number of functions and 𝑓 is the size of the
hash of the function.

Although CCBHash allows generating the fuzzy hash of a file, the
strength of the tool lies in the characterization of the function. We want
to emphasize that the use should not consist exclusively on looking for
similarities between different files, but also looking for similarities be-

tween a single function and a large dataset of functions. In this way,
we can detect if a function resembles functions used in other malware
samples, making it easier to perform attribution tasks.

5.2. Implementation

CCBHash is a fuzzy hash where each function is represented with a
16-byte hash, which in turn is made up of a series of attributes. How-

ever, we have not yet justified the reason for the size of each attribute.
In order to obtain the attributes we have chosen to use the radare2’s
r2pipe library (Radare, 2022), available in Python. The choice of r2pipe
is due to several reasons. It allows us to obtain a multitude of attributes
of a malware sample, as well as its functions. This library is found in
Python, a programming language in which we can find many other li-
braries like hashlib (Foundation, 2023), used to calculate the hash of
certain attributes. Finally, r2pipe is open source, unlike other tools like
IDAPython (Carrera, 2023).

Some software functions’ attributes are usually related. For example,
the attributes number of blocks, number of edges and cyclomatic complexity

are correlated, so we do not need them all. In the same way, the size of
a function and the number of instructions in it are usually proportional,
so we may include only one of them. A correlation study helped us to
come up with the attributes that finally make up our CCBHash as seen
in Section 5.1.

Some of the CCBHash attributes are two bytes long. These attributes
are represented by a hash calculated on the characteristic itself. This is
because their values are not numeric, but vectors or other data struc-

tures that can be easily converted to strings. We apply a selected hash
function to these in order to compress their information into two bytes.
After evaluating different proposals, we selected blake2b (Aumasson et
al., 2015) as the hash algorithm. This choice is mainly due to two rea-

sons. First, this algorithm allows quickly generating hashes of arbitrary
size (between 1 and 32 bytes), surpassing the speed of algorithms such
as MD5, SHA-1, SHA-2 or SHA-3 (Ghoshal et al., 2020). The second rea-

son is that it is available in the Python hashlib library, so it can be easily
integrated along with r2pipe.

As for the rest of the attributes, one byte or four bits long, they
can be represented with numerical values. If we extract these attributes
from all the functions of selected samples (see Section 6.2) and we
represent them graphically, we can observe their distributions. Fig. 6

shows the number of instructions, and Fig. 7 represents the rest of the
numerical attributes, with four bits. In all cases we see that the rela-

tive frequencies are concentrated in the initial values. In fact, for high
values we only find isolated cases that seem to hold for a very small
number of functions.

Attributes do not have to be stored with their real value, since most
of them are concentrated around low values. For example, regarding the
function’s number of instructions, for a selected dataset, we observed
more that 90% of the values are less than 200 with some outliers being
much greater (more than 1500). For the purpose of saving space we use
range values. To determine these ranges we will use the Python numpy

(Project, 2023) library, which allows us to quickly perform statistical
operations. More specifically, we use the quantile calculation. For the
of instructions attribute, it will be necessary to obtain 255 equispaced
quantiles, since one byte can store 256 values. For the rest of numerical
attributes, represented with four bits, we will calculate 15 equispaced
9

quantiles, since they only allow 16 values to be stored.
Computers & Security 142 (2024) 103856

Fig. 6. # of instructions relative frequency.

Table 6

Weights according to attribute.

Attribute Score

Types of function opcodes 0.25

Function’s CFG 0.16

Cyclomatic complexity 0.15

Outdegree 0.09

Number of instructions 0.07

Function’s callgraph 0.06

Type of function arguments 0.04

Type of local variables 0.04

Number of local variables and function arguments 0.04

Number of blocks 0.04

Indegree 0.03

Stack’s Size 0.02

Function name 0.01

Two of the strongest attributes are the CFG and the opcode types.
In the same way, the weakest attributes are the function name and
the stack size, since they are more likely to vary even for equal sam-

ples. However, we cannot assign weights based solely on our theoret-

ical knowledge. We empirically approximated them (with our selected
dataset).

Proceeding as mentioned with 70% of the samples and using the
remaining 30% to validate the results, we obtained the optimal weights
found in Table 6.

Finally, we added a filter where functions with fewer than ten in-

structions are dropped. In this way, we will not take into account some
functions that, from the point of view of malware analysis, are not rel-

evant.

6. Dataset

Below we analyze our design and implementation. Before exposing
the results of our analysis we clearly set the initial dataset used for the
different instances that provide context for this malware families.

6.1. Scenario and problem statement

We have already presented a study and classification of the foun-

dations to be applied in previous Sections. Nevertheless we have also
analyzed different versions of some of the most relevant malware fam-

ilies since there are multiple versions and samples for each of these
families ensuring therefore that functionality similarity is present in our
dataset. In the experiments we conducted to verify the effectiveness of
our hash function we also used legitimate pieces of software. Follow-

ing, we provide some brief information about these malware samples
together with some context, so we have a better general understanding

of its functionality if the experiments are to be reproduced:

Computers & Security 142 (2024) 103856J.A. Onieva, P. Pérez Jiménez and J. López

Fig. 7. Relative frequency of numeric attributes.
• WannaCry (Martin et al., 2018; Ghafur et al., 2019). It is the ran-

somware par excellence. A massive attack took place in 2017 and
affected approximately 230,000 computers worldwide, especially
the Telefónica company and thousands of hospitals and NHS clin-

ics in the United Kingdom. WannaCry affected computers running
Microsoft Windows and demanded a ransom using cryptocurren-

cies in exchange for the files’ recovery.

• DarkSide (Nuce et al., 2021). This is another famous ransomware
that attacked between 2020 and 2021. Among other large com-

panies in the industrial sector in more than 15 countries, one of
the most affected companies was Colonial Pipeline, the largest oil
pipeline company in the US. As with the rest of the ransomware,
the objective was to obtain a monetary ransom after encrypting the
files of the affected computer.

• Ryuk (Li, 2021). Another ransomware. It was detected for the first
10

time in 2018. It stands out for being aimed at large public enti-
ties. It typically encrypts the data on the infected system, making
it inaccessible until a ransom is paid.

• Zeus (Etaher et al., 2015; Binsalleeh et al., 2010). This malware is
a Windows Trojan allowing the infected computers to be part of a
botnet. It was first identified in 2007 although it was active at least
until 2010. It has become one of the most effective botnets in the
world, infecting millions of computers and generating a wide vari-

ety of similar components from its code. It was originally designed
to steal online banking credentials from attacked computers.

We used a dataset with 40 samples from these families, including ten
samples for each family. Although the dataset may seem insufficient,
it contains a total of 12,402 features, that is, approximately 310 per
sample. WannaCry has an average of 200 functions per sample, Ryuk

428, Zeus 354 and DarkSide 276. Median values are 125 features for

Computers & Security 142 (2024) 103856J.A. Onieva, P. Pérez Jiménez and J. López

Fig. 8. Total execution time.

Fig. 9. CCBHash computation time.
WannaCry, 381 for Ryuk, 142 for Zeus, and 102 for DarkSide. These
samples have been downloaded via VirusTotal.

6.2. Empirical analysis

After programming the tool4 we carried out experiments with a sim-

ple 2.9 GHz Intel Core i5 processor. As we commented in Section 6.1,
the CCBHash generation time is not critical in our context. We stud-

ied each sample average time to calculate all its functions’ CCBHashes.
The total average time for each function is 67 milliseconds. The median
value drops to 43 milliseconds. More details can be found in Figs. 8a
and 8b.

Although, in general, execution times for each function are as ex-

pected, we can observe some exceptions. These belong to the WannaCry
family. To this problem we must add that a sample can contain many
functions, so the time to calculate all the functions’ CCBHashes is not
negligible at all (over one minute in some cases).

Our algorithm has two main components. The first one obtains the
functions attributes using r2pipe, and the second one actually gener-

ates our hash, but also extracts some attributes not returned directly by
r2pipe. In Fig. 8 we appreciate the total time (blue line) as well as the
time taken by our second component (red line). We observe that there
is a big difference between both values. Ignoring the time consumed by
r2pipe, our algorithm takes an average of 7.9 milliseconds to execute,
11

4 https://github .com /nicslabdev /vtgraph -utils /tree /main /ccbhash.
that is, r2pipe uses 89% of the total time needed. In Fig. 9 we can see
all the information related to the computation of CCBHash.

In terms of comparison times, direct attribute comparisons involve
operations that are not complex. Therefore, it is reasonable to antic-

ipate low times, aligning with our objectives. Indeed, generating the
CCBHash for each function in every sample, with over 12,000 functions
in our database, takes less than an average of 24 ms. If deployed on
a more powerful computer with multiple processors and/or cores, con-

current programming techniques could further reduce this time.

Given the impracticality of comparing over 76 million possible
pairs of functions, we distribute these functions across complete mal-

ware samples. This enables a per-sample analysis, facilitating similarity
checks within the same family and discerning dissimilarity across dis-

tinct families.

The calculation of similarity between files allows for various ap-

proaches. In our case, we consider two values: the average similarity of
functions and the count of functions with a similarity exceeding 75%.
While the average provides an overview, the latter is crucial for detect-

ing cases where a low average similarity masks very similar functions.

Another consideration is the comparison of samples with a varying
number of functions. In this scenario, the order of comparison is pivotal,
impacting the perceived similarity. Therefore, we account for this order
of comparison, restricting files to be compared only when one contains
more functions than the other.

Commencing with the analysis of samples from the same family, we
initially present generic values, progressively delving deeper. Table 7
illustrates the general similarity obtained for files from the same family

https://github.com/nicslabdev/vtgraph-utils/tree/main/ccbhash

J.A. Onieva, P. Pérez Jiménez and J. López

Table 7

Malware family average precision.

Malware Family Same family Distinct family

WannaCry 73% 37%

DarkSide 71% 38%

Ryuk 85% 42%

Zeus 79% 36%

Total 77% 38%

Table 8

CCBHash vs ssdeep.

Malware family Average number of files

CCBHash ssdeep

> 90% > 75% > 50% > 90% > 75% > 50%

WannaCry 4.5 0 0 0.4 1.1 2.3

DarkSide 2 2 2.3 0.2 0.2 0.7

Ryuk 6 0 2 0 0 0

Zeus 3.3 0 0 2.2 0 0

Total 4 0.5 1.1 0.7 0.3 0.8

and different families. The average similarity between samples from the
same family is 77%. These values provide a qualitative indication that
samples from the same family exhibit higher similarity compared to
samples from different families, even though the average values may
not precisely represent the precision of our tool.

Upon closer examination of the test results, we observe that, for each
and every sample of the same family, multiple files are identified with
over 90% similarity. Notably, there are instances where various sam-

ples from the same family exhibit similarities of approximately 55%.
A detailed scrutiny of these cases reveals that, in most instances, these
samples manifest scenarios where around 30% of the functions display
more than 75% similarity. This aligns with the previously mentioned
technique where malware conceals itself within a legitimate sample.

For samples from distinct families, it is noteworthy that, in none of
the cases, the percentage of similar functions with a similarity exceed-

ing 75% surpasses 3% of the total functions in the file. In fact, the mode
—indicating the most frequently occurring value— for similar functions
is zero.

6.3. CCBHash comparison

We explored the behavior of CCBHash in comparison to other ex-

isting fuzzy hashes. To initiate this exploration, we examined our sam-

ple set using ssdeep, the current preeminent fuzzy hashing algorithm,
and compared it with CCBHash. In our conducted study, each sam-

ple was compared with the rest of the samples in the database using
both algorithms, and the number of similar files found for each sam-

ple was recorded. To facilitate this, we categorized the comparisons
into three similarity intervals based on the obtained scores: (50%, 75%],
(75%, 90%] y (90%, 100%].

Table 8 presents the average comparison results for each family.
CCBHash outperforms ssdeep for all malware families. Notably, in the
specific case of the Ryuk family, CCBHash identifies an average of
around six files for each sample with over 90% similarity and even two
files with similarity in the interval (50%, 75%]. In contrast, ssdeep fails
to detect any similarity among different samples in this family. Further-

more, for the Ryuk family, all samples in the interval (50%, 75%] had, on
average, more than 50 functions with over 90% similarity. Thus, CCB-

Hash not only surpasses ssdeep but also provides information about
similar functions even in cases where the similarity is not extremely
high.

The next fuzzy hashing algorithm we will compare our tool to is
12

TLSH. Comparing an algorithm like ours, where similarity is measured
Computers & Security 142 (2024) 103856

Table 9

CCBHash vs TLSH.

Malware family Average number of files

CCBHash TLSH

> 90% > 75% > 50% < 10 < 50 < 100

WannaCry 4.5 0 0 0 0 0.6

DarkSide 2 2 2.3 0.2 0.8 0.5

Ryuk 6 0 2 0 0.2 1

Zeus 3.3 0 0 2 0 0

Total 4 0.5 1.1 0.6 0.3 0.5

as a percentage, with TLSH, where scores are presented as distances,
is not a trivial task. CCBHash, like ssdeep, utilizes a range from 0%
to 100% to measure similarity, where 100% signifies perfect similarity
and 0% denotes no similarity at all. Conversely, TLSH’s range is un-

bounded, with a distance of 0 indicating that two files are identical (or
nearly identical), and the higher the value, the greater the difference,
potentially exceeding 1000. In our case, and drawing from the study
by (Oliver et al., 2013), we will constrain the score range based on the
False Positive (FP) rate, not accepting rates exceeding 6%, achieved for
a distance of 100, which is already excessively high. Therefore, these
intervals are defined as [0, 10), [10, 50), and [50, 100).

Table 9 presents the obtained results. Once again, our algorithm
outperforms TLSH. Even when aggregating the averages obtained for
all TLSH intervals, it does not surpass the result obtained for the most
restrictive interval in CCBHash, with similarities exceeding 90%.

7. Conclusions

Malware similarity is crucial to malware detection, classification,
analysis and response. If an unknown sample is detected, there is no
doubt that AI and ML algorithms will help systems in these tasks. Nev-

ertheless these algorithms can be complemented and enriched with
existing techniques, tools and metrics and even substituted when fast
investigation processes are time critical. With this in mind we surveyed
and classified such techniques, tools and metrics in order to provide
foundational context on available procedures and to extract sufficient
knowledge for the design of a new tool ready to aid in malware in-

vestigations over petabytes of information: CCBHash. In addition to
comparing functions, it can also operate as a traditional fuzzy hash, en-

abling the search for similarities among different malware samples and
improving upon widely accepted solutions used by malware analysts,
such as ssdeep or TLSH.

Having examined our algorithm and compared it with two widely
used fuzzy hashing algorithms, CCBHash identifies similarities more ac-

curately. Therefore, we have a compelling alternative to consider in
the quest for similarity detection in malware. However, this capability
comes with a trade-off. Our algorithm is designed to compare functions
in assembly language, leading to a larger storage requirement for the
fuzzy hash of an entire sample— i.e., a concatenation of the CCBHashes
of its functions—compared to the storage utilized by ssdeep or TLSH.
We aim to address this in the future through enhancements such as a
more sophisticated function filters.

There are still further improvements to be done. We conducted sev-

eral empirical experiments to rule out collisions on our dataset with
successful results, although our specification shows that they can oc-

cur. More thorough research and experiments are needed. Among these
are conducting a comparative analysis between Machine Learning Al-

gorithms and/or a Deep Learning architecture with the same purpose.
There is also the need to conduct larger experiments in real scenarios
since the hash function has been designed and implemented to be ap-

plied over a vast amount of information.

Exploring new file disassembly tools is one avenue for enhancing
execution times. However, optimization extends beyond this aspect.

Upon scrutinizing the computation time of CCBHash without r2pipe,

J.A. Onieva, P. Pérez Jiménez and J. López

instances with elevated values share a commonality —they feature a
substantial number of functions characterized by intricate CFGs. Hence,
there is a need to investigate more efficient algorithms for calculating
CFGs. All these activities constitute the next steps to be taken in this
work.

CRediT authorship contribution statement

Jose A. Onieva: Writing – review & editing, Writing – original
draft, Visualization, Validation, Supervision, Software, Methodology,
Formal analysis, Data curation, Conceptualization, Investigation. Pablo
Pérez Jiménez: Writing – original draft, Visualization, Validation, Soft-

ware, Resources, Methodology, Investigation, Formal analysis, Data cu-

ration, Conceptualization. Javier López: Writing – review & editing,
Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

I have shared the link to my code at the Attach File Step.

Acknowledgements

This work has been partially supported by the Spanish Ministry
of Science and Innovation through the SECAI project (PID2022-

139268OB-I00), and by the European Union under HORIZON-TMA-

MSCA-SE Project (GA ID: 101086308). Funding for open access charge:
Universidad de Málaga / CBUA.

Appendix A. Supplementary material

Supplementary material related to this article can be found online
at https://doi .org /10 .1016 /j .cose .2024 .103856.

References

Arutunian, M., Hovhannisyan, H., Vardanyan, V., Sargsyan, S., Kurmangaleev, S.,
Aslanyan, H., 2021. A method to evaluate binary code comparison tools. In: 2021
Ivannikov Memorial Workshop (IVMEM). IEEE, pp. 3–5.

Attaluri, S., McGhee, S., Stamp, M., 2009. Profile hidden Markov models and metamor-

phic virus detection. J. Comput. Virol. 5, 151–169. https://doi .org /10 .1007 /s11416 -
008 -0105 -1.

Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C., 2015. Blake2b de hashlib.
https://www .blake2 .net/.

Baruque, A.O.C., 2015. Malware HMM toolset. https://github .com /OrBaruk /Malware -
HMM.

Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Lavoie, Y., Tawbi, N., 2001.
Static detection of malicious code in executable programs. Int. J. Requir. Eng.

Berre, S.L., Chevalier, A., Pourcelot, T., 2022. Machoc. https://github .com /ANSSI -FR /
polichombr /blob /dev /docs /MACHOC _HASH .md.

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M., Wang,
L., 2010. On the analysis of the zeus botnet crimeware toolkit. In: 2010 Eighth Inter-

national Conference on Privacy, Security and Trust. IEEE, pp. 31–38.

Bogard, L., 2022. Machoke. Conix. https://github .com /conix -security /machoke.

Bonfante, G., Kaczmarek, M., Marion, J.Y., 2007. Control flow graphs as malware signa-

tures. In: International Workshop on the Theory of Computer Viruses, pp. 1–6.

Breitinger, F., Astebøl, K.P., Baier, H., Busch, C., 2013. mvhash-b - a new approach for
similarity preserving hashing. In: 2013 Seventh International Conference on IT Secu-

rity Incident Management and IT Forensics, pp. 33–44.

Carrera, E. Introduction to idapython, pp. 1–64. https://citeseerx .ist .psu .edu /document ?
repid =rep1 &type =pdf &doi =700f71f80a8bc651591841e86af99232066c919d.

Caviglione, L., Choraś, M., Corona, I., Janicki, A., Mazurczyk, W., Pawlicki, M.,
Wasielewska, K., 2020. Tight arms race: overview of current malware threats and
trends in their detection. IEEE Access 9, 5371–5396.

Desnos, A., 2023. Androguard. https://github .com /androguard /androguard.

Desnos, A., Erra, R., 2013. Descriptional entropy: application to security software analysis.
13

In: Advanced Infocomm Technology, pp. 225–230.
Computers & Security 142 (2024) 103856

Desnos, A., Lircyn, Grosse R., Nikoli, Halder S., Bachmann, S., 2023. Elsim. https://github .
com /IKARUSSoftwareSecurity /elsim. (Accessed 27 November 2023).

Dullien, T., Carrera, E., Eppler, S.M., Porst, S., 2010. Automated attacker correlation for
malicious code. Technical Report. Bochum Univ., Germany FR.

Eagle, C., Nance, K., 2020. The Ghidra Book: The Definitive Guide. No starch press.

Eresheim, S., Luh, R., Schrittwieser, S., 2017. The evolution of process hiding tech-

niques in malware-current threats and possible countermeasures. J. Inf. Process. 25,
866–874.

Etaher, N., Weir, G.R., Alazab, M., 2015. From zeus to zitmo: trends in banking malware.
In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1. IEEE, pp. 1386–1391.

Foundation, P.S., 2023. Documentación de la librería hashlib de python. https://docs .
python .org /3 /library /hashlib .html. (Accessed 8 November 2022).

Gao, Y., Lu, Z., Luo, Y., 2014. Survey on malware anti-analysis. In: Fifth International
Conference on Intelligent Control and Information Processing. IEEE, pp. 270–275.

de Geus, S.P.L., Grégio, A.R.A., 2015. Classifying Malware Using Dynamic Analysis and
Profile Hidden Markov Models. Master’s thesis. University of Campinas, Institute of
Computing.

Ghafur, S., Kristensen, S., Honeyford, K., Martin, G., Darzi, A., Aylin, P., 2019. A retro-

spective impact analysis of the wannacry cyberattack on the nhs. npj Digit. Med. 2
(1), 1–7.

Ghoshal, S., Bandyopadhyay, P., Roy, S., Baneree, M., 2020. A journey from md5 to sha-3.
Trends Commun. Cloud Big Data, 107–112.

Harbour, N., 2006. Dcfldd. http://dcfldd .sourceforge .net.

Hex-Rays, 2022. Ida pro. https://hex -rays .com /ida -pro.

Jiménez, P.P., Onieva, J.A., Fernandez, G., 2022. Ccbhash (compound code block hash)
para análisis de malware. In: XVII Reunión Española Sobre Criptología y Seguridad
de la Información, pp. 168–173.

Kim, J., Choi, H., Yun, H., Moon, B.R., 2016. Measuring source code similarity by find-

ing similar subgraph with an incremental genetic algorithm. In: Proceedings of the
Genetic and Evolutionary Computation Conference 2016. ACM, New York, NY, USA,
pp. 925–932.

Kornblum, J., 2006. Identifying almost identical files using context triggered piecewise
hashing. In: The Proceedings of the 6th Annual Digital Forensic Research Workshop
(DFRWS ’06). Digit. Investig. 3, 91–97. https://doi .org /10 .1016 /j .diin .2006 .06 .015.

Krinke, J., 2001. Identifying similar code with program dependence graphs. In: Proceed-

ings Eighth Working Conference on Reverse Engineering, pp. 301–309.

Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G., 2006. Polymorphic worm de-

tection using structural information of executables. In: Recent Advances in Intrusion
Detection, pp. 207–226.

Labs, F., 2022. Global Threat Landscape Report. Threat Report. Fortinet.

Lazo, E.G., 2021. Combing through the fuzz: Using fuzzy hashing and deep learning
to counter malware detection evasion techniques. In: Microsoft Security Blog: Mi-

crosoft Threat Intelligence. https://www .microsoft .com /en -us /security /blog /2021 /
07 /27 /combing -through -the -fuzz -using -fuzzy -hashing -and -deep -learning -to -counter -
malware -detection -evasion -techniques.

Li, A.S., 2021. An Analysis of the Recent Ransomware Families. Project Report. Purdue
University.

Li, Y., Jang, J., Ou, X., 2019. Topology-aware hashing for effective control flow graph
similarity analysis. In: Chen, S., Choo, K.K.R., Fu, X., Lou, W., Mohaisen, A. (Eds.),
Security and Privacy in Communication Networks. Springer International Publishing,
Cham, pp. 278–298.

Liu, J., Wang, Y., Wang, Y., 2016. The similarity analysis of malicious software. In:
2016 IEEE First International Conference on Data Science in Cyberspace (DSC). IEEE,
pp. 161–168. http://ieeexplore .ieee .org /document /7866123/.

Liu, L., Wang, B.s., Yu, B., Zhong, Q.x., 2017. Automatic malware classification and new
malware detection using machine learning. Front. Inf. Technol. Electron. Eng. 18
(9), 1336–1347. https://doi .org /10 .1631 /FITEE .1601325. http://link .springer .com /
10 .1631 /FITEE .1601325.

Martin, G., Ghafur, S., Kinross, J., Hankin, C., Darzi, A., 2018. Wannacry—a year
on. BMJ 361, 1336–1347. https://doi .org /10 .1136 /bmj .k2381. http://link .springer .
com /10 .1631 /FITEE .1601325.

Mayrand, Leblanc, Merlo, 1996. Experiment on the automatic detection of function clones
in a software system using metrics. In: 1996 Proceedings of International Conference
on Software Maintenance, pp. 244–253. https://ieeexplore .ieee .org /stamp /stamp .
jsp ?tp =&arnumber =565012.

Monnappa, K., 2018. Learning Malware Analysis: Explore the Concepts, Tools, and Tech-

niques to Analyze and Investigate Windows Malware. Packt Publishing Ltd.

Nuce, J., Kennelly, J., Goody, K., Moore, A., Rahman, A., Williams, M., McKeague, B.,
Wilson, J., 2021. Shining a light on darkside ransomware operations. FireEye Blogs.

Oliver, J., Cheng, C., Chen, Y., 2013. Tlsh–a locality sensitive hash. In: 2013 Fourth Cy-

bercrime and Trustworthy Computing Workshop. IEEE, pp. 7–13.

Project, N., 2023. Numpy. https://numpy .org. (Accessed 8 November 2023).

Rad, B.B., Masrom, M., Ibrahim, S., 2012. Camouflage in malware: from encryption to
metamorphism. Int. J. Comput. Sci. Netw. Secur. 12, 74.

Radare, 2022. R2pipe de radare2. https://www .radare .org /n /r2pipe .html.

Roussev, V., 2010. Data fingerprinting with similarity digests. In: Chow, K.P., Shenoi, S.
(Eds.), Advances in Digital Forensics VI. Springer Berlin Heidelberg, Berlin, Heidel-

berg, pp. 207–226.

Song, W., 2014. A framework for automated similarity analysis of malware. Master’s the-

sis. Concordia University. https://spectrum .library .concordia .ca /id /eprint /978935/.

unpublished.

https://doi.org/10.1016/j.cose.2024.103856
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib4C72C7A86229901B4E2CA4B0CBC04B0Es1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib4C72C7A86229901B4E2CA4B0CBC04B0Es1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib4C72C7A86229901B4E2CA4B0CBC04B0Es1
https://doi.org/10.1007/s11416-008-0105-1
https://doi.org/10.1007/s11416-008-0105-1
https://www.blake2.net/
https://github.com/OrBaruk/Malware-HMM
https://github.com/OrBaruk/Malware-HMM
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib4B975230FA4139E509A0A78DF60861C8s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib4B975230FA4139E509A0A78DF60861C8s1
https://github.com/ANSSI-FR/polichombr/blob/dev/docs/MACHOC_HASH.md
https://github.com/ANSSI-FR/polichombr/blob/dev/docs/MACHOC_HASH.md
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibA3E752DF8E405856837FCBBD647690A0s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibA3E752DF8E405856837FCBBD647690A0s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibA3E752DF8E405856837FCBBD647690A0s1
https://github.com/conix-security/machoke
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibC57C3721EFAA5E554EBF1661C7C117D5s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibC57C3721EFAA5E554EBF1661C7C117D5s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibECDFC48A6F7951469A140E82FB546335s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibECDFC48A6F7951469A140E82FB546335s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibECDFC48A6F7951469A140E82FB546335s1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=700f71f80a8bc651591841e86af99232066c919d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=700f71f80a8bc651591841e86af99232066c919d
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib1E92F6AF25A6CACDCA802ACA2A71CFDAs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib1E92F6AF25A6CACDCA802ACA2A71CFDAs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib1E92F6AF25A6CACDCA802ACA2A71CFDAs1
https://github.com/androguard/androguard
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibEBF4898A4D7070D2D65BBF1D9D71E430s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibEBF4898A4D7070D2D65BBF1D9D71E430s1
https://github.com/IKARUSSoftwareSecurity/elsim
https://github.com/IKARUSSoftwareSecurity/elsim
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib8EBB1F657EDEFA7B048B353016AD061Fs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib8EBB1F657EDEFA7B048B353016AD061Fs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib07009CC8F3533DAD6C69AD56032B414Es1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib8844A204EF92BAECCE0C6F450C89EDB5s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib8844A204EF92BAECCE0C6F450C89EDB5s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib8844A204EF92BAECCE0C6F450C89EDB5s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibBFB127B6A70CFDD7E720155AE09CEBF3s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibBFB127B6A70CFDD7E720155AE09CEBF3s1
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/hashlib.html
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib1B6553733C85D88059825292C02161FAs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib1B6553733C85D88059825292C02161FAs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibC0C3E6C2673AAA5480097319A5463559s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibC0C3E6C2673AAA5480097319A5463559s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibC0C3E6C2673AAA5480097319A5463559s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibBF171EB8761EF166D8BF48EA3BCCED3As1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibBF171EB8761EF166D8BF48EA3BCCED3As1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibBF171EB8761EF166D8BF48EA3BCCED3As1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibEA38C82D40EF65E835294ACFB6B19C5Cs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibEA38C82D40EF65E835294ACFB6B19C5Cs1
http://dcfldd.sourceforge.net
https://hex-rays.com/ida-pro
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib788670ADC84832E333753F8B0071FC54s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib788670ADC84832E333753F8B0071FC54s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib788670ADC84832E333753F8B0071FC54s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibF274966D736E859F263E49032675D530s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibF274966D736E859F263E49032675D530s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibF274966D736E859F263E49032675D530s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibF274966D736E859F263E49032675D530s1
https://doi.org/10.1016/j.diin.2006.06.015
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib8956A3015C3689C8089736BF1663EA70s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib8956A3015C3689C8089736BF1663EA70s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibCE93A594E3823047A773FCBB848D0A43s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibCE93A594E3823047A773FCBB848D0A43s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibCE93A594E3823047A773FCBB848D0A43s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib7FB90559D7795BE73BF14DB1663C4939s1
https://www.microsoft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques
https://www.microsoft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques
https://www.microsoft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibBD232021568890D8DC9DCE39E5593C01s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibBD232021568890D8DC9DCE39E5593C01s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib56E36A7A55C6A710692B1BE097967ECDs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib56E36A7A55C6A710692B1BE097967ECDs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib56E36A7A55C6A710692B1BE097967ECDs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib56E36A7A55C6A710692B1BE097967ECDs1
http://ieeexplore.ieee.org/document/7866123/
https://doi.org/10.1631/FITEE.1601325
http://link.springer.com/10.1631/FITEE.1601325
http://link.springer.com/10.1631/FITEE.1601325
https://doi.org/10.1136/bmj.k2381
http://link.springer.com/10.1631/FITEE.1601325
http://link.springer.com/10.1631/FITEE.1601325
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=565012
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=565012
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib55E1C87E29E8551A2133EE1293D0F325s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib55E1C87E29E8551A2133EE1293D0F325s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibFD528E73CDE029D860591430AF0DE53Ds1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibFD528E73CDE029D860591430AF0DE53Ds1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib4E2E1139CB4632EEF083EA3373764A0As1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib4E2E1139CB4632EEF083EA3373764A0As1
https://numpy.org
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibCCC99499B325C16F44095D687F5A3BF6s1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bibCCC99499B325C16F44095D687F5A3BF6s1
https://www.radare.org/n/r2pipe.html
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib5AEAA43D03240C0AE505DEF971101B4Fs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib5AEAA43D03240C0AE505DEF971101B4Fs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib5AEAA43D03240C0AE505DEF971101B4Fs1
https://spectrum.library.concordia.ca/id/eprint/978935/

Computers & Security 142 (2024) 103856J.A. Onieva, P. Pérez Jiménez and J. López

Ször, P., Ferrie, P., 2001. Hunting for metamorphic. In: Virus Bulletin Conference,
pp. 123–144.

Vector35, 2022. Binary ninja. https://binary .ninja/.

VirusTotal, 2022. Virustotal. https://www .virustotal .com. (Accessed 8 November 2022).

Yan, J., Yan, G., Jin, D., 2019. Classifying malware represented as control flow graphs
using deep graph convolutional neural network. In: 2019 49th Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks (DSN). IEEE, pp. 52–63.
https://ieeexplore .ieee .org /document /8809504/.

Jose A. Onieva received his PhD degree from the University of Malaga (2006) and
is an Associate Professor in the Computer Science Department. He has been actively in-

volved in ICT European and national funded information security related projects. He has
published in several international journals and conferences in the field of Information Se-

curity. He is coauthor of the book “Secure Multi-Party Non-Repudiation Protocols and
Applications” published by Springer. Currently he is involved in the research of core se-

curity services for edge computing, malware detection and response and digital evidence.
Is a full professor and head of the Network, Information and Computer Security (NICS)

Lab at the University of Malaga, Malaga, 29071, Spain. His research activities are mainly
focused on network security, security protocols, and critical information infrastructures,
leading a number of national and international research projects in those areas. He is
Senior Member of IEEE.

Pablo Perez Jimenez holds a Bachelor’s Degree in Telecommunication Technology
Engineering and a Master’s Degree in Computer Science with a specialization in Cyberse-

curity. While working at NICS Lab as a Researcher, he has participated in the RECSI (The
Spanish Meeting on Cryptology and Information Security). Currently, he is employed as
a Software Engineer at VirusTotal, Google.

Javier López is a full professor and head of the Network, Information and Computer
Security (NICS) Lab at the University of Malaga, Malaga, 29071, Spain. His research activ-

ities are mainly focused on network security, security protocols, and critical information
infrastructures, leading a number of national and international research projects in those
areas. He is Senior Member of IEEE.
14

http://refhub.elsevier.com/S0167-4048(24)00157-3/bib7494289F9339380C69AD48BACF88F39Bs1
http://refhub.elsevier.com/S0167-4048(24)00157-3/bib7494289F9339380C69AD48BACF88F39Bs1
https://binary.ninja/
https://www.virustotal.com
https://ieeexplore.ieee.org/document/8809504/

	Malware similarity and a new fuzzy hash: Compound Code Block Hash (CCBHash)
	1 Introduction
	2 Techniques
	2.1 N-grams
	2.2 Graphs
	2.3 Fuzzy hashing
	2.4 Similarity based on training and ML algorithms

	3 Similarity metrics
	3.1 Strings
	3.2 Vectors
	3.3 Sets
	3.4 Graphs

	4 Tools
	4.1 Elsim
	4.2 BinDiff and diaphora

	5 A new fuzzy hash: CCBHash
	5.1 CCBHash design
	5.2 Implementation

	6 Dataset
	6.1 Scenario and problem statement
	6.2 Empirical analysis
	6.3 CCBHash comparison

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

