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that can be applied to the field, with the objective of studying similarity, and therefore detecting, classifying and 
attributing malware samples. We have developed a fuzzy hash capable of characterizing malware by generating 
an easily comparable and storable signature of its functions. Since our goal is to detect these similarities in huge 
amounts of data within a reasonable time-frame, the size of the hash must be limited while retaining as much 
information as possible.
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1. Introduction

In current cybersecurity threats, there exists a persistent endeavor 
by malevolent entities to elude detection mechanisms. For instance, 
the deployment of polymorphic and metamorphic malware (Rad et al., 
2012) by cybercriminals exploits the capacity of even minor alterations 
in binary code or script to circumvent conventional antivirus software. 
For this reason, traditional signature-based methods face challenges in 
identifying variants and polymorphic strains. Threat actors tailor their 
malicious payloads to specific target organizations, thereby enhancing 
the likelihood of infiltrating and traversing an entire corporate network 
and orchestrating data exfiltration with minimal traces of their activ-

ities. The clandestine market thrives on an array of tools, including 
malware builders, trojanized versions of legitimate applications, and 
assorted services facilitating the deployment of highly elusive malware.

The escalating volume of threats in the wild brings up a shift from 
evaluating security solutions solely based on their proficiency in detect-

ing unique malware instances. Instead, contemporary security frame-

works must embody resilient architectures capable of defending against 
both prevailing and future attack vectors. It is clear to the community 
that AI (Artificial Intelligence) will play a key role in this mission, but 
the needed data can be pre-processed or enriched so as to give even 
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faster responses or to enrich already available data with similarity in-

formation.

The underlying objective of characterizing the similarity of samples 
is to elevate the overall accuracy in classifying malware and dimin-

ish the temporal gap between malware release and subsequent detec-

tion and classification. Its proficiency in recognizing and obstructing 
malware at first encounter holds critical significance in safeguarding 
against a diverse spectrum of threats, including sophisticated cyberat-

tacks. This objective has been displayed as an important tool already 
avoiding newly created attacks (Lazo, 2021).

This is of paramount importance. For instance, over the course of 
the first six months in 2022, Fortinet documented 10,666 ransomware 
variants across its platform (Labs, 2022). Obviously, not each of them 
belongs to a different malware family. On the contrary, all of these vari-

ants belong to about a hundred malware families. In each family, there 
are similar features that characterize all their samples. And these simi-

lar features are key to catch as soon as possible new samples belonging 
to known malware families.

There are several tools that allow a large number of samples to be 
simultaneously compared trying to find similarities among them. Simi-

larly, other tools take two files and analyze their assembly code in order 
to detect whether there are comparable functions in both samples. How-
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Fig. 1. Code transposition (Ször and Ferrie, 2001).
ever, if we want to find similar code functions in a large number of 
samples, the number and efficiency of these tools is reduced drastically.

Our aim is to create a signature for each malware sample’s assembly 
code function, in such a way that for each function, similar functions 
can be detected in a database (e.g. VirusTotal database) storing a very 
large number of functions. In addition, for the same sample, the gener-

ated signatures can be concatenated to form a single hash that identifies 
the whole file. For this purpose, we used fuzzy hashing strategies, where 
a final hash is composed of the concatenation of partial hashes. In this 
way, we have the opportunity to detect those functions that are reused 
in different files, being able to find samples with similar functionalities, 
different versions of the same malware or that have been developed by 
the same actors.

We do not aim at providing machine learning (ML) techniques to 
search for similarities among samples, but rather to produce a similarity 
signature that can be stored, integrated with malware (or fragments of 
it) and ready to be used for the search of similarity among petabytes of 
information.

In this article we survey, analyze and categorize the theoretical and 
practical foundations of malware similarity that we esteem more rele-

vant for the design of a new algorithm. All of this effort has been based 
in related and referenced work. This provides two differentiated blocks 
in the corpus text of this article. In the first block, more concretely we 
differentiate between techniques in Section 2, in which we present tech-

niques used by malware authors in order to thwart detection as well 
as techniques used for general similarity search; tools in section 4 in 
which we provide a brief overview of existing implementations for mal-

ware similarity; and metrics in section 3 in which comparison metrics 
are presented and categorized.

In the second block of contributions we detailed our design, imple-

mentation and analysis of CCBHash. More concretely, in section 5 we 
propose the design and implementation of the second iteration of a new 
tool (the first one was published in (Jiménez et al., 2022)) that fulfills 
our aim. In section 6 we detailed the experiments carried out in order 
to validate our design.

In this paper, we present several contributions to the field of mal-

ware similarity that to the best of our knowledge is not present in 
similar works:

• We identify three types of components to work with when treating 
with malware similarity: techniques, metrics and tools.

• We categorize these components and analyze them from the mal-

ware investigation perspective, highlighting those more accurate 
and valid for malware similarity

• We use these theoretical and practical foundations to design and 
implement a new fuzzy hash.

• We extensively analyze and compare this new hash with similar 
approaches, identifying its main advantages.

Additionally, we discuss the implications of these contributions and 
2

their potential impact in malware characterization in Section 7.
2. Techniques

As we already mentioned in section 1, it is key for malware devel-

opers and campaigns to reduce the probability of detection. With this 
objective, these actors use known techniques in order to change mal-

ware code while retaining its functionality. Among the commonly used 
strategies (Eresheim et al., 2017; Caviglione et al., 2020; Gao et al., 
2014), the most common ones are:

• Instruction replacement. Some instructions are replaced by other 
equivalent ones, generating a different code but with the same 
functionality. For instance, a multiplication can be reduced to a 
number of additions.

• Instruction reordering. The attacker changes the order of certain 
instructions, obtaining an apparently different sample but with the 
same functionality. Even different functions can be called into the 
code in different order without affecting the final functionality.

• Junk code insertion. Sometimes the attacker adds multiple oper-

ations, or even NOP statements,1 which do not change the func-

tionality of the malware but make it more difficult for defenders 
to understand. This not only obstructs the malware analyst job, 
but also allows for the generation of different code for the same 
malware family. These operations may be also inverse operations 
(i.e. one cancels the other), and in general any operation that does 
change functionality (e.g. setting to zero a register that is not used).

• Register reassignment. Although this action, on some occasions, 
is not caused by the attacker, we must bear in mind that two iden-

tical samples may have different information depending on the 
system for which they are compiled and linked. That is, compil-

ing and linking of the same source code can generate different final 
binary code depending on compiler and linker options.

• Code transposition. Attackers sometimes change the Control Flow 
Graph (CFG, see section 2.2) of malware, introducing unnecessary 
unconditional jumps. That is, the instructions are rearranged dif-

ferently in the code but are executed in the same order making use 
of these jumps. For example, this is achieved by splitting a func-

tion into smaller functions, or by creating functions whose only 
instruction is a function call, thus changing the schema of executed 
functions. See Fig. 1 for a graphic example.

• Insertion of Conditional jumps. Like in the previous strategy, the 
attacker makes changes to the CFG but, in this case, through condi-

tional jumps. Normally, the new code blocks introduced after these 
jumps are not executed, or else they are in charge of redirecting 
the flow towards the desired direction.

Our hash design needs to take into account these techniques in order 
to minimize their impact. In this way, we will be able to detect what are 
the really important characteristics that different samples that behave 
in the same way have in common.

It is worth noting that there are additional techniques, such us en-

crypting or program packing that helps in avoiding detection. In such 

1 The assembler nop instruction commands the processor to do an empty op-
eration.
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Table 1

Techniques comparison.

Technique Effectiveness Complexity Detectability

Instruction Replacement High Moderate Low

Instruction Reordering Moderate Moderate Low

Junk Code Insertion High High Moderate

Register Reassignment Low Low Low

Code Transposition Moderate Moderate Moderate

Insertion of Cond. Jumps Moderate High Moderate

Code Obfuscation High High High

cases, the malware generally has a decryption/unpacking engine (and 
optionally a encrypting engine if the malware wants to mutate after 
the infection process), encrypted/packed code and, if encrypted, a de-

cryption key embedded in its code. The malware uses its engine to 
unpack/decrypt the code in memory before execution. As similarity 
search in malware focuses on functionality, and functionality is impos-

sible to be extracted from encrypted/packed samples, all the techniques 
assume that, if needed, these samples are preprocessed in order to ob-

tain the code even if this is further obfuscated. Unfortunately in some 
cases, this process needs to be performed manually (Monnappa, 2018).

These techniques present different degrees of effectiveness; that is, 
how well a particular technique achieves its intended goal of chang-

ing the code without altering its functionality, complexity; that is, the 
level of difficulty or intricacy involved in implementing and applying 
that particular technique and detectability; that is, the likelihood or ease 
with which the modified code can be detected or identified by tools, 
techniques, or human analysts. A comparison table for these techniques 
and criteria is provided in Table 1.

Taking this into consideration, the community has developed differ-

ent techniques to improve detection among modifications of the same 
sample or to search for similarities among different pieces of software so 
as to identify analogous (even if partial) functionality which could de-

note partial re-utilization of code or even collaboration among different 
groups of malware developers. Note that both, the software and mal-

ware defense communities push forward this research, since the same 
techniques and algorithms can be used for software plagiarism and in-

tellectual property protection. In the following we briefly survey some 
of these techniques used for malware similarity search.

2.1. N-grams

There are several solutions that use n-grams to compare different 
files. The n-grams are sliding windows of variable size, 𝑛 in this case, 
where the goal is to store all possible windows of 𝑛 elements for later 
comparison. These elements can be very diverse. As far as malware is 
concerned, these elements are usually bytes or assembler instructions, 
the latter allowing a higher lever of functionality comparison.

However, many of the existing studies have gone a step further 
and do not try to use only bytes or exact instructions, but do a little 
analysis of the input by filtering out those features that are more rel-

evant. For example, there are solutions (Liu et al., 2017) where the 
elements used for the n-grams are the instruction opcodes without reg-

isters and operands. This method allows for a comparison focusing on 
the malware functionality, rejecting other characteristics. In fact, this 
instruction normalization process is generally applied in most of the 
solutions we have reviewed and can be better understood in Table 2.

While the above solution may be interesting in many contexts, it 
also has some weaknesses. One of the main disadvantages is the accu-

racy required to be able to find similarities. It will be better understood 
with two examples. As we know, in many occasions the execution or-

der of a group of instructions produces the same result. For example, 
when performing inverse operations (e.g. a consecutive addition and 
subtraction by a constant) the final result will be equivalent regardless 
of the order in which they are performed. In the same way, there are 
3

several opcodes in assembly code that are used to perform the same op-
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Table 2

Normalization process.

Original instructions Normalized instructions

push ebp push reg

mov ebp, esp mov reg, reg

sub esp, 0C0h sub reg, value

push ebx push reg

lea edi, [ebp+12] lea reg, mem

mov ecx, 30h mov reg, value

erations, being able to achieve identical goals with different patterns. 
In both cases, this technique will struggle to find similarities. Another 
limitation of short n-grams is the loss of long-range information within 
analyzed binaries, that is, significant relationships between distant code 
will not be detected.

To solve some of the existing problems with n-grams of opcodes, 
there are studies that introduce the concept of n-perms. The n-perms 
are a version of n-grams but using permutations. Thus, if there are sev-

eral identical n-grams stored, the repeated ones are removed leaving 
only one n-perm of each class. This technique of eliminating repetitions 
is used in different similarity search techniques (see, for instance, (Ko-

rnblum, 2006)). In addition, n-perms are insensitive to execution order, 
so two n-grams containing the same elements in different order will be 
treated as the same n-perm.

Using n-perms results in higher similarity detection for files using 
the same opcodes. However, this higher level of abstraction can also 
lead to a higher number of false positives where two files with different 
functionalities use similar instructions. We thus arrive at a point where 
we must decide between two models. One where there is a lower but 
more accurate detection of positives, and another where detection is 
higher but the false positives rate may be increased.

2.2. Graphs

Control Flow Graphs store the execution flow that follows a given 
executable, usually at the assembly code level. Several disassemblers 
and decompilers (e.g. IDA Pro (Hex-Rays, 2022)) use this representation 
of the samples in order to ease their analysis.

As in all graphs, there are two types of elements: nodes and edges. 
The directed edges store the information about the existing jumps in 
the execution. Thus, each jump, conditional or unconditional, will be 
reflected with one or more edges. As for the nodes, they can store very 
diverse information. Some studies leave them practically empty (Bon-

fante et al., 2007), giving all the importance to the flow. However, in 
other solutions, such nodes are used to store more valuable information. 
For instance, in (Kruegel et al., 2006), authors proposed a fingerprint 
based on k-subgraphs of CFGs. For this generated subgraph, a finger-

print is calculated using an adjacency matrix which is then applied for 
searching similarities in polymorphic worms.

In an effort to enrich these graphs, (Yan et al., 2019) proposes the 
use of attributes to characterize each node, creating the Attributed CFG 
(ACFG). This approach tries to take the nodes generated by a tool like 
IDA Pro and creates a signature based on a vector of attributes for each 
of these nodes. The attributes used in this case are those listed in Ta-

ble 3.

The use of ACFG is very interesting since it allows to store very 
diverse information in the nodes and at the same time it allows to com-

bine this strategy with others. For example, (Li et al., 2019) proposes 
to use n-grams of the CFG, where the elements over which the win-

dows advances are the nodes, which, in this work, are characterized by 
the number of incoming and outgoing edges, covering all possible paths 
of 𝑛 consecutive nodes following the established flow. Another simpler 
technique is to use the CFG to sort the code and then take n-grams of 
opcodes.

Other authors (Bergeron et al., 2001) try to combine CFGs with sub-
system API calls, creating a graph where the nodes are characterized by 
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Table 3

Some attributes to characterize nodes in CFG in (Yan 
et al., 2019).

Attribute type Attribute description

From code sequence # Numeric constants

# Transfer instructions

# Call instructions

# Arithmetic instructions

# Compare instructions

# Mov instructions

# Termination instructions

# Data declaration instructions

# Total instructions

From vertex 
structure

# Offspring, i.e., degree

# Instructions in the vertex

the API calls made by the sample to the subsystem. This method, though 
advantageous for non-malicious executables, has serious drawbacks if 
we take into account that malware is many times created specifically 
not to use subsystem API calls.

Finally, there are solutions like those in (Mayrand et al., 1996; Kim 
et al., 2016; Krinke, 2001) that also use Data Flow Graphs (DFGs) and 
Program Dependence Graphs (PDGs), where a graph about the data 
dependency is stored (i.e. the processor registers used in the code). 
Although these approaches provide great results, they require high 
computation times (due to the computational complexity of extracting, 
finding and searching operations). Additionally, while an n-gram strat-

egy needs linear computation time, any graph approach increases the 
cost to 𝑂(𝑛3) (Liu et al., 2016).

Among the tools analyzed in this Section, there are two that par-

ticularly catch our attention, Machoc (Berre et al., 2022) and Machoke 
(Bogard, 2022). Both are very similar in functionality, but differ slightly 
in their design. These tools obtain the CFG of each function of an exe-

cutable, calculate a hash code for each one and concatenate the hashes 
to form a fuzzy hash.

2.3. Fuzzy hashing

There are some works that study the precision of the aforementioned 
strategies (Song, 2014). However, there are other types of approaches 
with very interesting characteristics, such as fuzzy hashes. Fuzzy hash-

ing emerges as a promising solution, allowing for the identification of 
similarities even in the presence of slight modifications. It retains the 
capacity to yield similar hashes for comparable inputs, crucial for iden-

tifying previously unseen malware with resemblances to already known 
instances.

A fuzzy hash is a type of hash that is used to summarize a sample 
into a relatively small signature and allows similarities to be detected 
between samples that are similar but not identical. Therefore, they are 
commonly used in malware detection. Fuzzy hashes differ from tra-

ditional hashes in that they do not seek to unambiguously identify a 
sample, but instead to summarize a sample into a signature that is 
small enough to be stored and compared quickly, and at the same 
time allows to identify similarities. There are different types of fuzzy 
hashing algorithms, such as the Block Based Hashing algorithms (BBH) 
like (Harbour, 2006), the Context Triggered Piece wise Hashing algo-

rithms (CTPH) like (Kornblum, 2006), the Statistically-Improbable Fea-

tures (SIF) like sdhash (Roussev, 2010), Block Based Rebuilding (BBR) 
like (Breitinger et al., 2013) and Locality Sensitive Hashing (LSH) like 
(Oliver et al., 2013). Many well-known tools use fuzzy hashes to find 
similarities between different files. However, none of these hashes are 
fully effective as it depends on the nature of the sample being treated. 
In VirusTotal (VirusTotal, 2022) we can find numerous samples where, 
depending on the fuzzy hash used, the similarity varies drastically.

While fuzzy hashing proves to be a valuable asset, it is not with-
4

out challenges. Obfuscation techniques, false positives, and scalability 
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concerns are among the key issues. An awareness of these challenges 
is imperative for cybersecurity professionals adopting fuzzy hashing as 
part of their analytical toolkit.

2.4. Similarity based on training and ML algorithms

As numerous machine learning algorithms have been developed for 
clustering and this, in turn, serves the purpose of grouping samples by 
similarity, there is a myriad of ML algorithms and techniques that can 
be used in the field of malware similarity.

Singular value decomposition (SVD) is a very popular linear algebra 
technique to break down a matrix into the product of a few smaller 
matrices. In fact, it is a technique that has many uses. One example is 
that we can use SVD to discover the relationship between items. This is 
done reducing the malware test and training samples to matrices that 
allow the generation of SVDs. The SVDs of malware samples are used 
for comparison using different metrics like the cosine or the Euclidean 
distance (see Section 3).

In (de Geus and Grégio, 2015), authors use Profile Hidden Markov 
Models (PHMM) to create statistical models using supervised learning. 
Inspired by DNA sequencing, the models are generated by applying 
a Multiple Sequence Alignment (PSA) algorithm to the sequence of 
actions executed by the malware sample inside a dynamic analysis en-

vironment, being able to identify similar behavior among different mal-

ware families by comparing the labeling results present in the confusion 
matrix. Before similarity calculation the possible behaviors performed 
by malware are encoded and a specific HMM allowing multiple ob-

servation sequences is applied. As the authors state, in their model, 
metamorphic malware that do permutation of the order of the actions 
executed to change its behavior can not be modeled well with PHMMs 
simply due to the fact that this kind of transformations is not common 
in a bioinformatics scenario of DNA Sequencing and thus PHMM states 
are no designed to model it. Nevertheless, other types of metamorphic 
behavior can successfully be classified (Attaluri et al., 2009). Authors 
have developed the code which can be accessed at (Baruque, 2015).

3. Similarity metrics

Once the samples have been reduced to some form of representa-

tion (strings, vectors, graphs, etc.), different similarity metrics can be 
applied in order to compare them. Any metric designed for calculating 
similarity can be used. There are many of them depending on the repre-

sentation used. It is worth noting that some of these similarity metrics 
could be applied to detect similarity directly to code without the need 
for a previous representation of its characteristics. This is not however 
the best option, since when working with malware we would miss the 
semantic meaning of its functions.

3.1. Strings

Since some similarity techniques reduce the malware samples to 
(fuzzy) hashes and these, in turn, are sometimes2 a classic string repre-

sentation, all the metrics valid for string comparison can be used. There 
are many of them, the most common being:

• Edit distance: The edit distance between two strings defines the 
number of edit operations that must be performed to transform one 
string into the other. The operations can be weighted, that is, some 
of them may be given more importance than others when analyzing 
the difference between hashes. For instance, (Kornblum, 2006) de-

fines four types of edit operations: insertion, deletion, substitution 
ans swaps and give more weight to the latter.

2 Note that some string representations may be a digest representing sets or 

blocks and not necessarily encoded bytes.
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• Normalized compression distance (NCD): It is used to quantify 
how similar two entities are by considering the compressibility 
of their concatenated representation compared to their individual 
compressibility. The NCD is derived from the idea that similar ob-

jects can be compressed into similar representations better suited 
for calculating their true information distance. Different compres-

sion algorithms can be used (e.g., gzip, zlib, Huffman, etc.) and the 
choice of the compression algorithm impacts the NCD results.

• Smith-Waterman Algorithm: The local sequence alignment of bio-

logical sequences is a general technique that can be equivalently 
used for string similarity. This is the case of the Smith-Waterman 
Algorithm, which is a local sequence alignment algorithm that 
finds the optimal local alignment between two strings, consider-

ing insertions, deletions, and substitutions. As many of the string 
similarity metrics, it uses dynamic programming and a scoring sys-

tem to assign values to match, mismatch, insertion, and deletion 
events. A positive score is assigned to matches, a negative score to 
mismatches, and penalties for insertions and deletions. Given two 
strings of length 𝑖 and 𝑗, 𝐻(𝑖, 𝑗) represents the score of the best 
alignment ending at positions 𝑖 and 𝑗 with:

𝐻(𝑖, 𝑗) = max
⎧
⎪
⎨
⎪
⎩

𝐻(𝑖− 1, 𝑗 − 1) + Score(𝑖, 𝑗),
𝐻(𝑖− 1, 𝑗) +Gap Penalty,

𝐻(𝑖, 𝑗 − 1) +Gap Penalty,

0

3.2. Vectors

A program, graph and raw data in general can be represented with 
feature vectors. Therefore, any metric that calculates the proximity of 
two (or several) feature vectors in its multidimensional feature space 
can also be used for similarity comparison. There are many of them, 
the most common being:

• Cosine similarity: It calculates the similarity of two non-zero vec-

tors based on the cosine of the angle between them. The cosine 
similarity ranges from −1 to 1, with 1 indicating that the vec-

tors are identical in direction (perfect similarity), 0 indicating that 
the vectors are orthogonal (no similarity), and −1 indicating that 
the vectors are exactly opposite in direction (perfect dissimilarity). 
The cosine similarity is particularly useful when the magnitude of 
the vectors is not important, and the focus is on the direction or 
orientation of the vectors. In natural language processing, cosine 
similarity is often applied to represent documents as vectors in a 
high-dimensional space, with each dimension corresponding to a 
term frequency or other relevant feature. The similarity between 
documents is then calculated using the cosine similarity measure. 
This could also be applied to assembly code similarity.

• Descriptional entropy: This technique, presented in (Desnos and 
Erra, 2013) tries to capture the notion of complexity (the exis-

tence of patterns) into an entropy measure in such a way that 
two malware functions (or files) that share similar complex sub-

sequences are considered with a high degree of similarity. We 
consider this metric to be a vector metric since entropy is calcu-

lated with the well-known entropy formula over the occurrence 
vector distributions representing the different subsequences exist-

ing in a sequence of objects (which could be bytes, instructions, 
etc.). Although any entropy related measure suffers with intelligent 
instruction reordering, the descriptional entropy is more resilient 
since the reordering needs to be done ensuring that the complexity 
is not maintained, which reduces the number of possible configu-

rations.

There are other well known vector metrics like the Manhattan, Eu-

clidean or Minkowski distance, all of them distance metrics between 
vectors in ℝ𝑛, each of them with its own characteristics, that can be 
5

used in similarity calculation.
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3.3. Sets

Many of the malware features can be represented in different forms. 
Such a representation structure are sets, specially when order of the 
features to be represented is not critical (similarities in different parts 
of the malware sample or function are still similarities worth spotting). 
Among these sets’ metrics we consider the following to be more relevant 
to malware:

• Dice’s coefficient: The Dice’s coefficient is particularly useful when 
dealing with binary data, such as presence or absence of features. 
It is calculated using the following formula:

𝐷(𝐴,𝐵) = 2|𝐴 ∩𝐵|
|𝐴|+ |𝐵|

where A and B are two sets.

Dice’s coefficient ranges from 0 to 1, where 0 indicates no overlap 
between sets, and 1 indicates complete overlap. It provides a mea-

sure of the proportion of elements that are common between the 
sets relative to the total number of elements in the sets. In natural 
language processing, Dice’s coefficient can be used to compare the 
similarity of two texts by treating words or n-grams as sets. Dice’s 
coefficient is particularly effective when dealing with imbalanced 
datasets, where one set is much larger than the other. It is less 
sensitive to the size of the sets compared to some other similarity 
metrics. Like other set-based similarity measures, Dice’s coefficient 
does not consider the order or frequency of elements within the 
sets and it can be sensitive to small differences in the set size.

• Bloom filters: It can be used for (fuzzy) hash comparisons (see 
(Roussev, 2010)). While it is primarily used for membership 
queries, it can be adapted for similarity search. A Bloom filter con-

sists of a bit array of size m and k hash functions. Initially, all bits 
are set to 0. To insert an element x into the Bloom filter, we apply 
each of the k hash functions to the element and set the correspond-

ing bits to 1 in the bit array. To check if a given element y is in the 
set, we apply each of the k hash functions to this new element and 
if all corresponding bits are set to 1, the element is considered pos-

sibly in the set. However, false positives are possible. To query for 
similarity instead, we apply the same hash functions to the query 
element and then check the set bits in the Bloom filter. The more 
matching bits, the higher the similarity. The choice of hash func-

tions and the number of hash functions impact the performance 
and accuracy of the similarity search.

• Common n-grams3: Once we have two sets of n-grams, the number 
of common n-grams gives a similarity metric. Therefore, applying, 
for instance, Jaccard definition over two sets 𝐴 and 𝐵 as |𝐴∩𝐵|

|𝐴∪𝐵| , we 
get a similarity value for the n-grams. In the weighted version, each 
common n-gram is assigned a weight that reflects its importance or 
relevance. The weights are determined based on specific criteria, 
and they provide a more refined measure of similarity. If applied 
only to malware instructions and those are normalized as described 
in 2.1, weights can be assigned depending on, for instance, the en-

tropy of the common n-grams (since common rare n-grams explain 
a higher degree of similarity). Other criteria can be selected (e.g. 
term frequency or inverse document frequency for more general 
contexts).

3.4. Graphs

Graph similarity techniques are methods used to compare and mea-

sure the similarity between graphs, which consist of nodes and edges. 
As we already described in 2.2, graphs can be used to represent mal-

3 This metric (and many others) can alternatively be categorized as a string 

metric if n-grams are generated by sub-strings.
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Table 4

A comparison of similarity metrics.

Metric Effectiveness Complexity

Edit Distance High Moderate

Normalized Compression Distance (NCD) High High

Smith-Waterman Algorithm High Moderate

Cosine Similarity High Low

Descriptional Entropy Moderate Low

Dice’s Coefficient High Moderate

Bloom Filters High Low

Common n-grams Moderate Moderate

Graph Edit Distance High High

Graph Isomorphism High High

Jaccard Similarity for Graphs High Moderate

Graph Kernel High High

Maximum Common Subgraph (MCS) High High

ware code and, consequently, having metrics to compare then is crucial 
for malware similarity search.

• Edit distance: Graph Edit Distance measures the minimum cost of 
transforming one graph into another through a series of edit op-

erations (e.g., insertion, deletion, substitution of nodes or edges), 
similar to the edit distance metric already explained for strings.

• Graph Isomorphism: Graph Isomorphism checks whether two 
graphs are structurally identical, i.e., whether there exists a one-

to-one correspondence between their nodes that preserves edge re-

lationships. Formally, two graphs 𝐺 = (𝑉𝐺, 𝐸𝐺) and 𝐻 = (𝑉𝐻, 𝐸𝐻 )
are isomorphic if there exists a bijective function 𝑓 ∶ 𝑉𝐺 → 𝑉𝐻
such that for every pair of vertices 𝑢 and 𝑣 in 𝐺, (𝑢, 𝑣) ∈𝐸𝐺 if and 
only if (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸𝐻 .

• Jaccard Similarity for Graphs: Jaccard Similarity measures the sim-

ilarity between two graphs based on the shared nodes divided by 
the total number of distinct nodes in both graphs. Formally Jaccard 
similarity’s score is |𝑉𝐺∩𝑉𝐻 |

|𝑉𝐺∪𝑉𝐻 |
.

• Graph Kernel: Graph Kernels map graphs into high-dimensional 
feature spaces and compute the similarity based on inner prod-

ucts in that space. Common types include the Random Walk Graph 
Kernel, Graphlet Kernel and Shortest Path Kernel.

• Maximum Common Subgraph (MCS): Maximum Common Sub-

graph finds the largest common subgraph between two graphs. The 
goal is to identify the maximum set of nodes and edges that are 
shared by both graphs. It can be formally depicted as:

𝑀𝐶𝑆(𝐺1,𝐺2) = max
common subgraphs

|𝑉common|+ |𝐸common|

These metrics present different degrees of effectiveness, that is, how 
well a code similarity metric can accurately measure the similarity be-

tween two pieces of code and complexity, the level of computational 
resources or algorithmic sophistication required to implement and use 
a code similarity metric. These characteristics can be compared in Ta-

ble 4.

4. Tools

The presented theoretical foundations for similarity search have 
been already applied to the implementation of tools. We introduce here 
some of them, highlighting their use case scenarios.

4.1. Elsim

The ELSIM (ELement SIMilarity) library (Desnos et al., 2023) offers 
Python functions designed for evaluating the similarity of byte strings 
through the utilization of Normalized Compression Distance (NCD). 
While the library itself is not confined to the comparison of any spe-
6

cific byte sequence, many tools have been designed to facilitate the 
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comparison of Android applications in the form of APK or DEX files. To 
implement a novel method for comparing objects of choice, a wrapper 
and specific filter dictionaries are employed to structure the data within 
the Elsim module. It was initially integrated into Androguard android 
app (Desnos, 2023), a tool to analyze android applications.

4.2. BinDiff and diaphora

The main goal of these tools is to find similarities and differences be-

tween two files, more specifically between the assembly code functions 
of these files. To do this, BinDiff and Diaphora make a comparison be-

tween the different functions both at function level, i.e. using attributes 
of the function such as its name or its CFG, and at block level, i.e. using 
characteristics of the block such as the position it occupies in the CFG. 
Finally, accuracy and confidence are obtained for the similarities found 
between each pair of functions, depending on the quality and quantity 
of attributes that matched in the comparison.

These tools use a variety of attributes to find similarities between 
the functions of two files, many of them based on ideas extracted from 
the previous Sections. These attributes include: different graphs, such 
as the CFG or the callgraph, the MD-index (Dullien et al., 2010) for 
their representation, the name of the function, the existing strings, the 
instructions of each code block and so on. The use of so many heuris-

tics makes the comparison carried out quite accurate and costly, both 
in space and time. However, this can be done because only two samples 
are being compared. If the number of files is increased, this approach 
would be totally unfeasible due to the required time to compute simi-

larities.

If we focus on the differences between both tools, the first thing to 
note is that Diaphora is open source while BinDiff is not. Although Bin-

Diff usually gets better results (Arutunian et al., 2021), many cyberse-

curity engineers prefer to use Diaphora because the use of technologies 
such as SQL and SQLite to model the heuristics. Also, these heuristics 
differ slightly between the two tools.

The last difference is the graphical user interface presented. Both of 
them work as a plugin for IDA Pro, but BinDiff also does so for GHidra 
(Eagle and Nance, 2020) and Binary Ninja (Vector35, 2022) (Diaphora 
works as an IDA plugin). While this may seem at first to be a major 
disadvantage for Diaphora, IDA Pro is, so far, the ultimate tool for mal-

ware analysts who want to study a sample, so it does not affect the vast 
majority of users.

5. A new fuzzy hash: CCBHash

Two files can be similar when the result of their execution is the 
same, or when it is different but resembling or similar functions are used 
in the process. We need to consider both possibilities. The objective is to 
be able to identify similarities in a large number of malicious files at the 
level of code blocks. When faced with petabytes of malware samples, 
we must look for a solution that is capable of storing the similarity 
information as compacted as possible and allowing a fast comparison.

To do this, we must be able to characterize a complete malware sam-

ple by breaking it into smaller pieces of assembly code and generating a 
compound hash for each of them. These hashes, which will identify each 
code segment, will later be joined in a single hash that will identify the 
entire sample, just like the fuzzy hashes presented in Section 2.3. These 
hashes are calculated offline, that is, once the CCBHash has been ob-

tained, it is stored for later use. CCBHash calculation time is a limiting 
factor in our tool, but it is important to distinguish between the CCB-

Hash computation time and the comparison time of these hashes. The 
latter is the really important one in our scenario.

As our proposal includes both the creation of a hash that identi-

fies a function, and another hash formed by the concatenation of these 
that identifies the complete sample, in order to avoid confusion we will 

call the hash of the function CCBHash of the function, formed by the 
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Fig. 2. Opcode types.
concatenation of attributes, and CCBHash of the sample to that of the 
complete file.

For the purpose of finding similarities in assembler code blocks, 
we must define the size of these blocks, or rather, the start and the 
end of each block. Since our goal is to store the resulting hashes in 
a database, calculating the signatures for all possible blocks of instruc-

tions (like in n-grams) would be somewhat unfeasible, both due to space 
and comparison time. For this reason, CCBHash will use the assembly 
code functions.

There are tools that look for differences (or similarities) in assem-

bly code segments between two files, such as BinDiff and Diaphora. 
On the other hand, there are numerous studies and solutions that fo-

cus on the similarities between complete malware samples. However, 
the alternatives to search for similarities at the level of the assembler 
code block, or functions, among a very large number of malware sam-

ples are scarce. Some of these options, in particular fuzzy hashes like 
ssdeep, achieve acceptable execution times but must find exact matches. 
That is, they divide a sample into smaller blocks, usually bytes, which 
must be the same in order to detect similarities. Unlike ssdeep, in CCB-

Hash the hash of each function will in turn be a fuzzy hash made up of 
its attributes, making it possible to find similarities between different 
functions.

In short, our goal is to combine two of these ideas: finding similarity 
between functions using as much information from the code as possible, 
as BinDiff and Diaphora do, and compacting that information into a 
fuzzy hash as ssdeep does. In this way, we would achieve a similarity 
analysis that is as accurate and fast as possible on petabytes of functions, 
which, in turn, and as a side benefit, would allow us to find similarities 
between samples.

5.1. CCBHash design

The first step in our fuzzy hash design is to characterize each code 
block function after extraction. We create a signature for each of them, 
which will be made up of a series of attributes represented by a hash or 
a numerical value (individually) and which will be concatenated into 
a single hash. That is, the hash of a sample will be made up of hashes 
of functions that in turn will be made up of attributes represented as 
hashes or numeric values. In this way, we will make each attribute 
individually comparable and as compacted as possible.

These attributes must be chosen carefully. Choosing attributes with 
too much semantic information could mean that, if all this information 
is not very similar for two samples, the attribute does not match and 
is discarded. In the same way, a choice of attributes that is too weak

will cause matches to occur too often. For this reason, we will try to 
use heuristics that are somewhere in between, or else, separate certain 
features into various attributes. This approach will allow us to use some 
weak similarities. Although this may seem like a problem and may seem 
to encourage False Positives (FP), the combination of all of them will 
7

avoid it. In any case, our concern is not with the FP rate, but with the 
False Negative (FN) one, since what is really important is that we do 
not miss any similarity. Therefore, allowing weak attributes is essential 
in our tool.

We proceed selecting some high-level attributes, which treat the 
function as a black box, and other lower-level ones that we can find 
within the function itself. These are:

• Function’s name. Although the names assigned by a disassembler 
are not relevant, the existence of debug information in the exe-

cutable might make this attribute significant enough.

• Function’s CFG. The CFG includes the execution flow of the func-

tion, so that two equal graphs can be a good indication that the 
functions are similar. To calculate the CFG, a procedure similar 
to that of (Bogard, 2022) has been followed, but without includ-

ing the calls to other functions since this information will be in-

cluded in the following attribute. The reason why this procedure 
has been used and not the MD-index is basically due to computa-

tion time. This attribute is, in most cases, insensitive to garbage 
embedding and instruction substitution or permutation, as well as 
register/variable remapping.

• Function’s callgraph. This graph follows the flow of functions 
calls generated from the current block. The representation of this 
attribute is carried out in a very similar way to that of the CFG 
since the same procedure is followed but replacing the nodes with 
functions and the edges with calls to functions.

• Number of inputs (indegree) and outputs (outdegree). It provides 
a function’s degree of use within the malware as well as the num-

ber of functions used within it. This attribute will be in charge of 
collecting weak similarities related to function calls, that is, those 
that escape from the callgraph.

• Cyclomatic complexity. Understood as 𝐴 −𝑁 + 2𝐶 where 𝐴 is 
the number of edges, 𝑁 the number of nodes and 𝐶 the number 
of output nodes. It tries to collect those similarities related to the 
execution flow that the CFG cannot detect.

• Types of function opcodes. The opcode collects the part of the 
instruction that indicates the operation to perform. With this at-

tribute we collect all the types of opcodes of the function, being 
able to detect those functions with similar functionalities. This fea-

ture is insensitive to instruction reordering and register/variable 
reallocation. In Fig. 2 we see how the construction of this attribute 
would be carried out, ordering the opcodes alphabetically.

• Number of instructions. Returns the total number of instructions 
of the function. It complements the types of opcodes.

• Number of blocks inside the function. It reflects an intermediate 
point between the number of instructions and the CFG, detecting 
those similarities that these attributes do not detect.

• Type of local variables and function arguments. Both features 
(local variables and arguments) are collected separately and try to 
detect, among other things, information related to the function’s 

prototype.
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Table 5

Size according to attribute.

Attribute Size

Function name 2 bytes

Function’s CFG 2 bytes

Function callgraph 2 bytes

Types of opcodes 2 bytes

Type of local variables 2 bytes

Type of function arguments 2 bytes

Number of instructions 1 byte

Number of entries (indegree) 4 bits

Number of outputs (outdegree) 4 bits

Cyclomatic complexity 4 bits

Number of blocks 4 bits

Number of arguments and local variables 4 bits

Stack’s size 4 bits

Total 16 bytes

Fig. 3. Prototype of the function’s CCBHash. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

• Joint number of local variables and function arguments. In this 
case, only the quantity of both characteristics is taken and they are 
added, giving rise to a single attribute. This heuristic is insensitive 
to possible type changes made by the attacker.

• Stack’s size. This variable provides information about the size of 
the stackframe, which includes, among other things, the size re-

served for the aforementioned variables and may find hitherto 
undetected similarities.

The choice of the mentioned attributes has taken into account three 
simultaneous requirements. Firstly, find code that acts in a similar way, 
that is, that performs similar operations. Secondly, detect code that per-

forms operations in the same way (even if not identical). And the third 
and last approach tries to make the tool insensitive to the strategies used 
by the attackers, discussed in Section 2. This choice has been strongly 
influenced by tools such as BinDiff and Diaphora, which make use of 
a large number of high-quality attributes but require storage and com-

parison times that exceed our requirements.

Once we have gathered the necessary attributes, in order to calculate 
the fuzzy hash of the function, we generate a hash, or numerical value, 
for each of the attributes prior to their concatenation. The size of the 
representation of each attribute should be as small as possible keeping 
a probability of collision low enough. In Table 5 we present the size of 
the chosen attributes.

Attributes with a size of 2 bytes will be represented by a hash cal-

culated on the attributes themselves. The rest of the attributes, will be 
stored with numeric values, either the value of the attribute itself, or an 
adaptation calculated by means of a piecewise defined function. These 
values will be defined in Section 5.2. In Fig. 3 we can see the result of 
the proposed prototype. Each color represents a different attribute.

CCBHash is limited by the choice of attributes. The more attributes 
are selected, the better the comparison will be, the worse the hash size 
and needed time for comparison. The same happens if we increase the 
space allocated to each of them. In this way, it has been necessary to 
reach a balance between quality, space and speed. Since sizes are fixed 
by design, function comparison can be made by attribute. In this way, 
given the fuzzy hashes of two functions, we can compare the fuzzy hash 
part corresponding to each attribute in parallel. Finally, we would know 
which attributes have presented coincidences, being able to determine 
8

a similarity percentage based on the number of identical attributes, as 
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Fig. 4. Search for similarities between functions.

Fig. 5. Similarity calculation between functions.

well as the quality of the result based on said attributes, since some 
attributes are more semantically important than others.

Depending on the scenario where this fuzzy hash is used, the result 
of the comparison can be used differently. For example, we may be 
interested in knowing which function in our database is the most similar 
to the function studied, as we can see in Fig. 4. Additionally, we may be 
interested in finding similarities among complete samples. To do this, 
all the functions of the file would be studied and, for each sample in the 
database, they would be compared with all the functions of the target 
sample, storing the maximum similarity found for each function and 
calculating a similarity percentage for the file.

As previously stated, not all attributes have the same importance. 
Attributes such as the CFG or the type of instructions used should have 
a higher score than others such as the function’s variables or name since 
the latter ones are more easily modifiable. Therefore, the attributes need 
to be weighted. The values used for these weights are collected in Sec-

tion 5.2 and the operating scheme appears in Fig. 5.

Since our goal is to compare malware samples, and functions, it 
would be interesting to include a filter that discards those functions 
that are not interesting from the point of view of the malware analyst, 
such as, for instance, functions in which the only instruction is a call to 
another function, or legitimate functions from known libraries.

Finally, all that remains is to calculate the CCBHash of the sample. 
Once we have the hashes of each function, we concatenate them and 
we already have the CCBhash of the file as a result. Because the hash 

size of each function is known, different functions can be compared 
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simultaneously. In this way, the sample’s CCBHash will be variable in 
size since it depends on the number of functions. Specifically, its size is 
𝑛 × 𝑓 bytes, where 𝑛 is the number of functions and 𝑓 is the size of the 
hash of the function.

Although CCBHash allows generating the fuzzy hash of a file, the 
strength of the tool lies in the characterization of the function. We want 
to emphasize that the use should not consist exclusively on looking for 
similarities between different files, but also looking for similarities be-

tween a single function and a large dataset of functions. In this way, 
we can detect if a function resembles functions used in other malware 
samples, making it easier to perform attribution tasks.

5.2. Implementation

CCBHash is a fuzzy hash where each function is represented with a 
16-byte hash, which in turn is made up of a series of attributes. How-

ever, we have not yet justified the reason for the size of each attribute. 
In order to obtain the attributes we have chosen to use the radare2’s 
r2pipe library (Radare, 2022), available in Python. The choice of r2pipe 
is due to several reasons. It allows us to obtain a multitude of attributes 
of a malware sample, as well as its functions. This library is found in 
Python, a programming language in which we can find many other li-
braries like hashlib (Foundation, 2023), used to calculate the hash of 
certain attributes. Finally, r2pipe is open source, unlike other tools like 
IDAPython (Carrera, 2023).

Some software functions’ attributes are usually related. For example, 
the attributes number of blocks, number of edges and cyclomatic complexity

are correlated, so we do not need them all. In the same way, the size of 
a function and the number of instructions in it are usually proportional, 
so we may include only one of them. A correlation study helped us to 
come up with the attributes that finally make up our CCBHash as seen 
in Section 5.1.

Some of the CCBHash attributes are two bytes long. These attributes 
are represented by a hash calculated on the characteristic itself. This is 
because their values are not numeric, but vectors or other data struc-

tures that can be easily converted to strings. We apply a selected hash 
function to these in order to compress their information into two bytes. 
After evaluating different proposals, we selected blake2b (Aumasson et 
al., 2015) as the hash algorithm. This choice is mainly due to two rea-

sons. First, this algorithm allows quickly generating hashes of arbitrary 
size (between 1 and 32 bytes), surpassing the speed of algorithms such 
as MD5, SHA-1, SHA-2 or SHA-3 (Ghoshal et al., 2020). The second rea-

son is that it is available in the Python hashlib library, so it can be easily 
integrated along with r2pipe.

As for the rest of the attributes, one byte or four bits long, they 
can be represented with numerical values. If we extract these attributes 
from all the functions of selected samples (see Section 6.2) and we 
represent them graphically, we can observe their distributions. Fig. 6

shows the number of instructions, and Fig. 7 represents the rest of the 
numerical attributes, with four bits. In all cases we see that the rela-

tive frequencies are concentrated in the initial values. In fact, for high 
values we only find isolated cases that seem to hold for a very small 
number of functions.

Attributes do not have to be stored with their real value, since most 
of them are concentrated around low values. For example, regarding the 
function’s number of instructions, for a selected dataset, we observed 
more that 90% of the values are less than 200 with some outliers being 
much greater (more than 1500). For the purpose of saving space we use 
range values. To determine these ranges we will use the Python numpy

(Project, 2023) library, which allows us to quickly perform statistical 
operations. More specifically, we use the quantile calculation. For the 
# of instructions attribute, it will be necessary to obtain 255 equispaced 
quantiles, since one byte can store 256 values. For the rest of numerical 
attributes, represented with four bits, we will calculate 15 equispaced 
9

quantiles, since they only allow 16 values to be stored.
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Fig. 6. # of instructions relative frequency.

Table 6

Weights according to attribute.

Attribute Score

Types of function opcodes 0.25

Function’s CFG 0.16

Cyclomatic complexity 0.15

Outdegree 0.09

Number of instructions 0.07

Function’s callgraph 0.06

Type of function arguments 0.04

Type of local variables 0.04

Number of local variables and function arguments 0.04

Number of blocks 0.04

Indegree 0.03

Stack’s Size 0.02

Function name 0.01

Two of the strongest attributes are the CFG and the opcode types. 
In the same way, the weakest attributes are the function name and 
the stack size, since they are more likely to vary even for equal sam-

ples. However, we cannot assign weights based solely on our theoret-

ical knowledge. We empirically approximated them (with our selected 
dataset).

Proceeding as mentioned with 70% of the samples and using the 
remaining 30% to validate the results, we obtained the optimal weights 
found in Table 6.

Finally, we added a filter where functions with fewer than ten in-

structions are dropped. In this way, we will not take into account some 
functions that, from the point of view of malware analysis, are not rel-

evant.

6. Dataset

Below we analyze our design and implementation. Before exposing 
the results of our analysis we clearly set the initial dataset used for the 
different instances that provide context for this malware families.

6.1. Scenario and problem statement

We have already presented a study and classification of the foun-

dations to be applied in previous Sections. Nevertheless we have also 
analyzed different versions of some of the most relevant malware fam-

ilies since there are multiple versions and samples for each of these 
families ensuring therefore that functionality similarity is present in our 
dataset. In the experiments we conducted to verify the effectiveness of 
our hash function we also used legitimate pieces of software. Follow-

ing, we provide some brief information about these malware samples 
together with some context, so we have a better general understanding 

of its functionality if the experiments are to be reproduced:
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Fig. 7. Relative frequency of numeric attributes.
• WannaCry (Martin et al., 2018; Ghafur et al., 2019). It is the ran-

somware par excellence. A massive attack took place in 2017 and 
affected approximately 230,000 computers worldwide, especially 
the Telefónica company and thousands of hospitals and NHS clin-

ics in the United Kingdom. WannaCry affected computers running 
Microsoft Windows and demanded a ransom using cryptocurren-

cies in exchange for the files’ recovery.

• DarkSide (Nuce et al., 2021). This is another famous ransomware 
that attacked between 2020 and 2021. Among other large com-

panies in the industrial sector in more than 15 countries, one of 
the most affected companies was Colonial Pipeline, the largest oil 
pipeline company in the US. As with the rest of the ransomware, 
the objective was to obtain a monetary ransom after encrypting the 
files of the affected computer.

• Ryuk (Li, 2021). Another ransomware. It was detected for the first 
10

time in 2018. It stands out for being aimed at large public enti-
ties. It typically encrypts the data on the infected system, making 
it inaccessible until a ransom is paid.

• Zeus (Etaher et al., 2015; Binsalleeh et al., 2010). This malware is 
a Windows Trojan allowing the infected computers to be part of a 
botnet. It was first identified in 2007 although it was active at least 
until 2010. It has become one of the most effective botnets in the 
world, infecting millions of computers and generating a wide vari-

ety of similar components from its code. It was originally designed 
to steal online banking credentials from attacked computers.

We used a dataset with 40 samples from these families, including ten 
samples for each family. Although the dataset may seem insufficient, 
it contains a total of 12,402 features, that is, approximately 310 per 
sample. WannaCry has an average of 200 functions per sample, Ryuk 

428, Zeus 354 and DarkSide 276. Median values are 125 features for 
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Fig. 8. Total execution time.

Fig. 9. CCBHash computation time.
WannaCry, 381 for Ryuk, 142 for Zeus, and 102 for DarkSide. These 
samples have been downloaded via VirusTotal.

6.2. Empirical analysis

After programming the tool4 we carried out experiments with a sim-

ple 2.9 GHz Intel Core i5 processor. As we commented in Section 6.1, 
the CCBHash generation time is not critical in our context. We stud-

ied each sample average time to calculate all its functions’ CCBHashes. 
The total average time for each function is 67 milliseconds. The median 
value drops to 43 milliseconds. More details can be found in Figs. 8a 
and 8b.

Although, in general, execution times for each function are as ex-

pected, we can observe some exceptions. These belong to the WannaCry 
family. To this problem we must add that a sample can contain many 
functions, so the time to calculate all the functions’ CCBHashes is not 
negligible at all (over one minute in some cases).

Our algorithm has two main components. The first one obtains the 
functions attributes using r2pipe, and the second one actually gener-

ates our hash, but also extracts some attributes not returned directly by 
r2pipe. In Fig. 8 we appreciate the total time (blue line) as well as the 
time taken by our second component (red line). We observe that there 
is a big difference between both values. Ignoring the time consumed by 
r2pipe, our algorithm takes an average of 7.9 milliseconds to execute, 
11

4 https://github .com /nicslabdev /vtgraph -utils /tree /main /ccbhash.
that is, r2pipe uses 89% of the total time needed. In Fig. 9 we can see 
all the information related to the computation of CCBHash.

In terms of comparison times, direct attribute comparisons involve 
operations that are not complex. Therefore, it is reasonable to antic-

ipate low times, aligning with our objectives. Indeed, generating the 
CCBHash for each function in every sample, with over 12,000 functions 
in our database, takes less than an average of 24 ms. If deployed on 
a more powerful computer with multiple processors and/or cores, con-

current programming techniques could further reduce this time.

Given the impracticality of comparing over 76 million possible 
pairs of functions, we distribute these functions across complete mal-

ware samples. This enables a per-sample analysis, facilitating similarity 
checks within the same family and discerning dissimilarity across dis-

tinct families.

The calculation of similarity between files allows for various ap-

proaches. In our case, we consider two values: the average similarity of 
functions and the count of functions with a similarity exceeding 75%. 
While the average provides an overview, the latter is crucial for detect-

ing cases where a low average similarity masks very similar functions.

Another consideration is the comparison of samples with a varying 
number of functions. In this scenario, the order of comparison is pivotal, 
impacting the perceived similarity. Therefore, we account for this order 
of comparison, restricting files to be compared only when one contains 
more functions than the other.

Commencing with the analysis of samples from the same family, we 
initially present generic values, progressively delving deeper. Table 7
illustrates the general similarity obtained for files from the same family 

https://github.com/nicslabdev/vtgraph-utils/tree/main/ccbhash
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Table 7

Malware family average precision.

Malware Family Same family Distinct family

WannaCry 73% 37%

DarkSide 71% 38%

Ryuk 85% 42%

Zeus 79% 36%

Total 77% 38%

Table 8

CCBHash vs ssdeep.

Malware family Average number of files

CCBHash ssdeep

> 90% > 75% > 50% > 90% > 75% > 50%

WannaCry 4.5 0 0 0.4 1.1 2.3

DarkSide 2 2 2.3 0.2 0.2 0.7

Ryuk 6 0 2 0 0 0

Zeus 3.3 0 0 2.2 0 0

Total 4 0.5 1.1 0.7 0.3 0.8

and different families. The average similarity between samples from the 
same family is 77%. These values provide a qualitative indication that 
samples from the same family exhibit higher similarity compared to 
samples from different families, even though the average values may 
not precisely represent the precision of our tool.

Upon closer examination of the test results, we observe that, for each 
and every sample of the same family, multiple files are identified with 
over 90% similarity. Notably, there are instances where various sam-

ples from the same family exhibit similarities of approximately 55%. 
A detailed scrutiny of these cases reveals that, in most instances, these 
samples manifest scenarios where around 30% of the functions display 
more than 75% similarity. This aligns with the previously mentioned 
technique where malware conceals itself within a legitimate sample.

For samples from distinct families, it is noteworthy that, in none of 
the cases, the percentage of similar functions with a similarity exceed-

ing 75% surpasses 3% of the total functions in the file. In fact, the mode 
—indicating the most frequently occurring value— for similar functions 
is zero.

6.3. CCBHash comparison

We explored the behavior of CCBHash in comparison to other ex-

isting fuzzy hashes. To initiate this exploration, we examined our sam-

ple set using ssdeep, the current preeminent fuzzy hashing algorithm, 
and compared it with CCBHash. In our conducted study, each sam-

ple was compared with the rest of the samples in the database using 
both algorithms, and the number of similar files found for each sam-

ple was recorded. To facilitate this, we categorized the comparisons 
into three similarity intervals based on the obtained scores: (50%, 75%], 
(75%, 90%] y (90%, 100%].

Table 8 presents the average comparison results for each family. 
CCBHash outperforms ssdeep for all malware families. Notably, in the 
specific case of the Ryuk family, CCBHash identifies an average of 
around six files for each sample with over 90% similarity and even two 
files with similarity in the interval (50%, 75%]. In contrast, ssdeep fails 
to detect any similarity among different samples in this family. Further-

more, for the Ryuk family, all samples in the interval (50%, 75%] had, on 
average, more than 50 functions with over 90% similarity. Thus, CCB-

Hash not only surpasses ssdeep but also provides information about 
similar functions even in cases where the similarity is not extremely 
high.

The next fuzzy hashing algorithm we will compare our tool to is 
12

TLSH. Comparing an algorithm like ours, where similarity is measured 
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Table 9

CCBHash vs TLSH.

Malware family Average number of files

CCBHash TLSH

> 90% > 75% > 50% < 10 < 50 < 100

WannaCry 4.5 0 0 0 0 0.6

DarkSide 2 2 2.3 0.2 0.8 0.5

Ryuk 6 0 2 0 0.2 1

Zeus 3.3 0 0 2 0 0

Total 4 0.5 1.1 0.6 0.3 0.5

as a percentage, with TLSH, where scores are presented as distances, 
is not a trivial task. CCBHash, like ssdeep, utilizes a range from 0% 
to 100% to measure similarity, where 100% signifies perfect similarity 
and 0% denotes no similarity at all. Conversely, TLSH’s range is un-

bounded, with a distance of 0 indicating that two files are identical (or 
nearly identical), and the higher the value, the greater the difference, 
potentially exceeding 1000. In our case, and drawing from the study 
by (Oliver et al., 2013), we will constrain the score range based on the 
False Positive (FP) rate, not accepting rates exceeding 6%, achieved for 
a distance of 100, which is already excessively high. Therefore, these 
intervals are defined as [0, 10), [10, 50), and [50, 100).

Table 9 presents the obtained results. Once again, our algorithm 
outperforms TLSH. Even when aggregating the averages obtained for 
all TLSH intervals, it does not surpass the result obtained for the most 
restrictive interval in CCBHash, with similarities exceeding 90%.

7. Conclusions

Malware similarity is crucial to malware detection, classification, 
analysis and response. If an unknown sample is detected, there is no 
doubt that AI and ML algorithms will help systems in these tasks. Nev-

ertheless these algorithms can be complemented and enriched with 
existing techniques, tools and metrics and even substituted when fast 
investigation processes are time critical. With this in mind we surveyed 
and classified such techniques, tools and metrics in order to provide 
foundational context on available procedures and to extract sufficient 
knowledge for the design of a new tool ready to aid in malware in-

vestigations over petabytes of information: CCBHash. In addition to 
comparing functions, it can also operate as a traditional fuzzy hash, en-

abling the search for similarities among different malware samples and 
improving upon widely accepted solutions used by malware analysts, 
such as ssdeep or TLSH.

Having examined our algorithm and compared it with two widely 
used fuzzy hashing algorithms, CCBHash identifies similarities more ac-

curately. Therefore, we have a compelling alternative to consider in 
the quest for similarity detection in malware. However, this capability 
comes with a trade-off. Our algorithm is designed to compare functions 
in assembly language, leading to a larger storage requirement for the 
fuzzy hash of an entire sample— i.e., a concatenation of the CCBHashes 
of its functions—compared to the storage utilized by ssdeep or TLSH. 
We aim to address this in the future through enhancements such as a 
more sophisticated function filters.

There are still further improvements to be done. We conducted sev-

eral empirical experiments to rule out collisions on our dataset with 
successful results, although our specification shows that they can oc-

cur. More thorough research and experiments are needed. Among these 
are conducting a comparative analysis between Machine Learning Al-

gorithms and/or a Deep Learning architecture with the same purpose. 
There is also the need to conduct larger experiments in real scenarios 
since the hash function has been designed and implemented to be ap-

plied over a vast amount of information.

Exploring new file disassembly tools is one avenue for enhancing 
execution times. However, optimization extends beyond this aspect. 

Upon scrutinizing the computation time of CCBHash without r2pipe, 
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instances with elevated values share a commonality —they feature a 
substantial number of functions characterized by intricate CFGs. Hence, 
there is a need to investigate more efficient algorithms for calculating 
CFGs. All these activities constitute the next steps to be taken in this 
work.
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