
A Performance Evaluation Framework for Post-Quantum TLS
José A. Montenegroa,1, Ruben Riosa and Javier López-Cerezoa

aNetwork, Information and Computer Security (NICS) lab, Universidad de Malaga, Malaga, 29071, Spain

A R T I C L E I N F O
Keywords:
Post-Quantum Cryptography (PQC)
Transport Layer Security (TLS)
NIST Standards
Handshake Performance
Quantum-Resistant Protocols

A B S T R A C T
Quantum computers pose a significant threat to widely used cryptographic schemes, making it crucial
to urgently shift to post-quantum protocols that ensure the long-term security of communications.
This paper presents a framework for facilitating the transition to a quantum-resistant web by enabling
the evaluation of the impact of integrating post-quantum and hybrid cryptographic primitives in the
TLS protocol. By leveraging the OpenSSL library, the framework enables the seamless evaluation
and comparison of key encapsulation mechanisms (KEMs) and signature schemes provided by the
Open Quantum Safe project. The proposed framework is used to analyze different TLS configurations
involving classic, hybrid and post-quantum primitives, with a focus on those selected by NIST.
The study concentrates on evaluating the performance impact and the data overhead introduced by
configurations involving primitives at different security levels. It starts by benchmarking standalone
cryptographic primitives and continues with the evaluation of TLS configurations with hybrid and
post-quantum KEMs under controlled network conditions, as this is the first natural step for a transition
to a quantum-safe TLS. An impact analysis on real-world scenarios follows. Finally, our evaluation
concentrates on providing insight into the cost of shifting to TLS configurations involving only hybrid
or post-quantum primitives.

1. Introduction
The Internet stands as one of the greatest technological

advances in human history. Beyond connecting devices, it
has profoundly transformed the way people communicate
and conduct everyday activities, such as business and en-
tertainment. This revolution has impacted virtually every
aspect of modern life and continues to be a key driver of
technological and social innovation.

The development and mass adoption of the Internet as
we know it today, would have not been possible without
existing security protocols, such as the Transport Layer
Security (TLS) protocol [1]. These security protocols rely
on symmetric and asymmetric cryptographic primitives to
ensure the confidentiality, integrity and authenticity of com-
munications. They provide the necessary trust to conduct fi-
nancial transactions, and share sensitive information among
individuals and businesses. However, recent advancements
in quantum computing are shaking the trust foundations of
the Internet.

The majority of modern cryptographic algorithms used
to secure communications rely on complex mathematical
problems that are exceptionally challenging for current com-
puters to solve. For instance, the security of the RSA algo-
rithm is grounded in the difficulty of factorizing large inte-
gers. Similarly, other algorithms, such as the Diffie-Hellman
key exchange, are based on the infeasibility of calculating
discrete logarithms. Unfortunately, these problems could
be solved by quantum computers exponentially faster than
classical computers [2].

∗Corresponding author
jmmontes@uma.es (J.A. Montenegro); ruben.rdp@uma.es (R. Rios);

fjlc@uma.es (J. López-Cerezo)
ORCID(s): 0000-0001-6967-0801 (J.A. Montenegro);

0000-0002-6251-4897 (R. Rios); 0009-0004-7531-0377 (J. López-Cerezo)

Despite the fact that a cryptographically relevant quan-
tum computers (CRQC)1 does not yet exist, there is a loom-
ing threat that encrypted data could be stored now, with
the intent to decrypt it once quantum computers become
available [3]. This underscores the importance of making a
swift transition to cryptographic algorithms that can with-
stand quantum attacks. Such algorithms already exist and
they are referred to as quantum-resistant or post-quantum
cryptography (PQC) algorithms.

After six years of a public competition organized by
the U.S. National Institute of Standards and Technology
(NIST), three algorithms were published as FIPS (Federal
Information Processing Standard) in the summer of 2024 [4].
The focus now shifts to the industry, which bears the respon-
sibility of integrating these post-quantum algorithms into
security protocols to safeguard contemporary communica-
tions against the potential risks posed by future quantum
computers.

The Internet Engineering Task Force (IETF) is actively
working to standardize the integration of PQC primitives
into communication protocols, such as TLS [5, 6]. These
efforts have prompted major industry players to begin incor-
porating PQC solutions into their systems [7, 8, 9]. However,
despite these initiatives, PQC algorithms have yet to achieve
widespread adoption within TLS, and early integration at-
tempts have faced notable challenges [10].

The primary contribution of this paper is a framework
that enables seamless integration and comparison of tradi-
tional, hybrid, and post-quantum cryptographic primitives
within the TLS protocol. The framework focuses on evaluat-
ing the impact of integrating these primitives on handshake
performance and the volume of data exchanged under both

1NSA defines it as a quantum computer capable of breaking a real-
world cryptographic system that would be impossible to attack with a
traditional computer.

Montenegro et al.: Preprint submitted to Elsevier Page 1 of 17

J. A. Montenegro, R. Rios and J. Lopez-Cerezo, “A Performance Evaluation Framework for Post-Quantum TLS”, Future Generation Computer
Systems, In Press.
NICS Lab. Publications: https://www.nics.uma.es/publications

A Performance Evaluation Framework for Post-Quantum TLS

controlled and realistic network conditions, with config-
urable packet loss and delay. The main motivation behind the
development of this framework is to facilitate an informed
transition to a quantum-resistant web.

The rest of this paper is organized as follows. In Sec. 2,
prior research and developments in post-quantum cryptog-
raphy and its integration into the TLS protocol are reviewed.
Sec. 3 provides an overview of the TLS protocol focusing
on the incorporation of post-quantum algorithms into the
handshake process, along with the mathematical founda-
tions of the post-quantum primitives used. The evaluation
framework is introduced in Sec. 4. Sec. 5 evaluates the
cryptographic primitives used for KEM and signature. Next,
Sec. 6 focuses on assessing the current status of the TLS
protocol with post-quantum and hybrid algorithms in KEM.
Sec. 7 addresses challenges in deploying post-quantum TLS,
such as handling mis-aligned configuration, ensuring mu-
tual authentication, and simulating real-word network con-
ditions. The future of post-quantum TLS is examined in
Sec. 8, emphasizing the need to adopt hybrid and fully post-
quantum solutions, considering standardized signature algo-
rithms and novel proposals. Sec. 9 presents the conclusions
of this work and suggests lines of future work.

2. Related Work
Post-quantum cryptography has been extensively stud-

ied across various application domains in recent years. In
addition to the integration of post-quantum cryptographic
primitives into the TLS protocol, two areas that have re-
ceived particular attention are the Internet of Things (IoT)
and blockchain technology. In the context of IoT, research
has primarily focused on the cost and feasibility of imple-
menting post-quantum primitives on resource-constrained
devices [11, 12]. In the blockchain domain, post-quantum
cryptography has been applied to various challenges, includ-
ing enhancing consensus mechanisms and creating quantum-
resistant transactions [13, 14].

The preliminary experiments integrating post-quantum
cryptographic primitives into the TLS protocol were con-
ducted by Google [15, 16], and subsequently expanded
through collaborative efforts with other entities, including
Cloudflare [17, 18]. These studies concentrated on evaluat-
ing the performance of real-world connections employing
hybrid post-quantum key exchange. Client browsers and
servers were modified to support selected hybrid key ex-
change schemes in TLS 1.3. While these experiments pro-
vide highly realistic insights, their replication is challenging
due to the required infrastructure.

A substantial number of research studies have evaluated
the behavior of post-quantum TLS, primarily TLS 1.2, in In-
ternet of Things (IoT) environments. The MbedTLS library
has been used as a key research tool in numerous studies,
including [19], [20], [21], [22] and [23]. The findings of
these studies emphasize the need for optimized solutions
that strike a balance between security, performance and

energy efficiency. However, it should be noted that the afore-
mentioned studies relied on post-quantum algorithms that
were available at that time, integrating them through cus-
tom implementations that were tailored to specific devices.
Consequently, it is important to note that the conclusions
drawn cannot be automatically extrapolated to current or
future post-quantum schemes, as it is not straightforward to
replace the evaluated algorithms with newer versions.

Another relevant line of research addresses the chal-
lenges introduced by post-quantum signatures, including
performance concerns and the increased transmission over-
head caused by large key and certificate sizes. To mitigate
these issues, a solution known as KEMTLS [24] has been
proposed. This solution uses a novel KEMs not only for
key exchange but also for server authentication, thereby al-
leviating the overhead imposed by post-quantum signatures.
The authors highlight the substantial improvements of this
proposal compared to the standard approach. However, it is
worth noting that this proposal has not yet been standard-
ized [25], which raises compatibility concerns with the TLS
standard.

Our work builds upon the research conducted by the
Open Quantum Safe (OQS) community [26]. Previous stud-
ies, have also been used their work as a basis. For exam-
ple, [27] developed a client-side handshake implementation
using OQS-OpenSSL 1.1.1 and a Nginx server to evaluate
performance. This study simulates real network conditions
and assesses KEMs and digital signature algorithms avail-
able at that time. However, their evaluation is limited as
it considers only a single key size, without accounting for
the performance impact introduced by using different key
sizes. In a recent study [28], the author utilizes OQS and the
OpenSSL s_time tool, to measure the number of connections
per second. However, the measurements used CPU time
rather than real-time, which can be misleading as it deviates
from real-world results. Moreover, the measurements were
conducted while keeping the KEM or signature algorithm
in the pre-quantum state. Specifically, when benchmarking
the key exchange, the algorithm used was X25519, while the
signature algorithm was ECDSA with P-256. Consequently,
the measurements were not performed with both options
using post-quantum algorithms.

3. Background
This section provides the necessary background for the

rest of the paper. First, it presents an overview of the TLS
protocol, with a focus on the cryptographic operations and
the messages exchanged during the handshake phase. Next,
it outlines the foundations of the post-quantum algorithms
that will enable a quantum-safe TLS.
3.1. TLS Protocol Overview

Transport Layer Security (TLS) is a critical security
protocol used across various Internet applications, including
web browsing, email, file transfers, and messaging apps. Be-
fore any data transmission occurs, TLS establishes a secure

Montenegro et al.: Preprint submitted to Elsevier Page 2 of 17

A Performance Evaluation Framework for Post-Quantum TLS

connection to prevent third parties from intercepting, alter-
ing, or forging messages, thereby ensuring the authenticity,
confidentiality, and integrity of online communications. The
latest version, TLS 1.3, is specified in RFC 8446, while
TLS 1.2 remains widely used. Although deprecated, some
systems continue to rely on earlier TLS versions.

The TLS protocol consists of two phases. During the
initial handshake phase, the client and server negotiate the
cryptographic algorithms and key material required to se-
cure the subsequent data transmission phase. Research ef-
forts to adopt post-quantum cryptography focus on the hand-
shake phase, as it is the most vulnerable to quantum attacks
due to its reliance on asymmetric cryptography.

Figure 1 illustrates both the messages exchanged and the
cryptographic operations associated with them during the
normal operation of the protocol. The cryptographic oper-
ations used for key agreement are known as key encapsula-
tion mechanisms (KEMs), and those used for authentication
involve the standard public key signatures and verifications.
While the latter are well understood, it is useful to review the
three core algorithms that comprise KEMs:

• KeyGen() → (𝑝𝑘, 𝑠𝑘): A probabilistic key generation
algorithm, which generates a public key 𝑝𝑘 and a
secret key 𝑠𝑘.

• Encaps(𝑝𝑘) → (𝑐𝑡, 𝑠𝑠): A probabilistic encapsulation
algorithm, which takes as input a public key 𝑝𝑘 and
outputs a ciphertext 𝑐𝑡 and shared secret 𝑠𝑠.

• Decaps(𝑠𝑘, 𝑐𝑡) → 𝑠𝑠: A decapsulation algorithm,
which takes as input a secret key 𝑠𝑘 and ciphertext
𝑐𝑡 and outputs a shared secret 𝑠𝑠, or in some cases, a
distinguished error value.

To further elaborate, the handshake phase is organized
into three distinct stages. In the key exchange phase, the
ClientHello message contains a list of supported algorithms
in descending order of client preference. To enhance this
process and facilitate the integration of post-quantum algo-
rithms into TLS, the Internet Draft [29] introduces a hybrid
key exchange algorithm to the standard. This approach al-
lows to achieve post-quantum security while preserving the
security guarantees provided by traditional algorithms.

For the client’s share, the key_exchange field includes
the concatenation of the public key outputs from the corre-
sponding KEMs’ KeyGen operations for KEM algorithms, and
the (EC)DH ephemeral key share for (EC)DH groups. The
elliptic curves used in TLS 1.3 are secp256r1, secp384r1,
and secp521r1 (also known as NIST P-256, P-384, and P-
521), as well as x25519 and x448. For KEM-based key
exchange, ML-KEM with three different key lengths is used.

In contrast, the ServerHello message contains only the
key share corresponding to the algorithm selected by the
server from those offered by the client. Therefore, the
key_exchange field includes the concatenation of the ct
outputs from the corresponding KEMs’ Encaps algorithms
for KEM algorithms, and the (EC)DH ephemeral key share
for (EC)DH groups. Once the client receive the ServerHello

SERVERCLIENT

ServerHello

EncryptedExtensions

Certificate

CertificateVerify

Application Data

Finished

Application DataApplication Data

ClientHello

CertificateRequest

Certificate

CertificateVerify

Finished

KEM_Keygen

KEM_Encaps

KEM_Decaps

Sign

Sign*

Verify Certificate

Verify* Certificate

Verify CertificateVerify

Verify* CertificateVerify

Client Authentication

Figure 1: TLS 1.3 Message Flow (based on RFC 8446 and
draft-ietf-tls-hybrid-design-12)

message, the client executes the corresponding Decaps()

to derive the shared secret (𝑠𝑠), ensuring that both parties
obtain the same value.

The server parameters phase comprises only two mes-
sages, EncryptedExtensions and CertificateRequest, with the
latter being sent only in case the server request the client
to authenticate. In its simplest form, only the server is au-
thenticated to the client (server-only or server-side), which is
common in web scenarios. However, in some cases, mutual
authentication is recommended.

During the authentication phase, three types of mes-
sages are exchanged. The Certificate message typically
contains the certificate of the endpoint. The certificate is
signed by a trusted authority. This signature must be verified
using the signature algorithm specified in the certificate.
The CertificateVerify message contains a signature over the
entirety of the handshake. The server signs the information
using the private key associated with the certificate sent
in the previous message. Upon receiving the message, the
client is responsible for verifying the signature. Traditional
signature algorithms include RSA, the Elliptic Curve Digi-
tal Signature Algorithm (ECDSA), and the Edwards-Curve
Digital Signature Algorithm (EdDSA). The elliptic curves
used are the same as those employed during the key exchange
phase. In contrast, the available post-quantum (PQ) signature
algorithms are listed in Table 1. The Finished message con-
firms the integrity of the handshake and the establishment of
the shared secret. After its exchange, both the client and the
server derive the keying material necessary for encrypting
application-level data using authenticated encryption.

In the case of mutual authentication, the client must send
the Certificate, CertificateVerify, and Finished messages.
The transmission of these messages requires the execution of

Montenegro et al.: Preprint submitted to Elsevier Page 3 of 17

A Performance Evaluation Framework for Post-Quantum TLS

Table 1
PQC schemes evaluated and their security levels

NIST Security Category
Algorithm name Level I Level III Level V

PKE/KEM CRYSTALS-Kyber / Kyber512 / Kyber768 / Kyber1024 /
ML-KEM ML-KEM512 ML-KEM768 ML-KEM1024

Signature

CRYSTALS-Dilithium / − Dilithium3 / Dilithium5 /
ML-DSA ML-DSA65 ML-DSA87
Falcon Falcon512 − Falcon1024

SPHINCS+ / SLH-DSA

SPHINCS+-128s / SPHINCS+-192s / SPHINCS+-256s /
SLH-DSA-128s SLH-DSA-192s SLH-DSA-256s

SPHINCS+-128f / SPHINCS+-192f / SPHINCS+-256f /
SLH-DSA-128f SLH-DSA-192f SLH-DSA-256f

Mayo Mayo1 Mayo3 Mayo5
Cross Cross128 Cross192 Cross256

two signature verification operations on the server side and
one signature operation on the client side, analogous to the
procedure used for server authentication.
3.2. Post-Quantum Algorithms

Traditional cryptographic algorithms are based on math-
ematical problems which are at risk of being broken by
quantum computers. Post-quantum cryptography relies on
new classes of problems resistant to quantum attacks2. These
problems give rise to different categories of post-quantum
cryptography algorithms. This section overviews only the
types evaluated in this work (see Table 1).

Lattice-Based Cryptography: These schemes rely on
the hardness of mathematical problems related to high-
dimensional lattices, such as the Shortest Vector Problem
(SVP) and the Closest Vector Problem (CVP). Several post-
quantum algorithms, including three of the four finalists of
the post-quantum competition organized by NIST, are based
on lattice-based.

ML-KEM [30] is a key-encapsulation mechanism (KEM)
standard based on CRYSTALS-KYBER. Its security relies
the hardness of the Module Learning With Error (MLWE)
problem, which involves solving a system of noisy linear
equations in a polynomial ring. In particular, a public key
encryption scheme is constructed using a noisy linear equa-
tion system where the public key is a randomly generated
matrix 𝐴 and a vector 𝑡 = 𝐴𝑠 + 𝑒, and 𝑠 is the private
key. To encrypt a message it is encoded as an additional
noisy equation, which can be recovered using the private key.
This scheme is transformed into a KEM using the Fujisaki-
Okamoto (FO) transform [31] resulting in a KEM believed
to provide IND-CCA security [32].

ML-DSA [33] is a standard signature scheme based on
CRYSTALS-DILITHIUM. Similar to ML-KEM, it derives its
security from the hardness of MLWE but it also relies on
the hardness of a variant of the Module Short Integer So-
lution (MSIS) problem. ML-DSA constructs a Schnorr-like
signature from an interactive proof of knowledge protocol,
which is made non-interactive by applying the Fiat-Shamir

2No known quantum algorithm provides a significant advantage in
solving these problems, but future breakthroughs remain possible.

heuristic. In this protocol, the signer demonstrates knowl-
edge of two secret vectors 𝑠1 and 𝑠2 with small coefficients
to a verifier who has access to a matrix 𝐴 and 𝑡 = 𝐴𝑠1 + 𝑠2.
The difficulty of finding these vectors, linked to the MSIS
problem, acts as a trapdoor, enabling the efficient signing of
messages.

FALCON [34], another finalist of the NIST competition,
is a lattice-based digital signature scheme based on the
GPV framework [35]. Similar to ML-DSA, FALCON is also
based on the hardness of the MSIS problem but over NTRU
lattices (NTRU-SIS). FALCON’s private key consists of four
small polynomials which can be seen as a good basis of an
NTRU lattice, and the public key is bad basis of the same
lattice defined by a single polynomial that is mathematically
related to the private key. To sign a message, the signer
first hashes the message into a polynomial. Then produces
two short polynomials 𝑠1 and 𝑠2 satisfying a given equation
associated with the hash and the public key. Finding these
such short vectors is difficult under the MSIS assumption
unless the private key is known. Recent research [36] argues
that FALCON lacks a complete security proof, which was
thought to follow directly from GPV framework under the
NTRU-SIS assumption.

Hash-based Cryptography: This class of algorithms
rely on cryptographic hash functions to create post-quantum
digital signatures. While there is no established proof of
their resistance to quantum computers, it was demonstrated
that these functions are both necessary and sufficient for
ensuring the security of digital signatures [37]. An additional
benefit is that these hash-based signature schemes can be
constructed by simply changing to a new cryptographic hash
function, avoiding complex problems in number theory or
algebra. This concept is not new, with the first schemes
dating back to the late 1970s. In fact, the current SLH-DSA
standard builds upon ideas from already existing hash-based
signature schemes.

SLH-DSA [38] is a post-quantum signature standard
based on SPHINCS+. This signature algorithm is based on
a XMSS (eXtended Merkle Signature Scheme) [39] hyper-
tree structure. This hyper-tree is used to sign the public keys
of FORS (Forest of Random Subset) [40] instances, which

Montenegro et al.: Preprint submitted to Elsevier Page 4 of 17

A Performance Evaluation Framework for Post-Quantum TLS

in turn are used to sign message digests. The rest of layers
consists of trees of one-time signatures (WOTS+) [41]. A
signature in SLH-DSA consists of a randomization value,
a FORS signature of the message digest and a hyper-tree
signature of the FORS public key used. Signature verifi-
cation can be summarized as recomputing message digest,
computing a candidate FORS public key, and verifying the
hyper-tree signature on that public key. Two variants of this
scheme exist: one for fast signature generation (‘f’) and one
for small signature generation (‘s’).

In 2023, NIST launched a new round of post-quantum
signature algorithm [42], driven by two key considerations.
First, due to recent advancements in lattice-based cryptosys-
tems and the limited understanding of their resilience against
quantum attacks, this round sought proposals for signature
schemes that do not rely on structured lattices. Second, given
that the standardized hash-based scheme produces relatively
long signatures and has a slow verification process, this
round aimed to identify alternatives with shorter signatures
and faster verification.

Multivariate Public-Key Cryptography: This class re-
lies on the hardness of solving multivariate quadratic (MQ)
equations over a finite field. The general problem of solving
such a set of equations is NP-hard. One of the earliest mul-
tivariate quadratic signature schemes is the Oil and Vinegar
(OV) scheme [43]. The idea was hiding quadratic equations
in 𝑜 unknowns called “oil” and 𝑣 = 𝑜 unknowns called
“vinegar” over a finite field, with linear secret functions. An
Unbalanced Oil and Vinegar (UOV) scheme [44] improves
security by using more vinegar variables than oil variables.
While UOV provides good performance and relatively small
signature sizes, its main drawback lies in its large key size.

MAYO [45] is a signature scheme presented to the
NIST competition for the standardization of additional post-
quantum digital signatures. This scheme is a variant of the
UOV scheme that reduces the size of public keys. This is
achieved by using very small oil space, which allows for
a very compact representation of the public key. However,
this reduction comes at the cost of increased signature size
and a more computationally intensive signature process. The
security of MAYO is conditioned to the hardness of UOV
problem and the a new tailored problem called the Multi-
Target Whipped MQ (MTWMQ) problem. The hardness of
the latter needs to be studied further ensure the security of
the scheme.

Code-based Cryptography: These schemes use error-
correcting codes as the foundation for cryptographic primi-
tives. One of the earliest code-based cryptographic scheme
was a public key encryption schemes proposed by Robert J.
McEliece [46]. This scheme uses a binary irreducible Goppa
code –an error-correcting code defined by a polynomial over
a finite field– as a private key, and a randomly permuted
generator matrix of that code as the public key. A ciphertext
consists of a codeword with added errors, which can only be
corrected by the holder of the Goppa code.

CROSS [47] is a code-based signature scheme submit-
ted to the second call for post-quantum signature proposals

Figure 2: Performance Evaluation Framework

launched by NIST. The scheme is based on a proof of
knowledge for the Restricted Syndrome Decoding Problem
(R-SDP), which is closely related to the classical SDP prob-
lem [48]. In CROSS, the signer chooses a random parity-
check matrix generated from a seed and a syndrome –a vec-
tor used to detect errors– which is based on the matrix and
a private vector. The protocol involves two commitments,
one to prove the syndrome equation and another one to
prove the restriction on the private vector. Additionally, two
challenges are involved: the first is the hash of the message
and the two commitments, and the second also incorporates
the first challenge and responses. The protocol is made non-
interactive using the Fiat-Shamir heuristic. A CROSS(G)
variant uses a particular subgroup for the private vector for
improved efficiency and smaller key sizes.

4. TLS Performance Evaluation Framework
This section presents our evaluation framework3, de-

signed to facilitate the evaluation and analysis of TLS con-
figurations employing classical, post-quantum, and hybrid
cryptographic primitives under both ideal and realistic net-
work conditions. The framework follows a modular archi-
tecture, consisting of two main components, as depicted in
Figure 2.
Deployment component: This component includes all the
tools and libraries necessary for the deployment of sce-
narios, organized into three functional layers. These lay-
ers are encapsulated within a containerized environment to
enable seamless deployment of client and server machines
across different platform architectures. Moreover, the use
of containers ensures a consistent and reproducible working
environment for all evaluations. For this purpose, we rely on
Docker as the underlying container technology.

The first functional layer is responsible for controlling
the network between the client and the server. On the one
hand, it enables the definition of diverse scenarios, allowing

3Available at the GitHub repository: https://github.com/

montenegro-montes/TLS-PQ/

Montenegro et al.: Preprint submitted to Elsevier Page 5 of 17

https://github.com/montenegro-montes/TLS-PQ/
https://github.com/montenegro-montes/TLS-PQ/

A Performance Evaluation Framework for Post-Quantum TLS

the specification of network parameters at the container
level, including packet loss and delay. This is achieved using
a flexible and comprehensive tool called Pumba. On the other
hand, this layer allows network traffic analysis by integrating
EdgeShark, a tool that enables Wireshark to capture packets at
the container level.

The second layer comprises the tools and configurations
required to evaluate the TLS protocol. In this work, it inte-
grates the latest available version of OpenSSL (3.3.1) at the
time of testing, although other versions or libraries may be
integrated instead.

The third layer provides the cryptographic primitives
required to perform post-quantum and hybrid TLS hand-
shakes. By default, the version of OpenSSL used only provides
traditional primitives. This layer incorporates the necessary
libraries and configuration changes to enable the use of
additional cryptographic providers. Specifically, it integrates
the provider from the Open Quantum Safe (OQS) project,
oqsprovider, which enables access to the post-quantum and
hybrid primitives implemented in the liboqs library (version
0.12.0).
Execution and Analysis component: This component
manages the execution of specific scenarios and TLS config-
urations through a set of Shell scripts organized by security
levels. There are two types of scripts. The first type assesses
TLS handshake performance by measuring the number of
handshakes completed in 10 seconds; each configuration and
scenario is executed 50 times to ensure statistical signifi-
cance. The second type evaluates communication overhead
by measuring the kilobytes transmitted per TLS handshake
configuration and scenario. A single execution is sufficient
in this case, as traffic size remains consistent for each con-
figuration.

Each execution produces client and server logs, along
with packet capture (PCAP) files generated by traffic anal-
ysis tools. These files are automatically processed with
Python scripts to extract the most relevant data into comma-
separated values (CSV) files, which are then used to generate
plots for each evaluated scenario. Results are shown using
bar plots, while box-and-whisker plots (boxplots)— display-
ing quartiles, median, and outliers—are included for tests
executed multiple times.

5. Evaluation of cryptographic primitives
Prior to evaluating the performance of TLS, this sec-

tion examines the performance of the individual KEM and
signature primitives involved in the TLS handshake. The
evaluation is based on OpenSSL’s speed tool.

The following command enables benchmarking the KEM
algorithms available in TLS. The command executes each
KEM operation (key generation, encapsulation and decap-
sulation) for a specific number of seconds:
openssl speed -kem-algorithms -elapsed -mlock

-seconds <sec>

Table 2
KEM operations performed in 10 seconds

Security KEM Keygen Encaps Decaps
Level Primitive (ops) (ops) (ops)

I

P-256 483794 62035 71719
X25519 212445 101879 203787
p256_mlkem512 10141 48745 18897
x25519_mlkem512 133930 84475 86224
mlkem512 537249 812861 916541

III

P-384 9369 3522 5672
X448 35780 19838 44380
p384_mlkem768 4813 3393 4505
x448_mlkem768 27703 16859 17005
mlkem768 368546 540278 573492

V
P-521 3970 1553 2541
p521_mlkem1024 2724 1488 2195
mlkem1024 288839 358368 370072

Table 3
Traditional signature operations in 10 seconds and certificate
size in bytes

Security Signature Primitive Operations Certificate
Level Sign Verify Size (bytes)

I Ed25519 224405 74452 468
III secp384r1 (ecdsap384) 8651 10433 634
V secp521r1 (ecdsap521) 3680 4729 740

The results of executing this command are presented in
Table 2 organized by security levels. The best performing
KEM primitive for all operations and security levels is
ML-KEM. It demonstrates significantly better performance
compared to the hybrid (i.e., combining traditional and post-
quantum) primitives recommended by international insti-
tutions [49]. However, this recommendation is primarily
motivated by concerns regarding the reliability of their novel
security primitives rather than their performance.

The speed tool can also be used to benchmark the signa-
ture algorithms available in TLS by executing the following
command:
openssl speed -signature-algorithms -elapsed -mlock

-seconds <sec>

The result of this command are divided in three tables.
Table 3 presents the number of signature and verification
operations for traditional signature primitives in Levels I,
III and V. This table serves as the baseline for comparing
with hybrid and post-quantum signature primitives, shown
in Tables 4 and 5, respectively. The tables also include the
certificate size in bytes.

The results in Table 4 indicate that the only hybrid signa-
ture primitive that exhibits a performance that is comparable
to traditional primitive at Level I is p256_mayo. However, it
is only comparable in terms of verifications, with p256_mayo

being even slightly superior to ed25519. In contrast, the
number of signature operations is reduced by approximately
3.5 times. Despite the fact that the size of the certificates
increases six-fold in comparison with the traditional option,
it is the most effective of the level I options. The second-best

Montenegro et al.: Preprint submitted to Elsevier Page 6 of 17

A Performance Evaluation Framework for Post-Quantum TLS

Table 4
Hybrid signature operations in 10 seconds and certificate size
in bytes

Security Hybrid Signature Primitive Sign Verify Certificate
Level Size (bytes)

I

p256_falcon512 21906 69523 2649
p256_sphincssha2128fsimple 828 8619 23730
p256_sphincssha2128ssimple 42 18536 11229
p256_mayo1 67365 88501 2570

III

p384_mldsa65 7298 8725 7760
p384_sphincssha2192fsimple 543 4318 48998
p384_sphincssha2192ssimple 26 6406 22673
p384_mayo3 6889 9271 5018

V

p521_mldsa87 3403 4402 10510
p521_falcon1024 2758 4406 4876
p521_sphincssha2256fsimple 260 2870 68336
p521_sphincssha2256ssimple 28 3318 41166
p521_mayo5 3009 4371 8654

Table 5
Post-quantum signature operations in 10 seconds and certifi-
cate size in bytes

Security PQ Signature Primitive Sign Verify Certificate
Level Size (bytes)

I

falcon512 23678 167563 2450
sphincssha2128fsimple 843 9064 23535
sphincssha2128ssimple 42 20253 11034
mayo1 88684 346312 2373
CROSSrsdpg128balanced 10540 18163 12952

III

mldsa65 60863 154796 7504
sphincssha2192fsimple 576 7575 48710
sphincssha2192ssimple 26 15509 22385
mayo3 30732 90506 4738
CROSSrsdpg192balanced 6833 11660 32147

V

mldsa87 48759 99038 10153
falcon1024 11961 82157 4506
sphincssha2256fsimple 278 7104 67954
sphincssha2256ssimple 28 11638 40784
mayo5 15283 44191 8276
CROSSrsdpg256balanced 3947 6835 54865

hybrid option is p256_falcon256, but its primary drawback is
a tenfold reduction in the number of signatures operations.

At Level III, p384_mldsa65 and p384_mayo3 demonstrate
comparable performance to the traditional ecdsap384 primi-
tive, exhibiting a modest reduction in the number of signa-
ture and verification operations. The main downside of these
hybrid primitives is the approximately tenfold increase in
certificate size. Notably, the performance of the only tradi-
tional signature primitive available at Level V, ecdsap521, is
comparable to most hybrid primitives, except for those based
on SPHINCS+, which remain significantly less efficient
across all security levels, even in its fast variant. At this level,
certificate size remains a concern, with p521_falcon1024

introducing the least overhead, with almost 5 kilobytes in
size, which is approximately 6.5 times bigger compared to a
traditional ecdsap521 certificate.

The results of the evaluation of post-quantum signatures
primitives are shown in Table 5. This table incorporates
the primitive MAYO, which at the time of writing lacks
of a hybrid implementation in liboqs. Among the various
versions of this primitive available, the balanced version
has been selected for testing. At Level I, all the primitives
demonstrate inferior performance compared to traditional

counterparts, with MAYO representing the most favorable
case, reducing the number of signatures by a factor of 2.5. In
contrast, for verification, both FALCON and MAYO outper-
form the traditional primitive, achieving 2.3 and 4.5 times
more verifications, respectively. Additionally, these options
introduce the smallest increase in certificate size.

At Level III, both ML-DSA and MAYO demonstrate
higher performance compared to the traditional option, par-
ticularly in terms of signature with verification. However,
they impose a significant cost on the certificate size, increas-
ing it by 12 and 7.5 times, respectively. A similar trend is
shown at Level V, with the addition of FALCON, which also
provides a boost in performance with respect to traditional
primitives. While FALCON is not as efficient as MAYO and
ML-DSA, it is the one with the smallest certificate size -
only 6 times larger than a traditional certificate. The least
performing primitive at all levels is SPHINCS+, which is
capable of performing only very few signature operations
per second – from 2 to 4 operations in the small variant and
from 30 to 80 in its fast variant. In terms of certificate size,
is also the worst performing option with CROSS being right
in between the small and fast variants.

6. Current Status of Post-Quantum TLS
Current efforts to incorporate post-quantum primitives in

TLS focus on the key exchange phase, while the authentica-
tion phase still remains on a pre-quantum state. This decision
is primarily motivated by the cost associated with post-
quantum signatures (as shown in Sec. 5). Moreover, the most
pressing threat is the ‘harvest now, decrypt later’ problem,
which affects the key exchange phase. However, given the
novelty of post-quantum KEMs, major international agen-
cies (e.g. [50]) are recommending the use of hybrid KEM
algorithms.

This section examines the current status of the TLS pro-
tocol in the context of the recently established post-quantum
cryptography standards. Specifically, it analyzes the com-
putational and transmission overhead associated with these
new cryptographic primitives. The primary objective is to
identify potential challenges and limitations in the transition
towards a quantum-safe web.

Post-quantum primitives can be introduced in the hand-
shake phase of TLS to secure the key exchange and au-
thentication processes. For the key exchange, there is only
one possible post-quantum standards, that is ML-KEM,
but there are currently two alternatives for authentication,
namely, ML-DSAand SLH-DSA.

The performance evaluation of various Key Exchange
Mechanisms (KEM), including traditional, post-quantum,
and hybrid approaches, is illustrated in Figure 3 and 4. These
figures are organized based on the security levels of the
cryptographic primitives employed during the handshake
phase. To focus specifically on the performance of the KEM
algorithms, the signature algorithm used in the authentica-
tion process is fixed. For each security level, an efficient
traditional signature algorithm is selected, ensuring that the

Montenegro et al.: Preprint submitted to Elsevier Page 7 of 17

A Performance Evaluation Framework for Post-Quantum TLS

P-256 x25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r

of
 H

an
ds

ha
ke

s
Performance for Signature Algorithm: ed25519

(a) Level I

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0

500

1000

1500

2000

2500

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp384r1

(b) Level III

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

200

400

600

800

1000

1200

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp521r1

(c) Level V
Figure 3: Number of TLS handshakes in 10 seconds.

P-256 x25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

H
an

ds
ha

ke
 K

ilo
by

te
s Signature Algorithm: ed25519

KEM Algorithm
P-256 Server - Client
x25519 Server - Client
p256_mlkem512 Server - Client
x25519_mlkem512 Server - Client
mlkem512 Server - Client

(a) Level I

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

H
an

ds
ha

ke
 K

ilo
by

te
s Signature Algorithm: secp384r1

KEM Algorithm
P-384 Server - Client
x448 Server - Client
p384_mlkem768 Server - Client
x448_mlkem768 Server - Client
mlkem768 Server - Client

(b) Level III

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

1

2

3

4

5

H
an

ds
ha

ke
 K

ilo
by

te
s Signature Algorithm: secp521r1

KEM Algorithm
P-521 Server - Client
p521_mlkem1024 Server - Client
mlkem1024 Server - Client

(c) Level V
Figure 4: Number of kilobytes transmitted during a TLS handshake.

evaluation centers solely on the performance characteristics
of the KEM.

Figure 3 shows the number of complete TLS handshakes
performed in a time period of 10 seconds. In Figure 3a, the
performance of fully post-quantum and hybrid post-quantum
algorithms are compared to two traditional KEM approaches
based on elliptic curves, NIST P-256 and Curve 25519. It can
be observed that a TLS configuration based on traditional
algorithms is not significantly better than one using ML-
KEM. In fact, the performance of standalone ML-KEM is
better than P-256 and similar to Curve 25519, which is the
most efficient KEM at this security level. Hybrid schemes
are the least efficient ones since they combine elliptic curves
with ML-KEM. However, using traditional P-256 for KEM
is only slightly better than a hybrid approach of Curve 25519
and ML-KEM. The results in Figure 3b show a similar
trend with a reduction of around one third in number of
connections. Interestingly, in this level, the most efficient ap-
proach is fully post-quantum and the hybrid schemes is better
than the traditional KEM based on NIST P curve. Finally,
Figure 3c shows that the post-quantum scheme outperforms
the traditional KEM based on P-521, and the performance of
the hybrid scheme is similar to the traditional one.

Figure 4 depicts the transmission overhead imposed by
the same TLS configurations analyzed in the previous figure
for a single handshake. In this figure, we distinguish between
the amount of kilobytes transmitted by the client and the
server in order to identify any significant communication
imbalance. As illustrated in Figure 4a, traditional algorithms
exhibit greater bandwidth efficiency compared to hybrid and
post-quantum KEMs. While the best and worst configu-
rations remain consistent with the analysis of the number
of connections, the differences between algorithms are less

pronounced. Both traditional algorithms perform similarly,
transmitting less than 1.5 KBytes per handshake. In contrast,
all configurations involving post-quantum KEMs increase
the amount of data transmitted per handshake by a factor
of approximately 2.2 to 2.4. While similar differences are
observed between traditional and post-quantum KEMs at
security level III (see Figure 4b), in the worst case, the
amount of kilobytes transmitted is approximately 4 kilo-
bytes. Finally, Figure 4c shows that TLS configurations with
post-quantum KEMs at security level V result in about 5
kilobytes of data per handshake, compared to slightly less
than 2 kilobytes for traditional configurations.

In conclusion, the post-quantum ML-KEM emerges as
the best-performing KEM approach for TLS, particularly at
higher security levels where its efficiency becomes more
pronounced. In contrast, hybrid approaches are the least
efficient, especially when ML-KEM is combined with NIST
curves. However, hybrid KEMs using Curves 25519 and 448
exhibit performance that is comparable to, or even better
than, traditional approaches based on NIST curves. In terms
of bandwidth, traditional KEM approaches consistently out-
perform post-quantum methods. Notably, the transmission
overhead between ML-KEM and hybrid approaches is min-
imal, indicating that the choice of hybrid configurations does
not significantly increase data transmission requirements.

Evaluating the algorithms across different levels and
conducting a cross-level study can be highly beneficial. This
approach helps identify the cost of transitioning from one
security level to another, which typically results in a decrease
in connections and an increase in information transmission.
Understanding these costs is crucial for decision-makers
who need to balance security requirements with system
performance.

Montenegro et al.: Preprint submitted to Elsevier Page 8 of 17

A Performance Evaluation Framework for Post-Quantum TLS

Table 6
TLS handshakes using traditional (T) or hybrid (H) KEM primitives. All configurations use secp384r1 for authentication.

Handshake T/H KEM_ALG_CLIENT KEM_ALG_SERVER Transmitted Bytes
Server Client

Regular
T x25519 x25519 832 487X25519MLKEM768:x25519_kyber768:x25519 x25519

H x25519_kyber768 x25519_kyber768 1921 1663X25519MLKEM768 X25519MLKEM768

HRR
T x25519_kyber768:x25519 X25519MLKEM768:x25519 936 2082x25519 X25519MLKEM768:x25519_kyber768:x25519

H x25519_kyber768:x25519 X25519MLKEM768:x25519_kyber768:x25519 2013 3270x25519_kyber768 X25519MLKEM768:x25519_kyber768

Error –

x25519_kyber768 X25519MLKEM768

7 1583X25519MLKEM768 x25519_kyber768
x25519 x25519_kyber768
x25519 X25519MLKEM768

By selecting the optimal option at each level, the number
of connections decreases from 7356 at Level I to 2115 at
Level III, which represents a 71.25% reduction. At Level V,
the number of connections further drops to 1109, marking
an 84.92% decrease from Level I. The shift from Level III to
Level V results in a 47.57% reduction in connections.

In contrast, data transmission increases significantly
across levels. From Level I to Level III, the transmitted
bytes rise from 701 to 2138, a 204.99% increase. Moving
from Level III to Level V, the bytes increase from 2138 to
2730, representing a 27.69% rise. Overall, from Level I to
Level V, the data transmission grows from 701 to 2730 bytes,
resulting in a 289.44% increase.

7. Additional challenges
The results presented in the previous section were ob-

tained under ideal network conditions to provide insights
into the maximum performance of various TLS configura-
tions based on both traditional and post-quantum primitives,
ensuring a fair comparison between them. However, in real-
world scenarios, several challenges are likely to arise when
deploying TLS configurations with PQC primitives. In this
section, we examine four key challenges using our evaluation
framework.
7.1. Hello Retry Request

A typical TLS handshake starts with the client sending a
ClientHello message where it indicates to the server, among
other parameters, a list of KEM mechanisms supported by
the client in descending order of preference [29]. Addi-
tionally, the client may add a key share (i.e., cryptographic
parameters) for some or all of these groups.

In case the client and server are unable to agree on a
common set of parameters, the TLS handshake terminates,
and the connection is closed. However, in certain scenarios,
the server may identify an acceptable set of parameters but
requires additional information from the client to proceed.
This situation often arises when the client proposes a specific
KEM in the ClientHello message but does not include the
corresponding key share.

In such situation, the server sends a HelloRetryRequest

(HRR) message [1], requesting the client to provide a key

share for the mutually supported KEM. Upon validating the
HRR, the client responds with an updated ClientHello mes-
sage containing the requested key share. While necessary,
this process increases the communication overhead.

To evaluate the transmission overhead imposed by this
process, we defined a series of client and server TLS config-
urations using traditional and hybrid KEMs. These include
regular configurations, where the handshake proceeds nor-
mally; configurations where the client and the server have a
KEM in common but HRR is required; and configurations
where they support different KEMs and result in error. As
shown in Table 6, a regular handshake using Curve 25519
results in a total transmission of 1319 bytes (of which 487
bytes are transmitted by the client and 832 by the server),
while a negotiation involving a hybrid KEM implies 3584
bytes. When the client does not send a key share for the
mutually supported KEM, the need for HRR results approx-
imately in 2.3 and 1.5 increase, respectively, even when the
actual primitives used are the same. Finally, even if the client
and server configurations mismatch and result in error, it
requires a transmission over 1.5 kilobytes.

In addition to the increased transmission overhead, a
more concerning scenario deserves attention. A state-of-the-
art client configured to use the hybrid X25519MLKEM768 as its
preferred KEM may inadvertently fall back to the traditional
x25519, a quantum-insecure KEM, which is configured as a
last-resort option. This situation can occur even if the server
is configured to support hybrid post-quantum KEMs but
instead employs the pre-standard x25519_kyber768 KEM.

To mitigate this issue, the client could simply avoid con-
figuring the use of the traditional X25519 KEM. However, this
approach might lead to frequent handshake failures when
communicating with servers that do not handle sensitive
data. For a smoother and safer transition, web browsers
should notify users when they are configured to use hybrid
or post-quantum KEMs, but the negotiation results in a
quantum-insecure handshake. As these are low-level proto-
col settings that most users are not familiar with and may
pose a security risk, it is recommended to alert users through
a warning message. The warning could take the following
form:

“Warning: The TLS configuration of the server you
are connecting to is not resistant to quantum attacks. This

Montenegro et al.: Preprint submitted to Elsevier Page 9 of 17

A Performance Evaluation Framework for Post-Quantum TLS

P-256 x25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0

1000

2000

3000

4000

5000

N
um

be
r

of
 H

an
ds

ha
ke

s
Performance for Signature Algorithm: ed25519

(a) Level I

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0

200

400

600

800

1000

1200

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp384r1

(b) Level III

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

100

200

300

400

500

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp521r1

(c) Level V
Figure 5: Number of mutually authenticated TLS handshakes in 10 seconds

P-256 x25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

H
an

ds
ha

ke
 K

ilo
by

te
s Signature Algorithm: ed25519

KEM Algorithm
P-256 Server - Client
x25519 Server - Client
p256_mlkem512 Server - Client
x25519_mlkem512 Server - Client
mlkem512 Server - Client

(a) Level I

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0

1

2

3

4

5

H
an

ds
ha

ke
 K

ilo
by

te
s Signature Algorithm: secp384r1

KEM Algorithm
P-384 Server - Client
x448 Server - Client
p384_mlkem768 Server - Client
x448_mlkem768 Server - Client
mlkem768 Server - Client

(b) Level III

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

1

2

3

4

5

6

H
an

ds
ha

ke
 K

ilo
by

te
s Signature Algorithm: secp521r1

KEM Algorithm
P-521 Server - Client
p521_mlkem1024 Server - Client
mlkem1024 Server - Client

(c) Level V
Figure 6: Number of kilobytes transmitted during a mutually authenticated TLS handshake.

communication could be intercepted and decrypted in the
future using quantum technologies."

This approach ensures that users are informed of poten-
tial security implications when post-quantum primitives are
not employed.
7.2. Mutual Authentication

While most web connections rely on server authenti-
cation to allow the client verify that it is connected to
the intended server, there are critical scenarios - such as
handling administrative procedures with public authorities,
where the server must also verify the client’s identity. It
also allows for connections without a login process, which is
useful for non-human users such as Internet of Things (IoT)
devices.

The mutual authentication process is triggered in TLS
when the server sends a CertificateRequest message to
the client, which contains a set of extensions describing
the features that the client’s certificate must satisfy to be
accepted, including the signature algorithms of the certifi-
cate. Upon reception of this message, the client transmits a
Certificate message that contains the requested certificate,
and a CertificateVerify message. The latter message con-
tains a signature of the entire handshake using the private key
associated with the client’s certificate. Consequently, mutual
authentication in TLS introduces additional computational
and transmission overhead. The extent of this overhead
depends on the length of the certification chain and the
specific signature algorithm used. In particular, validating
the client’s certificate is a recursive process that involves
verifying the signature of each certificate in the certification

chain, all the way up to the root certificate authority (CA)4.
Additionally, the server must verify the validity of signature
in the CertificateVerify message.

The results of our evaluation of mutually authenticated
TLS are presented in Figures 5 and 6. Regarding the number
of connections (Figure 5), it is worth noting that the perfor-
mance decrease varies across configurations. For instance,
hybrid configurations involving a NIST P curve and ML-
KEM show a performance reduction of approximately 8%,
17%, and 19% in Levels I, III, and V, respectively. In contrast,
the number of connections is reduced by half in Level
III and V ML-KEM configurations. Additionally, the per-
formance decrease compared to server-only authentication
ranges from 30% to 38% at Level I, 27% to 48% at Level
III, and 19% and 25% at Level V. The reason behind a more
pronounced performance detriment at lower security levels
is due to the higher cost of these primitives (c.f. Section 5).
At high security levels operations are more costly, there-
fore the introduction of an additional round of traditional
signature and verifications for client authentication does not
impact as much compared to lower security levels. The same
applies when comparing configurations at the same security
level. When the primitive is computationally intensive, the
overhead introduced by the additional authentication round
has a more pronounced effect in percentage terms. In terms
of traffic volume (Figure 6), the transition from server-side to
mutual authentication can be summarized as approximately
adding 1 kilobyte of data for all primitives and levels. This
conclusion is drawn by comparing Figures 4 and 6, and this

4In our tests, the client’s certificate is signed directly by the root CA. As
a result, two signature verifications are required for validating the client’s
certificate.

Montenegro et al.: Preprint submitted to Elsevier Page 10 of 17

A Performance Evaluation Framework for Post-Quantum TLS

P-256 X25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0

250

500

750

1000

1250

1500

1750

2000

N
um

be
r

of
 H

an
ds

ha
ke

s
Performance for Signature Algorithm: ed25519

(a) Level I delay=1ms

P-256 X25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0

50

100

150

200

250

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: ed25519

(b) Level I delay=10ms

P-256 X25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0

5

10

15

20

25

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: ed25519

(c) Level I delay=100ms

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0

200

400

600

800

1000

1200

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp384r1

(d) Level III delay=1ms

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0

50

100

150

200

250

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp384r1

(e) Level III delay=10ms

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0

5

10

15

20

25

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp384r1

(f) Level III delay=100ms

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

200

400

600

800

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp521r1

(g) Level V delay=1ms

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

50

100

150

200

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp521r1

(h) Level V delay=10ms

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

5

10

15

20

25

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp521r1

(i) Level V delay=100ms
Figure 7: TLS Handshake connections during 10 seconds Levels I,III and V for various delays.

increase is mostly due to the transmission of the client’s
certificate.

Interesting insights are also revealed by comparing the
results across security levels. First, we examine the perfor-
mance degradation associated with increasing the security
level. Choosing the best performing configuration at each
level, the number of TLS connections drops from 4554
at Level I to 983 at Level III, which represents a 78.41%
reduction. At Level V, the number of connections further
drops to 501, marking an 89.00% decrease from Level I.
The shift from Level III to Level V results in a 49.03%
reduction in connections. In terms of the data transmission
volume, the increase is significant across levels. From Level
I to Level III, the number of received bytes rise from 1345 to
2746, a 104.16% increase. At Level V, the number of bytes
transmitted is 3316, representing a 20.76% rise. Overall,
from Level I to Level V, the transmission overhead grows
from 1345 to 3316 bytes, resulting in a 146.54% increase.
7.3. Realistic Network Conditions

The results presented and analyzed in previous sections
consider ideal network conditions. However, packet losses
and delays are inevitable in real-world scenarios. In this
section, we explore the impact of these conditions on the
performance of various TLS configurations.

7.3.1. Packet Delay
This section explores the impact of different packet

delays on several KEM configurations at different security
levels. Delays of 1, 10 and 100 milliseconds5 are considered
for testing. The results are illustrated in Figure 7.

At Level I (Figures 7a, 7b and 7c), the number of
connections decreases by 70% with a delay of 1 ms, 90%
with a 10 ms delay, and up to a 99% with 100 ms delay. At
Level III, the performance degradation is less pronounced
(Figures 7d, 7e and 7f) ranging from 17% to 46% for a 1 ms
delay, 72% to 89% for a 10 ms delay, and up to 97% for a 100
ms delay. At Level V, the impact of delays is comparatively
minor (Figures 7g, 7h, and 7i), with degradation ranging
from 7% to 30% for a 1 ms delay, and up to approximately
95% fo a 100 ms delay.

In general, the results indicate that packet delays signifi-
cantly impact TLS performance, irrespective of the security
level. Specifically, packet delays tend to normalize the num-
ber of connections that can be established in a given period
of time. Notably, when packet delays are sufficiently high,
say 100 ms, all TLS configurations exhibit a similar perfor-
mance, with approximately 25 connections over a 10-second
time period. This behavior can be attributed to the fact that

5As of 2024, the average latency for fixed broadband is 9 ms and 26 ms
for mobiles. See https://www.speedtest.net/global-index

Montenegro et al.: Preprint submitted to Elsevier Page 11 of 17

https://www.speedtest.net/global-index

A Performance Evaluation Framework for Post-Quantum TLS

P-256 X25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0

1000

2000

3000

4000

N
um

be
r

of
 H

an
ds

ha
ke

s
Performance for Signature Algorithm: ed25519

(a) Level I loss=0.1%

P-256 X25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0

200

400

600

800

1000

1200

1400

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: ed25519

(b) Level I loss=0.5%

P-256 X25519 p256
mlkem512

x25519
mlkem512

mlkem512

KEM Algorithm

0

100

200

300

400

500

600

700

800

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: ed25519

(c) Level I loss=1%

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0

250

500

750

1000

1250

1500

1750

2000

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp384r1

(d) Level III loss=0.1%

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0

200

400

600

800

1000

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp384r1

(e) Level III loss=0.5%

P-384 x448 p384
mlkem768

x448
mlkem768

mlkem768

KEM Algorithm

0

100

200

300

400

500

600

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp384r1

(f) Level III loss=1%

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

200

400

600

800

1000

1200

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp521r1

(g) Level V loss=0.1%

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

100

200

300

400

500

600

700

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp521r1

(h) Level V loss=0.5%

P-521 p521
mlkem1024

mlkem1024

KEM Algorithm

0

100

200

300

400

500

N
um

be
r

of
 H

an
ds

ha
ke

s

Performance for Signature Algorithm: secp521r1

(i) Level V loss=1%
Figure 8: TLS Handshake connections during 10 seconds Levels I, III and V for various loss rates.

the execution time of KEM primitives is substantially lower
than the delay introduced.
7.3.2. Packet Loss

This section analyzes the impact of uniform packet loss
on TLS performance. We evaluate three loss values of 0.1%,
0.5%, and 1% based on typical Internet conditions6. The
results are presented in Figure 8.

At Level I (Figures 8a, 8b and 8c), most KEM primitives
exhibit approximately a 60% reduction in the number of
connections when a 0.1% packet loss rate is introduced. The
value increases to 85% at a 0.3% loss rate and reaches 94% at
a 1% loss rate. On average, the number of connections ranges
from 322 to 390 with hybrid p256_mlkem512 being the least
performing solution. At Level III, the number of connections
is reduced in a lower rate. The reduction ranges from 7% to
27% for loss rate of 0.1% (Figure 8d). The reduction ranges
from 44% to 72% at a 0.5% loss rate (Figure 8e) and up to
82% reduction at a 1% loss rate 8f). At this level, NIST P-384

and p384_mlkem768 are the least performing algorithms but
the difference is reduced as the loss rate increases. At Level
V (Figures 8g, 8h and 8i), the post-quantum mlkem1024, is
the KEM that experiences the greatest performance degra-
dation, reaching up to 75% at a 1% loss rate. However, it

6As noted in RFC 7680 [51], “healthy Internet paths should be operat-
ing at loss ratios below 1%”.

still doubles the number of connections compared to other
primitives.

In summary, packet loss degrades the performance of
TLS but not as much as packet delay. As the packet loss
rate grows, it also tends to homogenize the number of
connections between primitives. However, not all levels are
affected equally. On average, the number of connections with
Level I primitives almost doubles the number of connections
at Level V.

8. Future Post-Quantum TLS
The natural progression toward a quantum-resistant web

involves incorporating post-quantum signature algorithms
into the TLS authentication phase. For a gradual transition,
as with the KEM, we anticipate the integration of hybrid
signatures and, ultimately, post-quantum signatures.

Among the existing post-quantum signature algorithms,
our evaluation focuses on algorithms standardized after the
NIST competition, namely, ML-DSA and SLH-DSA, and,
FALCON, which was selected but not standardized. The rea-
son for including the latter algorithm is its recommendation
by several international agencies.

After the first selection of post-quantum algorithms,
NIST launched a new competition round to incorporate addi-
tional signature algorithms based on different mathematical

Montenegro et al.: Preprint submitted to Elsevier Page 12 of 17

A Performance Evaluation Framework for Post-Quantum TLS

p256
falcon512

p256
sphincs128f

p256
sphincs128s

p256
mayo1

Signature Algorithm

0

1000

2000

3000

4000

5000

6000

N
um

be
r

of
 H

an
ds

ha
ke

s
KEM Algorithm
p256_mlkem512
x25519_mlkem512
mlkem512

(a) Level I

p384
mldsa65

p384
sphincs192f

p384
sphincs192s

p384
mayo3

Signature Algorithm

0

500

1000

1500

2000

N
um

be
r

of
 H

an
ds

ha
ke

s

KEM Algorithm
p384_mlkem768
x448_mlkem768
mlkem768

(b) Level III

p521
mldsa87

p521
falcon1024

p521
sphincs256f

p521
sphincs256s

p521
mayo5

Signature Algorithm

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r

of
 H

an
ds

ha
ke

s

KEM Algorithm
p521_mlkem1024
mlkem1024

(c) Level V
Figure 9: Number of TLS handshakes with hybrid signatures in 10 seconds

p256
falcon512

p256
sphincs128f

p256
sphincs128s

p256
mayo1

KEM Algorithm

0

5

10

15

20

25

30

35

H
an

ds
ha

ke
 K

ilo
by

te
s

KEM Algorithm
p256_mlkem512 Server - Client
x25519_mlkem512 Server - Client
mlkem512 Server - Client

(a) Level I

p384
mldsa65

p384
sphincs192f

p384
sphincs192s

p384
mayo3

KEM Algorithm

0

10

20

30

40

50

60

70

H
an

ds
ha

ke
 K

ilo
by

te
s

KEM Algorithm
p384_mlkem768 Server - Client
x448_mlkem768 Server - Client
mlkem768 Server - Client

(b) Level III

p521
mldsa87

p521
falcon1024

p521
sphincs256f

p521
sphincs256s

p521
mayo5

KEM Algorithm

0

20

40

60

80

100

H
an

ds
ha

ke
 K

ilo
by

te
s

KEM Algorithm
p521_mlkem1024 Server - Client
mlkem1024 Server - Client

(c) Level V
Figure 10: Number of kilobytes transmitted during a TLS Handshake with hybrid authentication

problems. From the numerous new proposals, only MAYO
and CROSS are currently implemented in the Open Quantum
Safe library. These algorithms have also been included for
evaluation.
8.1. Hybrid signatures

A hybrid signature combines both classical and post-
quantum signature algorithms to ensure resistance against
both classical and quantum computing attacks. To maintain
consistency across all security levels, the hybrid signatures
selected for evaluation are based on a NIST P curve and one
of the post-quantum algorithms mentioned above.

The results of evaluating hybrid signature algorithms7
in TLS are shown in Figure 9 and 10. To facilitate compari-
son with traditional signatures (Sec. 6), TLS configurations
using hybrid and post-quantum KEMs are used. Moreover,
this approach is consistent with the natural evolution toward
a fully post-quantum TLS.

At Level I (Figure 9a), the best performance is achieved
by the hybrid versions of MAYO and FALCON. Notably,
signatures algorithm performs better when paired with ML-
KEM rather than its hybrid versions. Overall, the best
performing configuration at this level uses ML-KEM and
P256_MAYO1, offering a performance comparable to a tra-
ditional configuration using P256 as KEM and Curve 25519
for authentication. At Level III (Figure 9b), P384_MLDSA65
and P384_MAYO3 achieve the highest number of connec-
tions, with the latter being approximately 9.4% less efficient.
Notably, the choice of a post-quantum KEM offers a 33%

7At the time of writing hybrid versions of SLH-DSAwere not avail-
able. Hybrid versions of SPHINCS+are used instead. No hybrid implemen-
tations of CROSS are available either.

performance increase compared to the hybrid versions.
Finally, at Level V (Figure 9c), the hybrid version of ML-
DSA, P521_MLDSA87, exhibits the best performance, par-
ticularly when combined with ML-KEM for key exchange.
The hybrid version of FALCON follows with 56% fewer
connections, while MAYO shows almost a 60% reduction in
performance. At all levels, hybrid versions of SPHINCS+

demonstrate poor performance, as anticipated by Table 4.
Notably, moving from Level I to Level III leads to a nearly
threefold reduction in connections, while at Level V, the
reduction is approximately fourfold. The transition from
Level III to Level V is less pronounced, with the number
of connections not even halving.

In terms of data transmission volume, at Level I (Fig-
ure 10a), the hybrid versions of MAYO and FALCON have
similar overhead, both exceeding 3 kilobytes, with P256_
FALCON512 transmitting approximately 12% more data. At
Level III (Figure 12b), the best option is the configura-
tion with the hybrid version of MAYO, which transmits
approximately 5800 bytes, while hybrid ML-DSA transmits
just over 10 kilobytes of data. At Level V (Figure 10c),
the configuration that the lowest transmission overhead is
P521_FALCON1024, with almost 7 kilobytes, followed by
P521_MAYO5, with over 9 kilobytes, and P521_MLDSA87,
which imposes twice the transmission overhead of hybrid
FALCON. Configurations based on hybrid SPHINCS+ are
highly inefficient at all levels, transmitting 5 to 12 times
more data compared to the best alternatives, with up to 100
kilobytes per connection at Level V. Notably, when selecting
the best option at each level, data volume increases by 73%
from Level I to Level III, and by 19% from Level III to Level

Montenegro et al.: Preprint submitted to Elsevier Page 13 of 17

A Performance Evaluation Framework for Post-Quantum TLS

falcon512 sphincs128f sphincs128s mayo1 cross128
Signature Algorithm

0

2000

4000

6000

8000

N
um

be
r

of
 H

an
ds

ha
ke

s
KEM Algorithm
p256_mlkem512
x25519_mlkem512
mlkem512

(a) Level I

mldsa65 sphincs192f sphincs192s mayo3 cross192
Signature Algorithm

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r

of
 H

an
ds

ha
ke

s

KEM Algorithm
p384_mlkem768
x448_mlkem768
mlkem768

(b) Level III

mldsa87 falcon1024 sphincs256f sphincs256s mayo5 cross256
Signature Algorithm

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r

of
 H

an
ds

ha
ke

s

KEM Algorithm
p521_mlkem1024
mlkem1024

(c) Level V
Figure 11: Number of TLS handshakes with post-quantum signatures in 10 seconds

falcon512 sphincs128f sphincs128s mayo1 cross128
KEM Algorithm

0

5

10

15

20

25

30

35

H
an

ds
ha

ke
 K

ilo
by

te
s

KEM Algorithm
p256_mlkem512 Server - Client
x25519_mlkem512 Server - Client
mlkem512 Server - Client

(a) Level I

mldsa65 sphincs192f sphincs192s mayo3 cross192
KEM Algorithm

0

10

20

30

40

50

60

70

H
an

ds
ha

ke
 K

ilo
by

te
s

KEM Algorithm
p384_mlkem768 Server - Client
x448_mlkem768 Server - Client
mlkem768 Server - Client

(b) Level III

mldsa87 falcon1024 sphincs256f sphincs256s mayo5 cross256
KEM Algorithm

0

20

40

60

80

100

H
an

ds
ha

ke
 K

ilo
by

te
s

KEM Algorithm
p521_mlkem1024 Server - Client
mlkem1024 Server - Client

(c) Level V
Figure 12: Number of kilobytes transmitted during a TLS Handshake with post-quantum authentication

V, resulting in a total increase of 107% from Level I to Level
V.

In summary, hybrid MAYO is the best choice at Level
I both in terms of connections and data volume. At Level
III, the optimal choice depends on the scenario since hybrid
ML-DSA is more connection efficient, but hybrid MAYO
minimizes data transfer. The situation is similar at Level
V, with hybrid ML-DSA offering the best performance but
hybrid FALCON reducing the transmission volume. In all
levels, the use of SPHINCS+ is discouraged due to its poor
performance and data transfer efficiency.
8.2. Post-quantum signatures

The evaluation of post-quantum signatures follows a
trend that remains consistent to that of hybrid signatures
across all three security level (see Figures 11 and 12). Specif-
ically, MAYO achieves the highest number of connections
at Level I, while ML-DSA is superior at Levels III and V.
Regarding the number of transmitted bytes, MAYO is the
recommended option at Levels I and III, while FALCON
is preferable at Level V. While the results are similar it
is worth noting that using post-quantum signatures are far
more efficient than using hybrid signatures both in terms of
connections and transmission overhead.

In this evaluation, the CROSS primitive is also consid-
ered, which was not available in its hybrid form. It can be
observed that, in terms of the number of connections, this
primitive only performs better than SPHINCS+. However,
regarding data transmission volume, CROSS introduces a
significant overhead, positioning it between the small and
fast versions of SPHINCS+. This implies handshakes of

approximately 20 kilobytes of data at Level I and over 80
kilobytes at Level V.

An interesting observation is that the transition between
security levels is less costly compared to hybrid signatures.
The reduction in the number of connections across levels is
not very pronounced. Specifically, transitioning from Level
I to Level III results in a decrease from 8052 to 7746
connections, representing a reduction of 3.79%. Similarly,
moving from Level III to Level V, the number of connections
decreases from 7746 to 7484, corresponding to a 3.39%
reduction. Overall, when comparing Level I to Level V, the
total reduction is approximately 7%. These results suggest
that the performance bottleneck in Figure 9 comes from tra-
ditional signature primitives at high security levels. This is
corroborated by the evaluation of standalone cryptographic
primitives performed in Sec. 5.

The data transmission increases progressively across
levels. Specifically, considering the most data-efficient con-
figuration at each level, we observe that the number of
bytes transmitted increase from 3070 to 5390, representing a
75.5% increase when moving from Level I to Level III. From
Level III to Level V, the bytes count increases from 5390
to 6396, corresponding to an 18.64% increase. Overall, the
transition from Level I to Level V results in sending slightly
more than twice (108.34%) the amount of data in a single
handshake. This indicates that higher security levels require
significantly greater data transmission, which may impact
performance depending on the system constraints. The dif-
ference between using post-quantum or hybrid signatures is
negligible.

Montenegro et al.: Preprint submitted to Elsevier Page 14 of 17

A Performance Evaluation Framework for Post-Quantum TLS

9. Conclusion and Future Work
A timely transition to quantum-resistant protocols is

crucial to ensuring the security of online communications.
To facilitate this transition in web scenarios, this paper pro-
poses a framework for systematically evaluating the trade-
offs of integrating hybrid and post-quantum cryptographic
primitives into the TLS protocol.

The proposed framework is used to evaluate TLS config-
urations incorporating the post-quantum schemes recently
standardized by NIST, as well as new candidates from the
additional signature round, demonstrating the framework’s
versatility in integrating new primitives with minimal effort.
These configurations are analyzed under different scenarios
and network conditions. Our analysis indicates that, in terms
of performance, the most favorable TLS configurations are
based on post-quantum KEMs, particularly at higher se-
curity levels. While these configurations incur higher data
transmission costs compared to traditional KEMs, they are
less costly than hybrid ones. Additionally, the main limita-
tion to a fully post-quantum TLS is the size of post-quantum
signatures. However, some of these configurations imposed
an overhead not significantly higher than that of traditional
TLS configurations. In addition, we analyze the cost associ-
ated with moving between security levels, considering both
the reduction of connections and the increase in transmitted
bytes. In the four analyzed scenarios, we observe that the
least performance loss between levels occurs when fully
post-quantum KEMS and signatures are involved.

The research conducted can be expanded in several ways.
One area of future research involves exploring the impact of
different Web PKI certification chain configurations. In this
work, we consider certification chain of only two certificates,
where both use the same signature algorithm. However, a
typical configuration involves three certificates of various
strengths. In fact, recent trends8 emphasize the importance
of using different signature algorithms at different tiers of the
certification chain. Future research could evaluate various
trust chain configurations to optimize security while main-
taining an adequate level of performance and data exchange.
Another interesting area of future research is the incorpora-
tion of post-quantum primitives in other security protocols.
The Cloudflare Radar tool9 reports that 33% of web commu-
nications use the QUIC protocol, which integrates TLS over
UDP for securing web communications. Given its growing
adoption, we consider the relevance of extending this study
to the QUIC protocol. Such an extension would allow ex-
trapolating our findings, improving the generalization of the
results.

8Chromium. Building a Deployable Post-quantum Web
PKI. URL: https://www.chromium.org/Home/chromium-security/

post-quantum-pki-design/ [Last access on February 2025]
9Cloudflare Radar. URL: https://radar.cloudflare.com/

adoption-and-usage [Last access on February 2025]

Acknowledgment
This work has been partially supported by ... The authors

are also grateful to Jesús Rodríguez for his technical support.

References
[1] Internet Engineering Task Force (IETF). The transport layer security

(tls) protocol version 1.3. https://www.rfc-editor.org/rfc/rfc8446,
2018. Accessed: 2024-09.

[2] P.W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Founda-
tions of Computer Science, pages 124–134, 1994. doi: 10.1109/SFCS.
1994.365700.

[3] Entrust. Harvest now, decrypt later: Fact or fiction,
2023. URL https://www.entrust.com/blog/2023/11/

harvest-now-decrypt-later-fact-or-fiction. Accessed: 2024-10.
[4] NIST CSRC. Post-quantum cryptography. https://csrc.nist.gov/

projects/post-quantum-cryptography, 2024. Accessed: 2024-07.
[5] Kris Kwiatkowski, Panos Kampanakis, Bas Westerbaan, and

Douglas Stebila. Post-quantum hybrid ECDHE-MLKEM key
agreement for TLSv1.3. Internet-Draft draft-kwiatkowski-tls-
ecdhe-mlkem-02, 2025. URL https://datatracker.ietf.org/doc/

draft-kwiatkowski-tls-ecdhe-mlkem/. Accessed: 2024-10.
[6] Michael Connolly. ML-KEM Post-Quantum Key Agreement for

TLS 1.3. Internet-Draft draft-connolly-tls-mlkem-key-agreement-
02, October 2024. URL https://datatracker.ietf.org/doc/

draft-connolly-tls-mlkem-key-agreement/. Accessed: 2024-10.
[7] Stan Kaminsky. Where and how post-quantum cryptography is

being used in 2024, 2024. URL https://www.kaspersky.com/blog/

postquantum-cryptography-2024-implementation-issues/52095/. Ac-
cessed: 2024-10.

[8] Chromium Project. Protecting chrome traffic with hybrid post-
quantum key agreements, 2023. URL https://blog.chromium.org/

2023/08/protecting-chrome-traffic-with-hybrid.html. Accessed:
2024-10.

[9] Cloudflare. Cloudflare now uses post-quantum cryptography to talk
to your origin server, 2023. URL https://blog.cloudflare.com/

post-quantum-to-origins/. Accessed: 2024-10.
[10] David Adrian, Emily Stark, Pavel Francírek, and Ryan Dickson.

Tldr.fail, 2024. URL https://tldr.fail/. Accessed: 2024-10.
[11] Maximilian Schöffel, Frederik Lauer, Carl C. Rheinländer, and Nor-

bert Wehn. Secure iot in the era of quantum computers —where
are the bottlenecks? Sensors, 22(7), 2022. ISSN 1424-8220. doi:
10.3390/s22072484.

[12] Kyung-Ah Shim. On the suitability of post-quantum signature
schemes for internet of things. IEEE Internet of Things Journal, 11
(6):10648–10665, 2024. doi: 10.1109/JIOT.2023.3327400.

[13] Maxime Buser, Rafael Dowsley, Muhammed Esgin, Clémentine
Gritti, Shabnam Kasra Kermanshahi, Veronika Kuchta, Jason
Legrow, Joseph Liu, Raphaël Phan, Amin Sakzad, Ron Steinfeld,
and Jiangshan Yu. A survey on exotic signatures for post-quantum
blockchain: Challenges and research directions. ACM Comput. Surv.,
55(12), March 2023. ISSN 0360-0300. doi: 10.1145/3572771. URL
https://doi.org/10.1145/3572771.

[14] Zebo Yang, Haneen Alfauri, Behrooz Farkiani, Raj Jain, Roberto Di
Pietro, and Aiman Erbad. A survey and comparison of post-quantum
and quantum blockchains. IEEE Communications Surveys & Tutori-
als, 26(2):967–1002, 2024. doi: 10.1109/COMST.2023.3325761.

[15] Matt Braithwaite. Experimenting with post-quantum cryptogra-
phy, July 2016. URL https://security.googleblog.com/2016/07/

experimenting-with-post-quantum.html. Accessed: January 29, 2025.
[16] Adam Langley. Post-quantum confidentiality for TLS, April

2018. URL https://www.imperialviolet.org/2018/04/11/pqconftls.

html. Accessed: January 29, 2025.
[17] Krzysztof Kwiatkowski, Adam Langley, Nick Sullivan, Dave Levin,

Alan Mislove, and Luke Valenta. Measuring tls key exchange with
post-quantum kem, August 2019.

Montenegro et al.: Preprint submitted to Elsevier Page 15 of 17

https://www.chromium.org/Home/chromium-security/post-quantum-pki-design/
https://www.chromium.org/Home/chromium-security/post-quantum-pki-design/
https://radar.cloudflare.com/adoption-and-usage
https://radar.cloudflare.com/adoption-and-usage
https://www.rfc-editor.org/rfc/rfc8446
https://www.entrust.com/blog/2023/11/harvest-now-decrypt-later-fact-or-fiction
https://www.entrust.com/blog/2023/11/harvest-now-decrypt-later-fact-or-fiction
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://datatracker.ietf.org/doc/draft-kwiatkowski-tls-ecdhe-mlkem/
https://datatracker.ietf.org/doc/draft-kwiatkowski-tls-ecdhe-mlkem/
https://datatracker.ietf.org/doc/draft-connolly-tls-mlkem-key-agreement/
https://datatracker.ietf.org/doc/draft-connolly-tls-mlkem-key-agreement/
https://www.kaspersky.com/blog/postquantum-cryptography-2024-implementation-issues/52095/
https://www.kaspersky.com/blog/postquantum-cryptography-2024-implementation-issues/52095/
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://blog.cloudflare.com/post-quantum-to-origins/
https://blog.cloudflare.com/post-quantum-to-origins/
https://tldr.fail/
https://doi.org/10.1145/3572771
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html

A Performance Evaluation Framework for Post-Quantum TLS

[18] Adam Langley. Real-world measurements of structured-lattices and
supersingular isogenies in TLS, October 2019. URL https://www.

imperialviolet.org/2019/10/30/pqsivssl.html. Accessed: January 29,
2025.

[19] Dominik Marchsreiter and Johanna Sepúlveda. Hybrid Post-Quantum
enhanced TLS 1.3 on embedded devices. In 2022 25th Euromicro
Conference on Digital System Design (DSD), pages 905–912, 2022.
doi: 10.1109/DSD57027.2022.00127.

[20] Maximilian Schöffel, Frederik Lauer, Carl C. Rheinländer, and Nor-
bert Wehn. On the energy costs of Post-Quantum KEMs in TLS-based
low-power secure IoT. In Proceedings of the International Conference
on Internet-of-Things Design and Implementation, IoTDI ’21, page
158–168, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383547. doi: 10.1145/3450268.3453528.
URL https://doi.org/10.1145/3450268.3453528.

[21] Sebastian Paul, Felix Schick, and Jan Seedorf. Tpm-based post-
quantum cryptography: A case study on quantum-resistant and mu-
tually authenticated TLS for IoT environments. In Proceedings of the
16th International Conference on Availability, Reliability and Secu-
rity, ARES ’21, pages 1–10, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450390514. doi: 10.1145/
3465481.3465747. URL https://doi.org/10.1145/3465481.3465747.

[22] Markku-Juhani O. Saarinen. Mobile energy requirements of the
upcoming nist post-quantum cryptography standards. In 2020 8th
IEEE International Conference on Mobile Cloud Computing, Ser-
vices, and Engineering (MobileCloud), pages 23–30, 2020. doi:
10.1109/MobileCloud48802.2020.00012.

[23] Kevin Bürstinghaus-Steinbach, Christoph Krauß, Ruben Niederha-
gen, and Michael Schneider. Post-quantum TLS on embedded sys-
tems: Integrating and evaluating Kyber and SPHINCS+ with mbed
TLS. In Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, ASIA CCS ’20, page 841–852, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450367509. doi: 10.1145/3320269.3384725. URL https://doi.

org/10.1145/3320269.3384725.
[24] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-Quantum

TLS without handshake signatures. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’20, page 1461–1480, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450370899. doi: 10.1145/
3372297.3423350. URL https://doi.org/10.1145/3372297.3423350.

[25] T. Wiggers, S. Celi, P. Schwabe, D. Stebila, and N. Sulli-
van. KEM-based authentication for TLS 1.3. Internet-
Draft, October 2024. URL https://datatracker.ietf.org/doc/

draft-celi-wiggers-tls-authkem/. Expires: 20 April 2025.
[26] Douglas Stebila and Michele Mosca. Post-quantum key exchange for

the internet and the open quantum safe project. In Roberto Avanzi and
Howard Heys, editors, Selected Areas in Cryptography (SAC) 2016,
volume 10532 of LNCS, pages 1–24. Springer, October 2017.

[27] Christian Paquin, Douglas Stebila, and Goutam Tamvada. Bench-
marking post-quantum cryptography in TLS. In Jintai Ding and
Jean-Pierre Tillich, editors, Post-Quantum Cryptography, pages 72–
91, Cham, 2020. Springer International Publishing. ISBN 978-3-030-
44223-1.

[28] Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wies-
maier. A comprehensive survey on post-quantum TLS. IACR
Communications in Cryptology, 1(2), 2024. ISSN 3006-5496.

[29] D. Stebila, S. Fluhrer, and S. Gueron. Hybrid key exchange in TLS
1.3. Internet-Draft draft-ietf-tls-hybrid-design-12, Internet Engineer-
ing Task Force, January 2025. URL https://datatracker.ietf.org/

doc/draft-ietf-tls-hybrid-design/. Work in Progress.
[30] National Institute of Standards and Technology. Module-lattice-

based key-encapsulation mechanism standard. https://doi.org/10.

6028/NIST.FIPS.203, 2024. Federal Information Processing Standards
Publication (FIPS) NIST FIPS 203.

[31] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. Journal of Cryptology, 26:80–101,
2013. doi: 10.1007/s00145-011-9114-1. URL https://doi.org/10.

1007/s00145-011-9114-1.
[32] National Institute of Standards and Technology. Recommendations

for key-encapsulation mechanisms. https://csrc.nist.gov/pubs/sp/

800/227/ipd, 2025. Draft, NIST Special Publication (SP) 800-227,
accessed Jan. 27, 2025.

[33] National Institute of Standards and Technology. Module-lattice-based
digital signature standard, 2024. URL https://doi.org/10.6028/NIST.

FIPS.204.
[34] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-

shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. Falcon: Fast-fourier
lattice-based compact signatures over ntru specification v1.2, 2020.

[35] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Richard E.
Ladner and Cynthia Dwork, editors, Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, pages 197–206. ACM
Press, 2008. doi: 10.1145/1374376.1374407.

[36] Phillip Gajland, Jonas Janneck, and Eike Kiltz. A closer look at
falcon. Cryptology ePrint Archive, Paper 2024/1769, 2024. URL
https://eprint.iacr.org/2024/1769.

[37] J. Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proceedings of ACM STOC’90, pages 387–394, 1990.

[38] National Institute of Standards and Technology. Stateless hash-based
digital signature standard, 2024. URL https://doi.org/10.6028/NIST.

FIPS.205.
[39] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a

practical forward secure signature scheme based on minimal security
assumptions. In Bo-Yin Yang, editor, Post-Quantum Cryptography,
pages 117–129, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[40] Jean-Philippe Aumasson, Daniel J. Bernstein, Wouter Beullens,
Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Szabolcs L.
Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja
Lange, Michael M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, Peter Schwabe, and Bas West-
erbaan. SPHINCS+ – submission to the nist post-quantum project,
v.3.1. https://sphincs.org/data/sphincs+-r3.1-specification.pdf,
2022. Available at the SPHINCS+ project website.

[41] Andreas Hülsing. W-OTS+ – shorter signatures for hash-
based signature schemes. In Amr M. Youssef, Abderrahmane
Nitaj, and Aboul Ella Hassanien, editors, Progress in Cryp-
tology – AFRICACRYPT 2013, volume 7918 of Lecture Notes
in Computer Science, pages 173–188. Springer, 2013. doi:
10.1007/978-3-642-38553-7_10. URL https://doi.org/10.1007/

978-3-642-38553-7_10.
[42] NIST. Post-Quantum Cryptography: Additional Digital Signature

Schemes, 2025. URL https://csrc.nist.gov/projects/pqc-dig-sig.
Accessed: 2025-02-21.

[43] Jacques Patarin. The oil and vinegar signature scheme, 1997.
[44] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil

and vinegar signature schemes. In Jacques Stern, editor, Advances in
Cryptology — EUROCRYPT ’99, pages 206–222, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg. ISBN 978-3-540-48910-8.

[45] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J.
Kannwischer. Mayo round 2 version. Submitted version, 2025. URL
https://pqmayo.org/. Contact: contact@pqmayo.org.

[46] Robert McEliece. A public key cryptosystem based on algebraic
coding theory. DSN Progress Report, 42(44):114–116, 1978.

[47] Marco Baldi, Alessandro Barenghi, Michele Battagliola, Sebastian
Bitzer, Marco Gianvecchio, Patrick Karl, Felice Manganiello, Alessio
Pavoni, Gerardo Pelosi, Paolo Santini, Jonas Schupp, Edoardo Sig-
norini, Freeman Slaughter, Antonia Wachter-Zeh, and Violetta Weger.
Cross: Codes and restricted objects signature scheme. Submission
to the NIST Post-Quantum Cryptography Standardization Process,
Version 2 - January 31, 2025, 2025. URL https://pqc-cross.org/.
Algorithm Specifications and Supporting Documentation.

[48] Marco Baldi, Massimo Battaglioni, Franco Chiaraluce, Anna-Lena
Horlemann, Edoardo Persichetti, Paolo Santini, and Violetta Weger.
A new path to code-based signatures via identification schemes with

Montenegro et al.: Preprint submitted to Elsevier Page 16 of 17

https://www.imperialviolet.org/2019/10/30/pqsivssl.html
https://www.imperialviolet.org/2019/10/30/pqsivssl.html
https://doi.org/10.1145/3450268.3453528
https://doi.org/10.1145/3465481.3465747
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1145/3372297.3423350
https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/
https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://csrc.nist.gov/pubs/sp/800/227/ipd
https://csrc.nist.gov/pubs/sp/800/227/ipd
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://eprint.iacr.org/2024/1769
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://csrc.nist.gov/projects/pqc-dig-sig
https://pqmayo.org/
https://pqc-cross.org/

A Performance Evaluation Framework for Post-Quantum TLS

restricted errors. Advances in Mathematics of Communications, 2025.
[49] Federal Office for Information Security (BSI). Securing tomor-

row, today: Transitioning to Post-Quantum cryptography, 2024.
URL https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/

PQC-joint-statement.html. Accessed: 2025-01-24.
[50] European Commission. Recommendation on a coordinated imple-

mentation roadmap for the transition to post-quantum cryptogra-
phy, 2024. URL https://ec.europa.eu/newsroom/dae/redirection/

document/104249. Accessed: 2025-02-06.
[51] Gerrit Almes, Srinivas Kalidindi, Marija Zekauskas, and Al Morton.

A one-way loss metric for ip performance metrics (ippm). RFC 7680,
January 2016. URL https://www.rfc-editor.org/rfc/rfc7680.txt.
[Online; accessed 2025-06-19].

Montenegro et al.: Preprint submitted to Elsevier Page 17 of 17

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/PQC-joint-statement.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/PQC-joint-statement.html
https://ec.europa.eu/newsroom/dae/redirection/document/104249
https://ec.europa.eu/newsroom/dae/redirection/document/104249
https://www.rfc-editor.org/rfc/rfc7680.txt

