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Abstract

The dynamic and evolving nature of cybersecurity
threats presents significant challenges to anomaly and
threat detection systems, particularly those that rely
on Artificial Intelligence (AI) as their detection en-
gine. A key limitation of current AI models is their
inability to adapt to concept drift, feature drift, and
adversarial attacks, which degrade performance over
time. Although these phenomena arise from different
underlying processes, they all share the effect of mis-
aligning the operational data with the model’s train-
ing data. This study introduces the Hybrid Drift De-
tection and Adaptation Framework (HDDAF), which
is a multi-layered Al system that is specifically de-
signed to mitigate concept drift, feature drift, and
adversarial attacks in cybersecurity. By framing all
three challenges, HDDAF provides a unified approach
that detects and responds to both natural evolution
and malicious manipulation within a single adaptive
pipeline. HDDAF integrates Hoeffding drift detec-
tion, feature selection, adversarial training, and in-
cremental learning, allowing it to dynamically adapt
through a Mixed-Drift Handling Module, which bal-
ances fine-tuning and full retraining. On the CIC-
IDS2017 dataset, HDDAF achieves a macro F1 score
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above 99% and in tests on related datasets, it con-
sistently adapts to data shifts with minimal retrain-
ing. An ablation study confirms that each mod-
ule contributes to overall robustness, and real-time
simulations demonstrate its ability to process high-
velocity streams with stable latency and resource use.
HDDAF’s hybrid design delivers both high accuracy
and scalable performance for real-world cybersecurity
applications.

Keywords: Artificial Intelligence; Concept Drift;
Feature Drift; Adversarial Attacks

1 Introduction

Intrusion Detection Systems (IDS) emerged from the
increasing demand for proactive security measures to
monitor system-level activities and detect unautho-
rised or malicious behaviour within a system or net-
work. Anderson’s foundational work in the 1970s
introduced the concept of monitoring user actions
for suspicious activities [4], thus laying the ground-
work for contemporary IDS practices. Building on
this foundation, Denning proposed a formal model
in the 1980s that emphasised real-time anomaly de-
tection and audit data analysis as critical security
strategies [9].

As cyberattacks have become increasingly complex
and sophisticated, there is a growing need for more
dynamic IDSs capable of handling diverse, large-
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scale, and real-time scenarios. Early IDS solutions
primarily relied on static rule-based engines and sta-
tistical analysis, which quickly proved inadequate for
scalability and for detecting novel threats. The inte-
gration of Artificial Intelligence (AI) techniques, in-
cluding Machine Learning (ML) and Deep Learning
(DL), has introduced a paradigm shift in the capa-
bilities of IDS.

ML models are valued for their interpretability;
however, they struggle with scalability and high-
dimensional data. In contrast, DL models excel at
capturing complex temporal and spatial patterns but
are computationally demanding. Hybrid models that
combine ML and DL techniques have emerged as
promising alternatives, offering a balance between
performance and computational efficiency.

Despite these advancements, existing Al models
face critical challenges when deployed in real-world
cybersecurity environments.  Concept drift [I7],
where data distributions evolve, and feature drift [3],
where the importance of the feature changes and de-
grades model performance, may compromise future
model outputs. In addition, adversarial attacks ex-
ploit vulnerabilities in AI systems, which reduces
their robustness and reliability. Developing adaptive
methods capable of detecting and mitigating drift
while maintaining system performance can address
these issues [29].

In cybersecurity, these drift phenomena have con-
crete implications. Concept drift occurs when the
behaviour of attacks evolves over time, like a denial-
of-service attack, which may change in frequency,
packet structure, or targeted ports, making previ-
ously learned detection rules obsolete. Feature drift,
on the other hand, arises when the distribution of
normal network behaviour changes, such as shifts in
user activity patterns, protocol usage, or device con-
figurations, which can lead to increased false positives
or missed detections. These dynamics are common
in real-world networks, where both attackers and le-
gitimate users continuously adapt. Thus, handling
drift is not only a theoretical necessity, but a practi-
cal requirement for maintaining accurate and reliable
threat detection in operational settings.

Although concept drift, feature drift, and adver-
sarial examples are the result of different underlying

causes, they share a unifying effect: each introduces
a distribution shift between training data and op-
erational data encountered during deployment [18].
Concept drift alters the conditional distribution P(y |
z), leading to outdated decision boundaries; feature
drift shifts the marginal distribution P(x), causing
input characteristics to move outside the original fea-
ture space; and adversarial examples represent de-
liberate perturbations designed to push inputs away
from the clean training manifold. By framing these
phenomena as instances of distributional misalign-
ment, the paper aims to propose a framework which
successfully applies a cohesive detection and adap-
tation strategy to handle both natural evolution in
traffic patterns and maliciously crafted inputs under
a single unified approach.

Many existing frameworks fail to provide a com-
prehensive approach that dynamically handles both
concept and feature drift while maintaining system
resilience and long-term adaptability.

To address these challenges, we introduce the
Hybrid Drift Detection and Adaptation Frame-
work (HDDAF), which mainly consists of an en-
hanced framework designed for Al-driven anomaly
and threat detection systems. HDDAF integrates a
multilayered hybrid Al architecture with active adap-
tation modules to maintain detection performance in
dynamic threat landscapes. The primary contribu-
tions of this work are as follows.

1. A mixed drift handling module that dynamically
identifies and responds to concept and feature
drifts.

2. An adaptive generative model leverages GANs to
pre-train the model for future predictive drift.

3. Robustness against adversarial attacks through
data poisoning using adversarial training tech-
niques.

4. The experimental evaluation demonstrates that
the proposed method effectively handles real-
time data, exhibits strong generalization be-
tween datasets, and benefits from each architec-
tural component, as confirmed by an ablation
study.



This article is structured as follows. Section [ re-
views previous works that address anomaly detection,
drift management, and adaptive Al systems. Sec-
tion [3] details the proposed methodology, including
its architectural design and components. Section [4]
presents the results of the experimental evaluation
and discusses the insights extracted from the devel-
opment. Finally, Section[f] concludes the paper, high-
lighting future research directions to further enhance
Al-driven anomaly detection systems.

2 Related Work

The challenge of managing evolving data distribu-
tions in Al-driven anomaly and threat detection has
become a critical focus in recent years. Numerous
frameworks and methodologies have been introduced
to enhance the adaptability, robustness, and overall
performance of such systems. Table[I]provides a com-
parative overview of various studies, highlighting the
various areas they address and their contributions to
the field.

A key point in this field is the integration of ex-
plainability and dynamic adaptability into drift de-
tection frameworks. Zhang et al. (2024) [3I] pio-
neered the HCDD-SHAP method, a multilayer drift
detection approach that combines model explainabil-
ity with precise drift identification. The framework
sequentially detects drift through error rate varia-
tions, validates it using SHAP values to assess feature
contributions, and identifies the drift onset point with
a Kneedle algorithm. This layered design enhances
interpretability and precision, making it particularly
effective in contexts requiring transparency.

Complementing Zhang et al.’s work, the study
presented by Mulimani et al. (2024) [19] intro-
duced an online drift detection and adaptation frame-
work leveraging the Light Gradient Boosting Ma-
chine (LGBM). Their approach integrates incremen-
tal learning, ensemble methods, and a sliding win-
dow technique to detect and adapt to concept drift
in real-time data streams. The experiments demon-
strated superior accuracy and adaptability compared
to traditional models. While Zhang et al. emphasised
explainability, Mulimani et al.’s framework excelled

in dynamic adaptation, making it better suited for
real-time applications.

Aguiar and Cano (2023) [3] proposed a meta-
learning framework that dynamically selects drift de-
tectors based on statistical and temporal features. By
tailoring detection mechanisms to the characteristics
of evolving data, the proposed system highlights the
importance of flexibility when addressing diverse sce-
narios.

To address feature drift explicitly, Noori et al.
(2023) [21I] introduced the Dynamic Feature-Aware
GP Ensemble (DFA-GPE), which integrates a Vari-
able Length Multi-Objective Particle Swarm Opti-
misation (VLMO-PSO) technique. This framework
dynamically manages feature importance, achiev-
ing memory efficiency and high accuracy in high-
dimensional datasets like HIKARI [ and TON-IoT
2020 ﬂ Unlike Zhang et al. and Mulimani et al.,
who focused on concept drift and adaptation, Noori
et al. excelled in environments where feature impor-
tance evolves over time, which is a critical factor in
handling high-dimensional data.

Expanding the concept to hybrid model designs,
Wisanwanichthan et al. (2021) [27] combined Naive
Bayes and SVM classifiers into a double-layered ap-
proach. Validated on the NSL-KDD E| dataset, this
system effectively handled various attack patterns,
demonstrating the value of targeted designs for spe-
cific applications.

Incorporating optimisation techniques, ElDahshan
et al. (2022) [10] used meta-heuristic algorithms
to fine-tune hierarchical intrusion detection systems.
The proposed method not only improved detection
rates but also demonstrated the potential of hybrid
optimisation methods to address complex data dis-
tributions.

Deep learning-based methodologies also show
promise. Halbouni et al. (2022) [12] combined
CNN and LSTM architectures to capture spatial
and temporal patterns in network traffic. Their

THIKARI dataset
record/5199540

2TON-IoT datasets available at https://research.unsw.
edu.au/projects/toniot-datasets

SNSL-KDD dataset available at https://web.archive.
org/web/20150205070216/http://nsl.cs.unb.ca/NSL-KDD/

available at |https://zenodo.org/
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Reference Approach Concept Feature Feature Adversarial Dataset(s) Used
Drift Drift Engineer- Attacks
ing

Zhang et al. HCDD-SHAP (Explainability-based mul- v X v X Synthetic, Real-World
(2024) [31] tilayer drift detection)
Mulimani et al. Online LightGBM with Sliding Window v X v X Electricity, Spam,
(2024) [19] and Incremental Learning Mixed Abrupt
Aguiar and Meta-Learning for Concept Drift Detec- v X v X 10 Real-World + 18 Syn-
Cano (2023) [3] tion thetic
Noori et al. Dynamic Feature Aware GP Ensemble v v 4 X HIKARI 2021,
(2023) [21] (DFA-GPE) TON _IoT 2020
Wisanwanichthan Double-Layered Hybrid Approach (Naive v v v X NSL-KDD
et al. (2021) [27] Bayes + SVM)
ElDahshan et al. Meta-Heuristic Optimisation-Based Hier- v v v X UNSW-NB15, CI-
(2022) [10] archical 1IDS CIDS2017
Halbouni et al. CNN-LSTM Hybrid Deep Neural Net- v 4 v X CIC-IDS2017, UNSW-
(2022) [12] work NB15, WSN-DS
Zhao et al. GAN-Enhanced NIDS for Imbalanced v v v v CIC-IDS2017
(2024) [32] Traffic
Abdelaty et al. GADoT: GAN-based Adversarial Train- X X v v CIC-IDS2017, UNSW-
(2022) [1] ing for Robust DDoS Detection NB15
Yuan et al. AE Detection via Local Intrinsic Dimen- X X v v CIC-IDS2017, Custom
(2023) [30] sionality
Sheikhi et al. PSOGWO-Optimised BP Neural Net- v v v X NSL-KDD
(2022) [25] work
Harwahyu et al. Three-layer hybrid learning (LSTM + v v X CSE-CIC-IDS2018
(2024) [I3] RF)
Turukmane et M-MultiSVM with Advanced Feature Se- v v v X CSE-CIC-IDS2018,
al. (2024) [26] lection UNSW-NB15
Our Proposal Hybrid Drift Detection and Adaptation v v v v CICIDS2017 and adver-

Framework (HDDAF) sarial data

Table 1: Comparison of Related Works

hybrid model achieved notable success in detecting
anomalies across datasets such as CIC-IDS2017 [ and
UNSW-NB15 EL underscoring the efficacy of neural
networks in cybersecurity contexts.

Switching to adversarial attacks and adversarial
samples generation and to address the challenge of
imbalanced attack classes, Zhao et al. (2024) [32]
proposed the GAN-Enhanced NIDS, which generates
realistic synthetic network traffic for rare attack cat-
egories using Vanilla GAN, WGAN, and CTGAN,
thereby significantly improving detection accuracy on
CIC-IDS2017 by mitigating class imbalance through

4CIC-IDS2017 dataset available at https://www.unb.ca/
cic/datasets/ids-2017.html

SUNSW-NBI15 dataset available at https://research.
unsw.edu.au/projects/unsw-nbilb-dataset

on Drift Detection and Adaptation Frameworks.

high-fidelity samples.

Focusing on adversarial robustness, GADoT was
introduced by Abdelaty et al. (2022) [I], a GAN-
based adversarial training framework that injects
crafted DDoS samples into the training pipeline, forc-
ing the model to learn resilient decision boundaries
and reducing undetected malicious flows from over
60% to below 2% on both CIC-IDS2017 and UNSW-
NB15.

To enhance defense against crafted perturba-
tions, Yuan et al. (2023) [30] proposed a hy-
brid IDS architecture incorporating a Local Intrin-
sic Dimensionality-based adversarial example detec-
tor alongside both deep learning and traditional ma-
chine learning classifiers, dynamically filtering out
adversarial noise before classification and improving
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robustness on CIC-IDS2017.

A comparative analysis of these studies revealed
common threads in the pursuit of enhanced drift de-
tection and adaptation frameworks. Many authors
have advocated continuous model updates and dy-
namic mechanisms for drift detection, reflecting the
practical constraints of real-world applications. The
proposed framework synthesises these insights with
the aim of extending the capabilities of existing mod-
els, thereby offering a comprehensive solution to the
multifaceted problem of drift in dynamic environ-
ments.

3 Hybrid Drift Detection
and Adaptation Framework
(HDDAF)

In this paper, we have presented a scalable and
adaptive framework for anomaly and threat detec-
tion called the Hybrid Drift Detection and Adapta-
tion Framework (HDDAF), is presented. The pro-
posed framework is designed to address the evolving
challenges posed by concept drift, feature drift, and
adversarial attacks in Al-driven systems. The sys-
tem integrates multi-layered hybrid AI approaches
with advanced preprocessing, dynamic drift adapta-
tion mechanisms, and adversarial training to ensure
long-term resilience and maintainability over time.
The proposed approach is presented in Figure

3.1 Dataset

The dataset that represents the real traffic data in the
proposed framework is CIC-IDS2017 [24], developed
by the Canadian Institute for Cybersecurity using a
university network with different subnets and mixed
real traffic. The dataset includes 14 types of labelled
individual attacks, which we have grouped in 8 fam-
ilies, namely Bot, Brute Force, DDoS, DoS, Heart-
bleed, Infiltration, Port Scan, and Web Attack. It
is widely used for benchmarking intrusion detection
systems due to its comprehensive coverage of network
behaviours and threats. The dataset comprises 85
features representing flow-level statistics, with each

row representing a data flow.

However, recent studies [15, [I6] have reported the
presence of annotation errors, duplicated flows, and
inconsistencies in the CIC-IDS2017 and CIC-IDS2018
datasets, which may introduce biases in model eval-
uation and lead to over-optimistic performance esti-
mates. In our implementation, we have applied cor-
rective preprocessing steps to mitigate some of these
issues. Specifically, we removed duplicated flow en-
tries and addressed the known port scan mislabelling
problem to improve data reliability for training and
evaluation.

An initial Exploratory Data Analysis (EDA) was
conducted to better understand the characteristics of
the dataset. Figure [2] shows the distribution of la-
bels and the proper distribution of attacks found,
categorised into 8 different types of attacks. No-
tably, class imbalance was observed, with benign traf-
fic dominating over attack instances, highlighting the
need for balancing techniques during the model train-
ing phase.

Table [ highlights the features with the highest
positive correlation against the target variable, pro-
viding valuable insights into the underlying patterns
that distinguish different attack behaviours. Features
such as “Bwd Packet Length Std” and “Bwd Packet
Length Max”, with correlations of 0.33 and 0.32, re-
spectively, indicate a strong relationship with the oc-
currence of specific attack types. These high correla-
tions suggest that changes in backward packet length
metrics are particularly influential in identifying at-
tacks, possibly due to their sensitivity to data flow
pattern anomalies.
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Figure 1: Hybrid Drift Detection and Adaptation Framework (HDDAF).
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Feature Correlation Feature Correlation
Bwd Packet Length Std 0.33 Idle Max 0.29
Bwd Packet Length Max 0.32 Flow IAT Max 0.28
Bwd Packet Length Mean 0.31 Fwd IAT Max 0.28
Fwd IAT Std 0.31 Idle Mean 0.28
Avg Bwd Segment Size 0.31 Idle Min 0.28
Packet Length Std 0.30 PSH Flag Count 0.27
Max Packet Length 0.29 Packet Length Mean 0.25
Packet Length Variance 0.29 Average Packet Size 0.25

Table 2: Features with Positive Correlation with At-
tack Number.

3.2 Preprocessing Techniques

Different preprocessing techniques were applied to
the raw dataset. For example, feature selection is
implemented after minor adjustments, such as null
filling, duplicate removal, or numeric filtering, to en-
hance the computational load and reduce complexity.
The following two approaches were evaluated:

e Principal Component Analysis (PCA) [2]:
A dimensionality reduction method that trans-
forms features into a smaller set of uncorrelated
components (called PCX). In this case, 98.58%
of the information was retained, leaving the



dataset with only 36 features and the target vari-
able. However, interpretability is no longer pos-
sible as the variables are now transformed into
uncorrelated components (PCs), which leaves us
with no information about model decisions, cru-
cial for debugging, compliance, and making in-
formed decisions in critical decisions or audits.

e Information Gain (IG) [II]: Measures the
reduction in entropy relative to the target vari-
able when a single feature is used for classifica-
tion. Essentially, it quantifies how well a feature
separated the classes in a dataset. Then, we can
select some features that we want to keep for fur-
ther analysis, arranged by their IG results. To
manage the number of features that will be se-
lected, we conducted a test to evaluate the classi-
fication performance of the datasets by including
a successive number of features, ordered by their
IG value. Figure [3] shows a moving average of
the accuracy and F1 scores obtained depending
on the number of selected features. The optimal
value that will be chosen for future experiments
will be 32.

Avg. Accuracy (window=5)
Avg. F1 Score (window=5)
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Figure 3: Rolling Average of Accuracy and F1 Score
vs. Number of Selected Features Ordered by IG val-
ues.

Given the previously identified class imbalance, the
synthetic minority oversampling technique (SMOTE)
was applied [8]. SMOTE can generate synthetic ex-
amples for minority classes to balance the dataset. In

this case, as seen in Figure[2] these classes correspond
to the rarest attacks.

When comparing SMOTE to other sampling ap-
proaches, such as random undersampling of the
majority (benign) class, we observed that under-
sampling discards valuable benign samples, affect-
ing model generalization, and often degrades clas-
sifier performance by increasing false positives and
lowering macro F1, as also stated in [6]. In con-
trast, SMOTE preserves all original benign instances
while synthesizing informative minority-class exam-
ples. This leads to higher macro F1 without sacrific-
ing majority-class diversity and avoiding repetition.
Consequently, SMOTE was chosen to maintain the
full benign distribution and generate new attack sam-
ples, rather than merely enlarging the dataset [8] [14].

To strengthen the model’s resilience against adver-
sarial attacks, a hybrid adversarial training technique
was developed, combining the next techniques:

e Data Sanitisation with RONI (Reject on
Negative Impact) [20]: RONI takes each sam-
ple, removes it from the dataset, and compares
the validation accuracy obtained with a baseline
reference value. If the accuracy was improved,
the sample was flagged as 'Rejected’. While
this filtering helps filter out harmful or mislead-
ing data, it also leads to the removal of rare
but important samples, which reduces model
generalizability. Additionally, the method’s re-
liance on baseline accuracy makes it sensitive to
noise and potential biases in the reference model.
The overuse of RONI could result in a sanitised
but overly selective dataset, limiting the model’s
adaptability to diverse real-world scenarios.

e Clustering methods: Used to identify groups
of data points, where outliers are separated into
separate clusters.

e Hybrid Adversarial Training Technique:
This technique identifies possible outliers us-
ing clustering methods (specifically, with the
KMeans [28] algorithm) and then applies RONI
individually to suspicious data points. The pro-
posed approach reduces computational costs by
limiting RONI evaluations to high-risk samples



rather than the entire dataset. The proposed
method also mitigates the issue of removing
rare but valuable samples by preserving samples
that align with recognised data clusters. Fur-
thermore, by combining clustering with RONI,
the proposed method becomes less sensitive to
noise and potential biases in baseline accuracy,
thereby ensuring a more balanced and adapt-
able model. Figure [] shows a graphical repre-
sentation of how this technique works and how
it affects the data, which will be analysed by the
model in future steps.

To assess the impact of each sample on model per-
formance, we employ a lightweight Random Forest
classifier as the reference model. Rather than setting
a fixed rejection threshold ©, we adopt a confidence-
based statistical approach. Let A; denote the accu-
racy after adding the i-th sample, and A,.s be the
accuracy with clean data. A sample is rejected if:

Ai<Aref—@, where @Z‘[I,AA—Z-O'AA‘

Here, paa is the mean change in accuracy when
clean samples are added, oa4 is the corresponding
standard deviation, and Z is the Z-score representing
the confidence level (we use Z = 1.96 for a 95% confi-
dence level). This formulation helps ensure that only
statistically significant degradations in model accu-
racy result in sample rejection, providing robustness
while preserving potentially informative samples.

When trying to obtain the maximum precision,
RONTI excels because it manages to obtain a low num-
ber of false positives (high precision), but the exe-
cution time can be extensive. However, clustering
methods often identify many false positives, result-
ing in low precision but high sensitivity. To achieve
balance in all these aspects, the proposed hybrid tech-
nique works seamlessly in all these aspects, as shown
in the comparison plotted on Figure [5
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Figure 5: Precision, Sensitivity, and Runtime Com-
parison of Selected Techniques for Data Sanitisation.

3.3 Hybrid Model

The HDDAF employs a multilayered hybrid Al ar-
chitecture to maintain robustness and high detection
accuracy under evolving conditions. In addition, we
implement measures to retrain the model and main-
tain a high accuracy value.

The hybrid model, depicted in Figure [6] combines
a neural network (NN) comprising two hidden layers
with an ensemble of Random Forest (RF) and Light-
GBM (LGBM), finalised with a Logistic Regression
(LR) meta-classifier. The NN serves as the initial
detection layer, extracting features, and performing
binary classification to distinguish between benign
traffic and potential anomalies. The deep architec-
ture of the proposed method enables the detection of
complex patterns, while dropout regularisation helps
reduce overfitting. In comparison with other ap-
proaches, binary classification using an NN demon-
strated high precision and low sensitivity, making it
highly suitable for this task. Then, the ensemble layer
combines RF and LGBM, where RF provides feature
importance and variance reduction, and LGBM of-
fers gradient boosting with efficient handling of large
datasets and imbalanced traffic patterns.
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The final decision layer employs a logistic regres-
sion meta-classifier to aggregate predictions from
both RF and LGBM, combining their outputs in a
weighted manner to enhance overall accuracy. The
use of a Logistic Regression meta-classifier for the fi-
nal aggregation ensures a unified and optimised out-
put by combining predictions in a weighted manner.
The specifications of the implementations are as de-
tailed in Table @ The selected hyperparameters are
obtained from a cross-validated grid-search over a pa-
rameter grid for each classifier used.
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The choice of Logistic Regression was driven by its
low complexity, interpretability, and strong general-
ization capability, making it suitable as a lightweight
aggregator for ensemble outputs. However, to vali-
date this design decision, we evaluated stacking per-
formance using alternative meta-learners including
Random Forest, XGBoost, MLP, and a soft-voting
ensemble. Table [3] presents a comparative analysis of
these models based on key performance and practical
criteria. Although MLP and Voting showed similar
performance to LR in terms of accuracy and F1-score,
Logistic Regression was ultimately chosen due to its
faster training time, higher interpretability, and lower
risk of overfitting in real-time environments.

Meta-Classifier Acc. F1 Train (s) Infer (s) Interp./Overfit
LR 0.9989 0.9989  63.74 0.0200 High / Low
RF 0.9900 0.9901 81.48 0.0189 Med / Med
XGBoost 0.9984 0.9984 292.36 0.0347 Low / Med-+
MLP 0.9989 0.9989 74.36 0.0107 Low / High
Voting 0.9989 0.9989 82.30 0.0203 Med- / Med

Table 3: Comparison of alternative stacking meta-
classifiers: Accuracy (Acc.), Fl-score (F1), Training
and Inference time (in seconds), and interpretability
vs. overfitting risk.



The overall architecture is designed to address the
key challenges of modern intrusion detection sys-
tems, including scalability, adaptability to drifts, and
high accuracy under real-time constraints. The in-
tegration of deep learning, ensemble methods, and
meta-learning ensures that the proposed framework
achieves a balance between robustness and efficiency,
making it suitable for large-scale and continuously
evolving data streams.

Model Parameters / Configuration

Neural Network  Architecture: Dense(128, ReLU) —
Dropout(50%) — Dense(64, ReLU) —
Dropout(50%) — Dense(1, Sigmoid)
Compilation: loss
binary_crossentropy, optimizer
adam (Ir = 0.001), metric: accuracy
Training: 100 epochs, batch size =
256

Random Forest n_estimators = 200, max_depth = 15,

criterion — gini, max_features — sqrt

LightGBM min_gain_to_split = 0.1,
min_child_samples = 20,
min_data_in_leaf = 30, num_leaves =
40,
max_depth = 15, learning_rate
= 0.05, feature_fraction = 0.8,
bagging_fraction = 0.8, bagging_freq

Logistic Regres- max_iter = 20000, C = 1.0, penalty =

sion 12, solver = lbfgs

Table 4: Hyperparameters and Configurations for the
Hybrid Model Components.

3.4 Drift Handling

The drift handling implemented in this framework is
based on an active adaptation module, which is de-
signed to dynamically identify, monitor, and respond
to data distribution shifts, a common challenge in
such systems. The component initially works using
a Hoeffding Drift Detection Method (HDDM) [22],
which continuously monitors the incoming data for
signs of drift, as depicted in the Mixed-Drift Han-
dling Module in Figure [[I This statistical test can
detect gradual and sudden changes in the data dis-
tribution by comparing the means of two consecutive
sliding windows. A drift is triggered when the ob-
served difference between the reference and current
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windows exceeds a threshold e, computed using the

II: ?’ffdillg bOllIld:
R2-ln 1/6
V 27(L / )

where R is the range of the observed variable (typ-
ically set to 1 for normalized values), § is the con-
fidence parameter (we use 6 = 1077, equivalent to
a 99.99% confidence level), and n is the number of
samples in the sliding window. In our configuration,
for a window size of n = 1000, the resulting thresh-
old is approximately € &~ 0.0898, meaning a drift will
trigger if a variation of 8.98% or greater is observed
between the mean statistics of the reference and cur-
rent windows. Thus, a drift is signalled when the
absolute difference between the mean error rates of
the two windows satisfies:

1 — po| > €

Here, p; and po are the means of the refer-
ence and current windows, respectively. This high-
confidence setting ensures that only statistically sig-
nificant changes are treated as drift events, thus re-
ducing the likelihood of false positives in highly dy-
namic environments.

Upon detection, the system activates the Concept
Drift Adaptation Module and/or the Feature Drift
Detection Module. The former decides whether to
apply fine-tuning or a full retraining of the model,
depending on the severity of the drift. The latter re-
computes Information Gain (IG) values and identifies
which features are responsible for the shift, prompt-
ing selective retraining.

When full retraining is performed, an Adaptive
Generative Model is triggered. This component is
responsible for simulating new drifts using a Genera-
tive Adversarial Network (GAN) [23] to evaluate the
robustness of the updated model and anticipate fu-
ture retraining needs. Since GANSs require a large and
diverse set of training examples to generate realistic
samples, we apply again SMOTE as a preprocess-
ing step. This ensures a more balanced and repre-
sentative set of attack samples before GAN training,
mitigating the risk of generating unrealistic or biased
outputs due to class imbalance. Algorithm [I]explains



how this component integrates into the framework
using pseudocode.

Algorithm 1 Drift Handling Algorithm with an Ac-
tive Adaptation Module

Require: Incoming data stream D

Ensure: Updated model M

1: Initialise model M and Mixed-Drift Handling Module

2: Set Hoeffding confidence parameter § = 10~ 7, range R = 1
3: while True do

4: Observe new data batch B from D

5: Let n < number of samples in B

6: Compute Hoeffding bound threshold (e)

7 Estimate mean error in reference window: p;

8: Estimate mean error in current window: po

9: if Drift Detected (|pu1 — p2| > €) then

10: if Concept Drift Detected (model accuracy drops) then

11: Activate Concept Drift Adaptation Module

12: Compute severity of drift

13: if Severe Drift then

14: Perform full retraining of model M

15: else

16: Apply fine-tuning to model M

17: end if

18: end if

19: if Feature Drift Detected (IG values changed) then

20: Activate Feature Drift Detection Module

21: Compute new Information Gain (IG) values for fea-
tures

22: Select features responsible for drift

23: Retrain model M with the updated feature set

24: end if

25: if Full retraining executed then

26: Trigger Adaptive Generative Model using GAN

27: Simulate new drifts and test model resilience

28: Perform additional retraining if required

29: end if

30: end if

31: Update model M with B

32: end while

4 Model evaluation

This section presents the results obtained from the
experimental evaluation of the proposed framework.
All experiments were carried out on a workstation
equipped with an AMD Ryzen 7 5800H CPU (8
cores, 16 threads), 16 GB of DDR4 RAM, and an
NVIDIA RTX 3060 GPU running Ubuntu 24.04 LTS.
The software environment included Python 3.12.8 us-
ing key libraries such as scikit-learn (1.6.0), Tensor-
Flow (2.18.0) with Keras (3.8.0) and NumPy (2.0.2),
among others.
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4.1 Model Performance

The first part of the experiment involved the designed
multilayered hybrid model, which we tested across
several scenarios depending on the selection of fea-
tures, the pre-processing of the adjustment of the
imbalances and the type of model used, as shown
in Tables [f] and [} All experiments were carried out
using the CIC-IDS2017 dataset. The metrics evalu-
ated are the accuracy of the model as the closeness
between the predicted and actual classes, the macro
F1 score as the arithmetic mean of all the per-class
F1 scores, and the time as the time consumed by the
OS to train each model with the provided batch of
data.

A consistent observation across our tests is that
incorporating SMOTE generally enhances perfor-
mance. Similarly, the choice of feature selection
method plays a critical role: while PCA tended to
provide stable results across models, the Top 32 In-
formation Gain approach yields mixed outcomes, il-
lustrating a trade-off between dimensionality reduc-
tion and the preservation of discriminative features.

When examining individual models, we can clearly
note clear trade-offs. Simpler models like k-NN
model, offer the advantage of fast training times;
however, they can lag in terms of classification ro-
bustness. Conversely, models such as RF and LGBM
deliver high accuracy and F1 scores in many config-
urations; however, their performance is sensitive to
the feature selection method employed. In particu-
lar, the standalone Neural Network demonstrated ex-
ceptional results in some settings (e.g., high accuracy
with PCA) but suffered when faced with less optimal
feature configurations.

Balancing these considerations, the final model
selected for the proposed framework is the
NN+LR[RF+LGBM] ensemble. This hybrid
approach leverages the deep learning model’s ability
to capture complex patterns and the ensemble’s
strength in aggregating diverse predictive insights.
Although NN+LR[RF+LGBM] can require longer
training times in certain configurations, its consis-
tently superior accuracy and macro F1 score makes
it the most robust option for handling imbalanced
data and variable feature spaces. In addition, the



RF k-NN LGBM NN
Acc F1 Time (s) Acc F1 Time (s) Acc F1 Time (s) Acc F1 Time (s)
NO-SMOTE PCA (37) L9735 .5439 41.70 9979 .8157 1.58 7933 .0983 5.72 19993 9744 25.15
Top 32 IG 19912 6312 3.16 .9642 .6161 1.59 19341 .4080 5.81 7995 1269 26.02
SMOTE PCA (37) 19304 19325 37.11 .9930 .9930 1.62 .9982 .9982 7.45 .9987 .9987 23.55
Top 32 IG .9845 .9840 6.04 19632 19627 1.60 19980 .9980 9.58 1433 .0358 24.58

Table 5: Performance of RF, k-NN, LGBM, and NN under

reduction, and oversampling settings.

different feature selection, dimensionality

XGBoost SVM LR[RF+LGBM] NN+LR[RF+LGBM]
Acc F1 Time (s) Acc F1 Time (s) Acc F1 Time (s) Acc F1 Time (s)

4 9¢ 5 : : 4 5 5 57 15 g 2 : 5
NO-SMOTE PCA (37) 19987 .8850 1.03 19988 .8314 3.22 .8512 .8512 267.15 19420 19380 312.95
Top 32 IG 19321 .8619 0.75 8727 .3333 21.38 19321 9211 57.43 7699 .7699 45.12

P 5 9985 25 089 5
SMOTE PCA (37) .9972 .9972 1.12 .9985 .9985 3.83 .9985 19985 235.21 19989 19989 285.40
Top 32 IG 19921 19921 0.89 .5970 .5961 73.24 .9996 .9996 61.80 .9989 .9989 62.50

Table 6: Performance of XGBoost, SVM, LR[RF+LGBM], and NN-+LR[RF+LGBM] under different
feature selection, dimensionality reduction, and oversampling settings.

selection of features based on Information Gain (IG)
was the most optimal in terms of accuracy and
computational time.

For our first iteration of the proposed framework,
we chose IG over PCA for three main reasons:

1. Empirical Trade-Offs

e For our NN+LR[RF+LGBM] ensemble,
SMOTE+IG and SMOTE+PCA both
reach 99.99% accuracy and 0.9999 macro
F1, but IG cuts training time from 285.4 s
to 62.5 s.

e Other classifiers show that PCA’s tiny (<
0.2%) accuracy gains come at a 3-5x run-
time penalty (e.g., RF with PCA: 0.9304/
0.9325 in 37.11 s vs. IG: 0.9845/ 0.9840 in
6.04 s).

2. Computational Efficiency & Interpretability

e HDDAF must retrain quickly under drift
and IG’s selection avoids the overhead of
computing PCA components and extra ma-
trix multiplications.
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e IG preserves original feature semantics,
which tree models exploit directly and
makes it easier to interpret attack indica-
tors, while PCA’s transformed axes obscure
these relationships.

3. Synergy with Our Hybrid Architecture

e RF and LGBM naturally leverage IG’s raw-
feature ranking for cleaner splits, whereas
PCA mixes attributes and can weaken split
quality.

e For the NN branch, IG-selected features
maintain meaningful numerical patterns,

while PCA’s rotated axes sometimes hinder
convergence.

4.2 Framework Adaptability Fvalua-
tion

The second part of the experiment aimed to evaluate
the performance of the HDDAF as a whole under
various drift scenarios and adversarial attack con-
ditions. To assess the overall performance of the



HDDAF framework under dynamic and challenging
conditions, we designed a series of experiments to
simulate various drift scenarios and adversarial at-
tack conditions. In these experiments, the hybrid
model was deployed within the full framework, while
other modules remain unchanged from the previous
section. The evaluation focused on the following
three key objectives:

1. Drift Detection and Recovery: Measuring
how quickly and effectively the system identifies
and adapts to changes in the data, measured by
the number of delayed batches until detection.

2. Retraining Efficiency: Comparing the com-
putational cost and adaptation effectiveness of
fine-tuning versus full retraining methods, mea-
sured using the retraining time and accuracy.

3. Adversarial Robustness: Evaluating the
framework resilience when confronted with ad-
versarial samples designed to poison the data,
measured with the number of adversarial sam-
ples correctly detected and removed.

To simulate these conditions, data is streamed into
the system in batches ranging from 2,000 to 5,000
samples. Each batch initially follows a baseline dis-
tribution, after which specific drift or adversarial sce-
narios are introduced at predetermined intervals.

Concept Drift scenarios mimic changes in the un-
derlying relationship between features and labels:

e Gradual Drift: The decision boundary shifts
slowly over several batches, indicating a grad-
ual evolution of the concept. This was im-
plemented by applying a 5-10% incremental
change in feature-label correlation across 10-20
batches, gradually modifying the target distri-
bution while maintaining continuity.

e Sudden Drift: A rapid, abrupt change is in-
troduced at a specific batch to simulate an un-
expected alterations in the data generation pro-
cess. At a fixed batch index, samples are re-
placed with a new distribution with different sta-
tistical properties, which immediately shifts the
decision boundaries.

e Recurring Drift: The data distribution alter-
nates between different regimes in a cyclical pat-
tern, reflecting environments where previously
encountered concepts reoccur. This is achieved
by cycling through previously observed distribu-
tions every 20-30 batches, simulating seasonal
variations or periodic changes in user behaviour.

e Incremental Drift: Small, consistent modifi-
cations are applied over successive batches, lead-
ing to a steady, cumulative shift in the concept.
This is introduced by applying slight, continuous
transformations to the numerical features across
all incoming batches, a small additive Gaussian
noise in our case.

Feature Drift scenarios focus on changes at the fea-
ture level:

e Feature Removal: Specific features are re-
moved from the data stream at set intervals, sim-
ulating scenarios such as failures or missing data.
This process is executed by randomly masking
or entirely dropping certain features from input
data every 5-10 batches.

e Feature Addition: New features are intro-
duced into the stream to simulate the integra-
tion of additional data sources. This process is
performed by appending new synthetic or engi-
neered features based on the transformations of
existing features every 10-20 batches.

e Correlation Change: The inter-feature re-
lationships were altered, affecting the overall
structure and correlation patterns in the dataset.
This is achieved by dynamically modifying the
correlation coefficients between key features or
reshuffling feature dependencies across different
batches.

To test adversarial robustness, we simulate attacks
by manually perturbing a subset of the samples. Each
adversarial sample is crafted in three stages, to mimic
realistic data-poisoning attacks:

1. Feature-Space Perturbation.  Each incoming
batch consists of 2,000-5,000 samples, creating



a set denoted as X with each sample denoted as
z'. For every sample in the batch, its features
are represented by x;, where j € F', being F' the
complete set of feature indices. Thus, each z;
represents the value of the feature j for a given

sample.

We randomly select 10% of X to poison. For
each chosen sample, we pick 20% of its active
(IG-selected) features from F and add a small
noise term:

Zy

= x} +9d;, JES,

where S is a random subset of feature in-
dices, and each J; is drawn uniformly from
[~ao;, ao;]. Here, o; is the standard devi-
ation of feature j over the training set, and «
must be greater than 0, defining the amplitude
(or radius) of the perturbation; in this example,
we have selected @ = 0.1. By limiting pertur-
bations to at most 10 % of each feature’s typi-
cal range, poisoned flows remain plausible, they
do not become obvious outliers and are shifted
enough to confuse the classifier.

. Label Flipping. After perturbation, every modi-
fied flow is assigned an incorrect class label:

e If the original flow was “benign,” it is re-
labelled as a randomly chosen attack fam-
ily (one of the eight CIC-IDS2017 attack
classes).

e If the original flow was an attack, it is rela-
belled as “benign.”

This combination of mild feature-space noise
plus a flipped label imitates a data-poisoning
evasion attack, where an adversary crafts near-
benign traffic to evade detection.

. Frequency and Timing. We inject adversar-
ial samples at fixed intervals, once every 5-20
batches, so that approximately 5%-1% of all
streamed flows are poisoned overall. By random-
izing both which flows and which features are
perturbed in each batch, there is no optimiza-
tion or gradient-based process guiding the noise.

Drift Scenario Delay Acc. Acc. Retraining Time
Type (B) Before After (s)
(%) (%)

Concept Gradual 3 99.95 96.50 Fine-tuning 12.20
Concept Sudden 2 99.95 97.75 Full Retrain 75.62
Concept Recurring 3 99.80 98.22 Fine-tuning 13.50
Concept Increm. 4 99.95 96.80 Fine-tuning 12.86
Feature Removal 1 99.96 94.02 Full Retrain 74.10
Feature Addition 2 99.78 96.15 Fine-tuning 18.05
Feature Corr. 3 99.89 97.68 Full Retrain 76.78

Chg.
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Table 7: Drift Robustness Experimental Results.

Injecting at these intervals reflects a realistic at-
tack cadence. Random selection ensures no fixed
pattern, making it harder for the detector to
memorize a static attack signature. By limit-
ing the overall poisoning rate, we test HDDAF’s
ability to identify and remove a small fraction of
malicious flows without excessively retraining on
clean data.

More advanced, optimization-based attacks like
GAN-based evasion [7] are left for future work. This
simple, reproducible technique is sufficient to demon-
strate that HDDAF’s Hybrid Adversarial Training
(clustering + RONI) can detect and remove up to
90% of these poisoned samples, as shown in Table |Z|
and Figure [§

Each scenario was designed to reflect realistic con-
ditions that a deployed system may face. By stream-
ing the data in controlled batches and introducing
these scenarios at predefined intervals, we can accu-
rately monitor performance changes. The framework
response is evaluated in terms of detection delay, ac-
curacy before and after drift events, retraining time,
and ability to withstand adversarial manipulation.

Table [7] provides an overview of the experimen-
tal results, summarising key metrics such as detec-
tion delays, pre- and post-drift accuracies, retraining
methods, and times, as well as the measured adver-
sarial robustness. Figure [7] represents box plots of
model accuracies before and after drift for seven dis-
tinct scenarios, illustrating the range of performance
for each scenario.
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Figure 7: Boxplot Representation for Tests Per-
formed in Table [

Figure [§ illustrates the effect of increasing poi-
soning percentages on model accuracy and Mean
Squared Error (MSE), highlighting both the vulnera-

bility of the baseline classifier and the effectiveness of

the hybrid defence model explained before, consisting
of a Hybrid Adversarial Training Technique.

—e— Adversarial Accuracy
Accuracy after RONI + Clust
--- Baseline Accuracy
—e— Adversarial MSE
MSE after RONI + Clust
--- Baseline MSE

Accuracy

. 04
Poisoning Percentage

Figure 8: Evolution of Performance Metrics for a
Poisoning Attack Scenario.

As the poisoning percentage increases, the adver-
sarial accuracy declines steadily, whereas the adver-
sarial MSE rises sharply, demonstrating the grow-
ing distortion introduced by poisoned data. How-
ever, after applying RONI and clustering, the model
maintained near-baseline accuracy and a significantly
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lower MSE, indicating successful mitigation of adver-
sarial interference.

5 Discussion

In this section, we present a series of advanced ex-
periments designed to evaluate the effectiveness and
maintainability of the proposed HDDAF model as a
whole using different datasets in three key aspects:
generalization, module contribution, and real-time
detection. For each aspect, we describe the experi-
mental setup, report the obtained results, and discuss
the implications of these findings.

5.1 Generalization

The goal of the generalization experiments is to as-
sess how well the HDDAF model, trained on CIC-
IDS2017, performs when applied to different yet re-
lated datasets. We evaluate the model on the CIC-
IDS2018 and UNSW-NB15 datasets, measuring accu-
racy and training time to quantify any performance
degradation. We use the full framework deployment
for this task, and we will progressively ingest new
data as if it were a drift event.

In Figure |§| (top panel), each ‘fold’ represents an
abrupt drift in the data mixture (e.g. from 100% CIC-
IDS2017 directly to an 80 / 20 blend of CIC-IDS2017
/ CIC-IDS2018). For each fold, the model remains
with the original configuration. The red circles trace
the initial accuracy just before retraining, and the
blue crosses show accuracy immediately afterward;
the gray bars on the secondary axis report the time
required for each retraining step. We see that, after
a large drift (e.g. 60 / 40 or 40 / 60), initial accuracy
can drop below 50%, but a single retraining restores
it to over 85% at the cost of 60-65s of computation.

In the bottom panel of the same figure, we sim-
ulate abrupt drift again, but in this case we carry
forward the retrained model into the next fold, so
each retraining builds on the previous one. Here, ac-
curacy degrades more gently (never below 0.83), and
retraining times occur only when a new dataset is
first introduced (at the 80 / 20 splits), reducing both
performance loss and compute overhead.



Together, these experiments demonstrate that
HDDAF can successfully generalize across evolving
data distributions: abrupt retraining fully recovers
performance at the expense of higher latency, while
rolling adaptation balances accuracy and efficiency
by limiting retraining to the most significant shifts.

Individual Retraining: Accuracy Before vs. After Retraining and Training Time
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Figure 9: Comparison of HDDAF generalization un-
der abrupt versus sequential retraining: Top: Indi-
vidual retraining after each sudden change in dataset
mix. Bottom: Sequential retraining building on the
previously adapted model.

5.2 Contribution of the Modules

To quantify the individual contribution of each com-
ponent in HDDAF, we perform an ablation study
that systematically removes one or more modules and
observes the resulting degradation in different perfor-
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mance metrics. This approach allows us to attribute
gains in robustness, drift responsiveness, and com-
putational efficiency directly to the modules studied.
By comparing each reduced configuration against the
full framework, we can validate that every block is
necessary to achieve HDDAF’s overall resilience and
adaptability.

We process a controlled stream of 50 consecutive
batches, each containing 2,000-5,000 flows sampled
from the dataset CIC-IDS2017, and then introduce a
gradual concept drift by switching to an 80:20 mix
of CIC-IDS2017:CIC-IDS2018. Within each batch
stream, 10% of flows are poisoned with adversarial
perturbations, as described in Section [£.2] We then
evaluate ten different framework variants, each de-
fined by the absence of one or more of these four
modules (as shown in Figure : Adversarial Train-
ing (Adv), Mixed-Drift Handling Module (Md), Con-
cept/Feature Drift Adaptation Modules (Adp), and
Adaptive Generative Model (Gen). For every variant
we record:

1. Accuracy pre-drift (on the raw CIC-IDS2017

batch)

. Accuracy post-drift (on the first 80 : 20 mixed
batches)

. Macro F; post-drift under adversarial attack

Drift-detection latency (time from drift onset to
alarm)

. Drift detection delay (number of batches until
alarm)

. Adversarial detection rate (proportion of adver-
sarial samples detected)

7. Inference latency (ms per flow)

8. Total retraining time (s).

A total of ten configurations are summarized in
Table Bl The table reports each configuration’s pre-
and post-drift accuracy, post-drift Fy score, drift de-
tection latency and delay (in batches), adversarial de-
tection rate, inference latency, and average retraining
time. The results include standard deviations derived



from multiple experiment runs. A dash (-) indicates
that a given metric is not applicable due to the cor-
responding module being disabled. As shown in Fig-
ure [I, when the Md. module is disabled, both the
Adp. and Gen. modules become inaccessible. The
results demonstrate how disabling individual compo-
nents affects HDDAF’s ability to sustain high detec-
tion accuracy, adapt quickly to drift, and remain ro-
bust against adversarial inputs. The only notable ex-
ception is the removal of the Gen module, which re-
sults in a nearly negligible performance change under
these tightly controlled, fixed-batch conditions. This
outcome is expected, as the Gen module is primar-
ily intended to forecast future drifts in more open-
ended streaming scenarios, rather than the predefined
batch-drift setting used in this evaluation.

5.3 Real-Time Detection

Finally, we evaluate HDDAF’s capability to op-
erate under strict real-time constraints with a
production-like stream of network flows in 100
batches (2,000-5,000 flows each). As shown in Ta-
ble [0 the system ingested a total of 345,059 flows
in 108.07 s, yielding an average latency of 1.0755 s
per batch (= 0.312 ms per flow) and an end-to-end
throughput of roughly 3,193 flows/s.

Metric Value Metric Value

345059
1,075.54
3193

Total batches ingested 100 Total samples ingested
Total elapsed time (s) 108.07 Avg time per batch (ms)
Avg time per sample (ms) 0.3117 Estimated throughput (flows/s)

Table 9: Summary of the real-time ingestion experi-
ment.

In Figure [10| we plot, over real elapsed time, both
the size of each incoming batch and the instantaneous
CPU utilization taking into consideration all CPUs
available. We observe:

e Throughput consistency: Despite batch-to-
batch size variability, the average processing
time per batch remains stable (= 1 s), demon-
strating that the NN+LR[RF+LGBM] ensemble
can sustain several thousand flows per second
without significant slowdown.
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e CPU load under control: The CPU utiliza-
tion using a single core hovers between 30%
and 60% (depending on the host machine’s core
count), leaving sufficient headroom for parallel
tasks or additional pre/post-processing.

Bottleneck identification: Peaks in CPU us-
age coincide with the largest batches), suggest-
ing opportunities to balance load via smaller,
more frequent batches or by offloading parts of
the inference pipeline to specialized hardware.

The real-time experiments show that processing
very large batches at once can cause sudden spikes
in CPU usage and increased latency. If these large
batches are split into smaller groups of about one to
two thousand flows each, the computation load be-
comes more evenly distributed. This approach min-
imizes resource spikes and helps maintain a steady
end-to-end latency.

Overlapping stages of the pipeline, such as fea-
ture extraction, noise injection, and model inference,
through asynchronous 1/O or multithreaded work-
ers can conceal data-fetch delays behind active com-
putation. Converting model components to lower-
precision formats, for instance, using 16-bit or 8-
bit representations for LGBM and neural network
weights, can reduce per-sample inference time by
about 10 to 20 percent without significantly harm-
ing detection accuracy. Applying these strategies will
enable HDDAF to sustain high throughput and low
latency under production conditions, demonstrating
its suitability for operational cybersecurity environ-
ments.

5.4 Key Insights

The key insights derived from these results are as
follows:

e PCA-based models provide better accuracy but
need higher computational requirements because
of the complexity of the reduction. In addition,
explainability is compromised as the features are
transformed.



Configuration Accuracy Drift Detection Robustness Train Time (s)

Pre Drift Post Drift F; Post Drift Lat. (ms) Delay (Batches) Adv. Rate Inference Lat. (ms) Avg. Time

Full framework 0.94 4 0.02 0.90 +0.01 0.91 +0.02 450 % 50 3+1 0.92 £+ 0.03 150 £ 10 74.5
—Adv 0.85 + 0.01 0.75 4+ 0.01 0.74 + 0.02 470 %+ 50 2+1 - 150 £ 10 75.3
—Md(-Adp-Gen) 0.93 £ 0.02 0.65 + 0.01 0.63 +0.01 - - 0.91 £ 0.02 145 £ 10 74.2
—Adv-Md(-Adp- 0.83 £ 0.01 0.44 +£0.01 0.23 +£0.01 - - - 135+ 10 -
Gen)

—Adp 0.94 +0.01 0.68 +0.01 0.64 +0.01 400 £ 50 3+1 0.92 £+ 0.02 150 £ 8 74.2
—Gen 0.93 +0.01 0.90 +0.01 0.90 +0.01 300 £ 50 3+1 0.90 £ 0.02 152 £ 10 76.5
—Adp-Gen 0.92 4+ 0.02 0.67 +0.01 0.65 +0.01 420 + 40 2+1 0.91 £+ 0.02 147 + 10 -
—Adv-Adp 0.84 +0.01 0.51 +0.02 0.50 + 0.02 400 + 50 3+1 - 150 £ 10 70.8
—Adv-Gen 0.86 = 0.03 0.77 +£0.01 0.75 4+ 0.01 380 + 50 4+1 - 145 £ 8 73.5
—Adv-Adp-Gen 0.86 & 0.02 0.45 + 0.02 0.44 +0.01 400 + 50 2+1 - 138 £ 10 -

Table 8: Ablation study results measuring different metrics per configuration.

e Methods using IG information were more effi-
cient but underperformed in comparison to PCA
approaches.

e Combining models (e.g., through
LR[RF+LGBM] and NN+LR[RF+LGBM])
provides a balanced solution that enhances
both accuracy and robustness. Although these
ensembles require greater computational re-
sources, they consistently outperform individual
models in handling class imbalances and feature
drift.

e The Mixed-Drift Handling Module is effective in
balancing model stability and efficiency. By us-
ing Hoeffding Drift Detection, the system dy-
namically decides between fine-tuning and full
retraining based on drift severity, ensuring min-
imal disruption to ongoing operations. The ac-
curacies obtained after drift consistently remain
similar to previous ones.

e Hybrid adversarial training combines clustering-
based outlier detection and RONI sanitisation,
achieving a good balance in terms of accuracy
and MSE when tested on adversarial poisoning
attack scenarios.

e The modular design of the framework ensures
scalability and adaptability. The ability of
the proposed method to integrate incremental
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updates, semi-supervised learning, and cross-
domain applications makes it a future-proof so-
lution for real-world anomaly detection.

Generalization experiments demonstrate that
HDDAF can adapt to abrupt drifts, including
different dataset mixes. Retraining process fully
restores accuracy at the cost of higher latency,
while rolling adaptation maintains smoother per-
formance with fewer retraining steps.

The ablation study confirms the necessity of each
module in order to achieve overall robustness and
fast drift recovery. Only the Generative Model
has negligible effect under fixed-batch tests, re-
flecting its role in forecasting future drifts rather
than immediate batch adaptation.

Real-time detection tests show that HDDAF sus-
tains over 3,000 flows/s with stable batch laten-
cies and moderate CPU load. Splitting large
batches into smaller chunks and asynchronous
pipeline execution can further reduce spikes and
tail latencies.

Comparing HDDAF to other methods, we ob-
serve that it offers distinct advantages. It
surpasses current available approaches such as
HCDD-SHAP [31] and DFA-GPE [21I] in both
concept and feature drift handling. The pro-
posed design ensures scalability and adaptabil-
ity, making it suitable for real-time deployment
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Figure 10: Real-time ingestion performance metrics.

in resource-limited environments.

5.5 Limaitations

While the proposed HDDAF demonstrates compet-
itive performance across multiple attack categories,
several limitations should be considered:

e The framework is trained on static snapshots of
past attacks, which limits its ability to generalize
to zero-day or adaptive threats.

e Its multi-layered architecture improves detection
but introduces computational overhead that may
hinder real-time or resource-constrained deploy-
ment.

e Feature selection relies on filter-based methods
(e.g., Information Gain) for efficiency, but wrap-
per or embedded approaches could offer better
performance. Their exclusion is acknowledged
and proposed as future work.

e The use of multiple classifiers and feature selec-
tors reduces interpretability and increases sensi-
tivity to hyperparameter tuning, affecting main-
tainability.

e Adversarial robustness is managed via sample re-

jection rather than a formal robust loss function.
Incorporating such formulations remains an im-
portant direction for improvement.

e The CIC-IDS2017 and CIC-IDS2018 datasets

used are known to contain annotation errors and
artefacts [15, [16], which could impact evaluation
reliability.

e The framework does not yet distinguish between

benign and malicious drift. Legitimate service
changes may be flagged as threats, suggest-
ing the need for drift explainability and semi-
supervised labelling strategies.

In light of these limitations, the future work should

aim to enhance the adaptability of the framework,
scalability, and transparency, while validating its ef-
fectiveness in dynamic and heterogeneous environ-
ments.
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6 Conclusion

This paper presents the Hybrid Drift Detection and
Adaptation Framework (HDDAF), a modular and



adaptive system that addresses concept drift, feature
drift, and adversarial resilience in Al-based threat
detection. By combining deep learning and ensem-
ble models, HDDAF achieves higher robustness and
adaptability than existing methods. The Mixed-Drift
Handling Module enables the system to choose be-
tween fine-tuning and full retraining depending on
the severity of drift, balancing accuracy and retrain-
ing cost.

Experimental results using CIC-IDS2017 showed
that HDDAF consistently maintains macro F1 scores
above 99.9 percent, outperforming established base-
lines such as HCDD-SHAP and DFA-GPE. Ad-
ditional evaluations on CIC-IDS2018 and UNSW-
NB15 confirmed HDDAF’s generalization capabili-
ties, while ablation studies highlighted the impor-
tance of each module, especially adversarial train-
ing and active drift adaptation. The ensemble
NN+LR[RF+LGBM]| model proved most effective
across multiple scenarios. SMOTE further improved
classification performance under class imbalance, and
IG-based feature selection delivered a better balance
between interpretability, speed, and accuracy than
PCA. Real-time testing confirmed that HDDAF pro-
cesses over 3,000 flows per second with controlled la-
tency and efficient resource usage.

Future work will focus on several key directions.
First, incorporating semi-supervised learning could
improve drift adaptation in environments with lim-
ited labelled data. Second, efforts to reduce com-
putational cost, through lighter model variants and
hardware-aware optimizations, are necessary for real-
time and edge deployments. Third, integrating ex-
plainable AT techniques would enhance transparency
and help analysts interpret decisions in critical set-
tings or audit model updates. Fourth, exploring
more adaptive or model-integrated feature selection
strategies, including wrapper-based or embedded ap-
proaches, could further improve detection perfor-
mance under dynamic drift conditions. Lastly, ap-
plying HDDAF to other dynamic domains such as
healthcare anomaly detection and industrial moni-
toring will help assess its adaptability beyond cyber-
security.

Overall, HDDAF represents an advance in anomaly
detection, proving that a hybrid and modular ap-
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proach can deliver both high accuracy and practi-
cal adaptability. While deployment challenges re-
main, particularly in terms of efficiency and adversar-
ial defence, this work lays the foundation for resilient,
adaptive systems suited to real-world operational en-
vironments.
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