
www.elsevier.com/locate/csi

J. Lopez, J. J. Ortega, and J. M. Troya, “Security Protocols Analysis: A SDL-based Approach”, Computer Standards & Interfaces,
vol. 27, pp. 489-499, 2005.
NICS Lab. Publications: https://www.nics.uma.es/publications
Computer Standards & Interf
Security protocols analysis: A SDL-based approach

Javier LopezT, Juan J. Ortega, Jose M. Troya

Computer Science Department, E.T.S. Ingenierı́a Informática, University of Malaga, Spain

Available online 1 February 2005
Abstract

Organizations need to develop formally analyzed systems in order to achieve well-known formal method benefits. In order

to study the security of communication systems, we have developed a methodology for the application of the formal analysis

techniques, commonly used in communication protocols, to the analysis of cryptographic protocols. In particular, we have

extended the design and analysis phases with security properties. Our proposal uses a specification notation based on one of the

most used standard requirement languages, HMSC/MSC, which can be automatically translated into a generic SDL

specification. The SDL system obtained can then be used for the analysis of the addressed security properties, by using an

observer process schema. Besides our main goal to provide a notation for describing the formal specification of security

systems, our proposal also brings additional benefits, such as the study of the possible attacks to the system, and the possibility

of re-using the specifications produced to describe and analyze more complex systems.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Security protocols; Formal analysis; MSC; SDL
1. Introduction

It is widely accepted that critical systems have to

be analyzed formally in order to achieve well-known

formal method benefits. These methods characterize

the behavior of a system in a precise way and can

verify its formal specification. In particular, the design

and analysis of security systems can greatly benefit

from the use of formal methods, due to the evident

critical nature of such systems.

The European Telecommunications Standards

Institute (ETSI) is an independent, non-profit organ-
0920-5489/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.csi.2005.01.007

T Corresponding author.

E-mail address: jlm@lcc.uma.es (J. Lopez).
ization, whose mission is to produce telecommunica-

tions standards for today and for the future. ETSI is

using formal techniques in most of its leading technical

areas: for example GSM, TETRA, DECT, N-ISDN, B-

ISDN, V5 protocols, Network Architecture and

Management, INAP, Hiperlan/2, and 3GPP. In many

cases where SDL has been used, the standards have

included extensive MSCs. ETSI does not prescribe the

use of any particular technique, but the use of

standardized languages such as UML, MSC, SDL,

ASN.1, and TTCN (for testing) is strongly recom-

mended. Of course, security communication protocols

are also considered to be standardized.

On the other hand, the cryptographic protocol

analysis research area has experienced an explosive
aces 27 (2005) 489–499



J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499490
growth, with numerous formalisms being developed.

We can divide this research into three main categories:

logic-based [3], model checking [2,12], and theorem

proving [13]. Although all three approaches have

shown their applicability to simple problems, they are

still difficult to apply in real, more complex environ-

ments such as distributed systems over the Internet.

Moreover, we believe that the results obtained for the

analysis of cryptographic protocols do not have a

direct application in the design of secure communi-

cation systems. Probably, one of the major reasons is

the lack of a strong relationship between the analysis

tools for security systems and the formal methods

techniques commonly used in the specification and

analysis of communication protocols. Trying to bridge

this gap is one of the major contributions of our work.

We have developed a methodology for the speci-

fication of secure systems that, additionally, also

allows us to check that they are not vulnerable against

both well-known and original attacks. Our approach

uses a requirement language, Security Requirements

Specification Language (SRSL), to describe security

protocols, which can then be automatically translated

into SDL [6], a widely used formal notation specif-

ically well suited for the analysis of protocols. In

addition, we have developed some verification pro-

cedures and tools for checking a set of security

properties, such as confidentiality, authentication, and

non-repudiation of origin. In our approach we use a

simple but powerful intruder process, which is

explicitly added to the specification of the system so

that the verification of the security properties guaran-

tees the robustness of the protocol against attacks of

such an intruder. This is known as the Dolev–Yao’s

method [5].

Since SRSL is an extension of HMSC/MSC [7],

available editors for Message Sequence Chart (MSC),

High-Level MSC (HMSC), and the Specification and

Description Language (SDL) can be used for writing

SRSL specifications, as well as standard code-

generators and SDL validation tools. In particular,

we have built our translators and analysis tools using

Telelogic’s Tau SDL Suite.

The structure of the rest of the paper is as

follows. After this introduction, Section 2 defines the

security concepts and mechanisms used throughout

the paper. Then, Section 3 provides an overview of

our proposal. The SRSL language is presented in
Section 4, while Section 5 discusses how the SRSL

descriptions can be automatically translated into SDL

and how the SDL specifications produced can be

analyzed for proving security properties. Finally,

Section 6 draws some conclusions and outlines some

future work.
2. Specification of security properties

A security protocol is a general template describing

a sequence of communications, which makes use of

cryptographic techniques to meet one or more

particular security-related goals. In our context, we

will not distinguish between cryptographic and

security protocols, considering both to be equivalent.

The international organization ITU-T has defined the

Recommendation Series X.800 [9,10] in order to

specify the basic security services. Among these, the

ones provided by the basic security services (crypto-

graphic algorithms and secure protocols) are authen-

tication, access control, data confidentiality, data

integrity, and non-repudiation.

The notion of authentication includes both

authentication of origin and entity authentication.

Authentication of origin can be defined as the

certainty that a message that is claimed to proceed

from a certain party was actually originated from it.

Access control ensures that only authorized princi-

pals can gain access to protected resources. Usually,

the identity of the principal must be established,

hence entity authentication is also required here.

Confidentiality may be defined as the prevention of

unauthorized disclosure of information. In commu-

nication protocols, this means that nobody who has

access to the exchanged messages can deduce the

secret information being transmitted. Data integrity

means that data cannot be corrupted, or at least that

corruption will not remain undetected. Accepting a

corrupted message is considered as a violation of

integrity, and therefore the protocol must be regarded

as flawed. Non-repudiation provides evidence to the

parties involved in a communication that certain

steps of the protocol have occurred. This property

appears to be very similar to authentication, but in

this case the participants are given capabilities to

fake messages, up to the usual cryptographic

constraints. Non-repudiation uses signature mecha-



SRSL specification  

System specification ( functional and security requirements )

SDL system Analysis strategy

Analysis Process

Code 
Generation

attacker's behavior

& Testing

Fig. 1. Overview of our approach.

J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499 491
nisms and a trusted notary. We will distinguish two

types of non-repudiation services: non-repudiation of

origin (NRO) and non-repudiation of receipt (NRR).

NRO is intended to protect the originator’s false

denial of having originated the message. On the

other hand, NRR is intended to prevent the

recipient’s false denial of having received the

message.

All previous services are commonly enforced using

cryptographic protocols or similar mechanisms. It is

worth noting that, in order to specify a security

system, it is not necessary to know how the system is

going to be analyzed, but it is essential to identify the

security services required.

Now, considering the system from the attacker’s

perspective, additional security protocol vulnerabil-

ities can be defined [16]: (a) man-in-the-middle,

where the intruder is able to masquerade a protocol

participant; (b) reflection, where an agent emits

messages and studies the system’s answers; (c)

oracle, where the intruder tricks a honest agent by

inadvertently revealing some information (notice

that such an attack may involve the intruder

exploiting steps from different runs of the protocol,

or even involve steps from an entirely different

protocol); (d) replay, in which the intruder monitors

a (possible partial) run of the protocol and, at some

later time, replays one or more of the protocol’s

messages; (e) interleave, where the intruder con-

trives for two or more runs of the protocol to

overlap; (f) failures of forward secrecy, in which the

compromised information is allowed to propagate

into the future; and (g) algebraic attack, where it is

possible for intruders to exploit algebraic identities

to undermine the security of the protocol. Please

note that these kinds of attacks depend on the

environment of the system (network, users, etc. . .),
and therefore not all of them are always achievable

in a given context. However, we will study all

potential situations, trying to cover all of them in all

cases.

In order to keep clear the focus of the paper, the

following assumptions have been made. First, we

suppose that cryptography is perfect, so no crypt-

analysis techniques are used. Second, all agents may

freely and perfectly generate random numbers. And

finally, there are no external interactions with other

protocols.
3. Methodology overview

Our approach (depicted in Fig. 1) performs the

design and analysis of security protocols in the same

way the design and analysis of a traditional commu-

nication protocol is accomplished, though including

the security aspects.

In first place, we need to gather the functional and

security requirements of the system in any (usually

informal) way. These informal specifications, together

with the behavior about the types of possible attacks

(if available), are the sort of information that can be

described using our SRSL language.

SRSL is an extension of HMSC/MSC, augmented

with textual tags. We make use of the HMSC/MSC

text area to include these tags, which are used to

identify the security characteristics of the data being

transmitted, the intruder’s possible activities, and the

security analysis goals. In case the attacker’s behavior

is not explicitly provided, we automatically generate a

generic process that tries to examine all possible

attacks.

For drawing the graphical SRSL specifications,

any standard MSC and HMSC editor can be used. In

our case, we have used Telelogic’s TAU, which also

allows the automatic translation of the graphical MSC

diagrams into their corresponding textual form. A

translator program is then used to obtain the SDL

system from the SRSL descriptions (this program has

been written in C, using plain LEX and YACC tools).

The SDL system produced is composed of: (1) a

package with the data types of the system for the

analysis; (2) a package with one process type for each

protocol agent; and (3) a collection of process types

(bobserverQ and bmediumQ) for the analysis strategy.



J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499492
In order to analyze the security properties, we

evaluate the behavior of the SDL system under

different types of attacks (as specified by the medium

processes defined in the analysis strategy). The

observer process provided by the TAU Validator tool

is used for these checks. Thus, we can check whether

a specific state is reached, or whether a particular data

is ever stored into the intruder’s database knowledge.

We also make use of the assert mechanism, which

enables observer processes to generate reports during

the state space exploration. These reports are main-

tained by the Report Viewer, and can be examined to

identify security flaws.

Currently, confidentiality and authentication are

the security properties usually analyzed. By analyz-

ing confidentiality we prevent the intruder from

being able to derive the plaintext of messages

passing between honest nodes. Our analysis consists

of checking if the secret item can be deduced from

the protocol messages and the intruder’s database

knowledge.

An authentication protocol is considered to be

correct if a user Bob does not finish the protocol

believing that it has been running with a user Alice

unless Alice also believes that she has been running

the protocol with Bob. Our analysis consists of

looking for a reachable state where Bob has

finished correctly and Alice will never reach her

final state.

We also analyze non-repudiation of origin. For that

we define the evidence of origin and who produces it

(the origin). Our analysis consists of checking that the

evidence is digitally signed by the origin agent, and

that it cannot be created by any other agent.

In addition, the SDL system generated from the

SRSL specifications can be used to automatically

generate C or C++ code, which can interact with

existing applications. In order to generate this code we

need to replace the data types package with a

corresponding package that defines the data types in

ASN.1 or C. This prototype can also be used for

testing, which is part of our future work.
4. The SRSL language

The main aim of SRSL is to define a high-level

language for the specification of cryptographic proto-
cols and secure systems. As pre-requisites for this

language we need to request it to be modular to

achieve reusability, to be easy to learn, and to

incorporate security concepts.

As a natural base for SRSL we have considered the

requirements language most widely used in the

telecommunications arena, the MSC, and its extension

HMSC. With MSC we can specify elementary

scenarios, and compose them to define more complex

protocols with HMSC. The version we have consid-

ered is the previous to the MSC 2000 release [8], but

we believe that it is very useful for some features of

this release.

SRSL is divided into two main parts. The first one

contains the definition of the protocol elements

(bDEFINITIONQ) and the security analysis strategy.

The second part describes the message exchange flow.

The protocols’ elements definitions are based on the

HPSL language defined in AVIS project [1].

The first part is textual. The syntax of its main

elements is shown in Fig. 2. These elements can be

grouped into different categories, and are listed below

(language keywords are written in italics):

1. Entities: AGENT, principal identification;

2. Message: DATA, message text; RANDOM, number

created for freshness, also called nonce; Time-

stamp, actual time; SEQUENCE, counter.

3. Keys: PUBLIC_KEY, cryptographic public-key,

formed by a pair of public and private keys;

SYMMETRIC_KEY, used for symmetric encryption.

The bKNOWLEDGEQ section contains the infor-

mation needed to describe the initial knowledge of

each party of the protocol.

The bsecurity serviceQ section is split into the

bintruder strategyQ section and the bsecurity propertyQ
section. The first one defines a possible attack

scenario. The second one describes which security

property we try to achieve with this protocol. We have

used three different security statements: AUTHENTI-

CATED(A,B), stating that B is certain of the identity

of A; CONFf(X), stating that the data X cannot be

deduced (also called confidentiality); and NRO(A,X),

or non-repudiation of origin, which states that the data

X (the evidence) must have been originated in A.

These statements have a formal description [9,10]

which is used to analyze them.



Security_information ::= Definition_section Security_service_section 

Definition_section ::= DEFINITION Var_definition  Knowledge_section 

Var_definition ::= varlist : AGENT ;
| varlist : DATA ;

  | varlist : RANDOM ;
  | varlist : SEQUENCE ;
  | varlist : PUBLIC_KEY ;
  | varlist : SYMMETRIC_KEY ;

Knowledge_section ::= KNOWLEDGE <listagent_id> : <varlist> ; 

Security_service_section ::= [Intruder_strategy] [security_property] 

Intruder_strategy ::= SESSION_INSTANCE ‘[‘ <var> = <value> ‘]’ ;
 | INTRUDER_KNOWLEDGE initial_knowledge_list ; 

 | INTRUDER intruder_behaviour_list ;

initial_knowledge_list ::= intruder_knowledge_list , intruder_knowledge
    | intruder_knowledge 

intruder_knowledge ::= <var> = <value>  

intruder_behaviour_list ::= intruder_behaviour_list , intruder_behaviour
   | intruder_behaviour 

intruder_behaviour ::=   REDIRECT
|  IMPERSONATE
|  EAVESDROP

security_property ::= SECURITY_SERVICE security_service_list ; 

security_service_list ::= security_service_list security_service_item
| security_service_item 

security_service_item ::=  | AUTHENTICATED ( <agentID> <agentID> ); 
| CONF ( <var> ) ; 

     | NRO ( <agentID> <var> ) ; 

Fig. 2. SRSL security section syntax.

J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499 493
The message exchange flow is described using the

standard MSC and HMSC facilities. MSC references

are used to achieve reusability. We have specified a set

of standard protocols in SRSL, that can be easily re-

used in different contexts, and combined together to

describe more complex protocols using their MSC

references.

Some cryptographic operations can be applied to

messages: Concatenate (b,Q) for data composition;

Cipher (b{bplaintextN}QbkeyN) to encrypt data; Deci-

pher (bdecrypt(bcipher_dataN,bkeyN)Q) to extract the

plaintext; Hash (bbhash-functionN(bdataN)Q), the

result of a one way algorithm; and Sign

(b[bplaintextN] bPublic_Private_keyNQ), for getting a

hash encrypted message with the signer’s private key.

Further cryptographic functions can be defined if

required.

In addition, the MSC expressions constructed

using the inline MSC operators alt, par, loop, opt,

and exc can also be used.

The keyword alt denotes alternative executions

of several MSCs. Only one of the alternatives is

applicable in an instantiation of the actual sequence.
The par operator denotes the parallel execution of

several MSCs. All events within the MSCs

involved are executed, with the sole restriction that

the event order within each MSC must be

preserved. An MSC reference with a loop construct

is used for iterations and can have several forms.

The most general construct, loopbn,mN, where n

and m are natural numbers, denotes iteration at

least n and at most m times. The opt construct

denotes an unary operator. It is interpreted in the

same way as an alt operation where the second

operand is an empty MSC. An MSC reference

where the text starts with exc followed by the name

of an MSC indicates that the MSC can be aborted

at the position of the MSC reference symbol, and

continue with the referenced MSC.

In order to illustrate our approach we will specify

here a typical secure Web access to a bank portal via

Internet. Fig. 3 shows the SRSL specification of the

system in SRSL, using two agents: bUser_BrowserQ
and bBank_PortalQ. The bBank_PortalQ agent has a

secure web service via the HTTPS protocol, which

provides authentication of server. This is represented



User_Browser Bank_Portal
DEFINITION

User_Browser, Bank_Portal: AGENT;
account_number, data_req: DATA;
data_user_bank: DATA;
web_form_login: DATA;
login,password: DATA;
wellcome_page: DATA;
session_ID: DATA;
data_rejected: DATA;

httpskey: SYMMETRIC_KEY;

SECURITY_SERVICE

Authenticated(Bank_Portal,User_Browser);
Authenticated(User,Bank_Portal);
conf(account_number);
conf(data_req);
conf(data_user_bank);

conf(login);
conf(passwd);
conf( web_form_login);
conf(wellcome_page);
conf(session_ID);
conf(data_rejected);

1

1

1

1alt

1

1alt

https_connection_server_auth

init_state

init_state

init_state

MSC bank_security_access

gainned_access

( {wellcome_page,session_ID}httpskey )

login_password

( {login,password}httpskey )

login_password

( {web_form_login}httpskey )

rejected

( {data_rejected,session_ID}httpskey )

data_bank

( {user_data_bank,session_ID}httpskey )

data_request

( {account_number,data_req,session_ID}httpskey )

invalid_login_password

Web_access

show_web_login_page

fill_web_login_page

show_invalid_authentication

show_wellcome_page

select_data_request

show_user_data_bank

show_request_rejected

Fig. 3. SRSL security scenario of user’s Web access to a bank.

J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499494
by a MSC reference called bhttps_connection_
server_authQ that implements the server authentication

and the key exchange protocol defined in HTTPS. This

MSC reference is defined in a package of standard

protocols. The results of this scenario are authentica-

tion of server and a session key called bhttpsskeyQ. The
first security requirement bAuthenticated (Bank_

Portal, User_Browser)Q is achieved with this protocol.
The second requirement means that the user must

authenticate itself to the bank’s portal. This is

accomplished by a mechanism that asks for the user’s

identification (login) and password, and subsequently

validates it. The exception MSC reference called

binvalid_login_passwordQ is active if the login-pass-

word authentication process of the bBank_PortalQ
fails. Notice that all messages are encrypted by the

HTTPS protocol session key.

The rest of security requirements mean that the

data transmitted is confidential. This goal is accom-

plished by making use of the session key established

during the HTTPS connection.

Of course, other alternative security mechanisms

could have been considered for specifying this

system, which also met the five original require-

ments. The important point to note here is that we

have chosen a form of specification that does not

bind the developer to any particular security mech-

anisms, thus achieving separation of concerns and

modularity. This is accomplished by allowing the

security requirements to be defined at a higher level



J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499 495
of abstraction, and independently from the system’s

functional requirements.

In the case of a system that is already implemented,

i.e., a legacy system, and that we want to analyze or

document, we can describe instead the security

mechanisms that have been implemented.

We have specified most popular security protocols,

such as SSL/TLS, Kerberos, IPSEC, and authentica-

tions protocols defined in the SPORE website [14].

These specifications are used in a complex system,

and we can compare different security protocols.
5. Security analysis

We use SDL for the security analysis. Firstly, we

need to build an SDL system from the SRSL

specifications. We have developed a program that

automates this process. The program is written in the

C language, and uses LEX and YACC standard tools.

The input file is a protocol specification written in

SRSL, and the program produces a valid SDL system.

The generated SDL system is composed of three

packages, and contains several processes.

The SDL package that defines the system data

types and their operators is called bdatacryptlibQ. It
also contains elementary security data types, and the
block b<protocol_name>

A(0,):AgentA

medattack

observer(1

Explore Redirect

GA

RA

m2,m4

m1,m3,m5

Gmedium

Gmed

Fig. 4. SDL syste
message format definition used in the protocol. This

information is used by the rest of the system.

Another SDL package defines a process type for

each principal. They are implemented in a standalone

fashion so they can be reused in different situations.

Fig. 4 shows two process types, which reference

agents A and B, respectively.

The last package is about the observer processes.

They implement the assert mechanism used in the

validation process, and depend on the medium process

(called bmedattackQ in Fig. 4) and on the security

services that will be evaluated.

The SDL system is named after the protocol it

defines, and consists of a single SDL block, which is

composed of the process structure for analysis (bAQ,
bBQ, bmedattackQ), an observer process (bobserverQ),
and several medium process types (bexploreQ,
bredirectQ, and brouterQ). The process structure for

the analysis consists of a medium process that controls

all transmissions among agent processes. This control

implements the attacker’s procedure.

Note that medium process types have to be created

inside this block because they implement the intrud-

er’s behavior, and therefore they may create process

agent instances. The TAU tool we use requires all

process instances to be defined within the same block.

The following describes in detail all the system parts,
B(0,):AgentB

(1,1):Redirect

,1):obv_redir_attack

Router

GB

RB

m1,m3,m5

m2,m4

ium

m structure.



J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499496
and how the SRSL specifications are mapped onto the

SDL description of the system.

5.1. Data types package

An SDL package contains the data types and the

cryptographic functions used in the SRSL specifica-

tion of the system. We may consider an SDL package

for performing the analysis, and other package

(written in ASN.1) for code generation. All crypto-

graphic data and operators are standardized using

ASN.1 notation, following PKCS standards.

Since the SDL data types do not support

recursive definitions, we make use of enumerated

and structured data types. The elemental data types

defined in Section 4 are then mapped to enumerated

SDL struct sorts.

The messages, which are sent by protocol agents,

are constructed by concatenation of elemental data

types and cryptographic operations. We define a struct

sort for each message and set of elemental data types.

The cryptographic functions are then applied to a set

of elemental data types called bTENCMESSQ.
Freshness or temporary secrets are implemented by

adding an item that references the process instance

values. In particular, we use the SDL sort PID for this

purpose.

Furthermore, we define a bset of knowledgeQ type
for each data type. The analysis methods use these

types to store message knowledge in order to prove

the specified security properties.

5.2. Agents Package

The generic model identifies each protocol agent

with an SDL process type. All process types are stored

in a package called bagentlibQ so they can be used in

other specifications. An agent specification is totally

independent from the rest of the system, so they are

generated in separate modules. In addition, the

specification allows concurrent instances, so we can

evaluate this behavior in the analysis phase.

The generic state transition of an agent process is

triggered when it receives a correct message (i.e., a

message accepted by the agent). Then, either the next

message is composed to be sent to the receiver agent,

or the process stops if the protocol’s final state is

reached for this process. If the message is not correct,
the process returns to the state where it is waiting for

messages.

The MSC expressions used in SRSL are mapped

into SDL as follows: an alt expression produces

several signal trigger states; a loop expression makes

all next transitions return to the initial section state; an

opt expression is implemented by a continue signal;

and finally, an exec expression is translated into an

asterisk state.

An SDL process is a finite state machine, and

therefore it ends when it executes a stop statement, or

provides a deadlock if no signal arrives. Our model

has to explore all possibilities. Hence, we need to

develop a mechanism to ensure that all signals sent

must be processed. Consequently, we have added a

state called bfinalQ to indicate the end of the protocol

execution, and a general transition composed of a

common bsaveQ statement and a continuous signal,

with less priority than the input statement, that checks

whether there are signals still waiting to be processed.

By means of this structure we are transforming a finite

state machine into an infinite one, just for analysis

purposes.

At this point, if we instance the medium process

with a bRouterQ process type, we can specify a

security protocol in the same way as we might specify

a traditional communication protocol and, therefore,

we can analyze some of the liveness properties of the

system in a traditional way. In the next subsection, we

will explain how the security properties can be

checked.

5.3. Model medium–observer processes

In our approach, the intruder’s behavior is divided

into two main aspects, the exploration algorithm and

the check mechanism. The first one is provided by a

medium process, while an observer process performs

the check mechanisms.

We can consider two kinds of medium processes.

The first one is characterized by an exploration

mechanism that tries to explore all possibilities. It

starts by examining all combinations of the different

initial knowledge of each agent. Afterwards, it checks

the concurrent agents’ execution, by first trying

combinations of two concurrent sessions, and so on.

Our algorithm finishes when an bout of memoryQ is
detected, or when it detects that the significant



J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499 497
intruder knowledge is not incremented. In general, the

completeness problem [15] is undecidable. Thus, the

fact that the algorithms terminate without having

found a flaw is not a proof that it has not flaws.

The second kind of medium process uses an

intruder process specialized in finding a specific

flaw. If we are able to characterize a particular kind

of attack, we can then evaluate the protocol trying

to find such a specific flaw. Perhaps this is not the

best solution in general (the only result we get is

that a specific vulnerability does not occur in the

cases we have examined), but it is very useful for a

protocol designer that wants to be sure that the

protocol is not vulnerable with respect to that kind

of attack.

The state transition of the medium process is

triggered when it receives any message. After

reception, the message is stored into the intruder’s

knowledge database. The intruder then decides which

operation performs next, and proceeds to the next

routing state. We have used three different operations

defined in AVIS project: eavesdrop, redirect, and
 
; 
signalset; 

process type obv_redir_attack 
dcl A1,A2,B

m edium :=GetPid('m edattack',1);
((

 (( 

initial
((GetState(A1)='final') AND (GetS

 (( ( GetState(B1)/= 'final') AND ( ( G
priority 1

GetState(m edium )='router' ;
priority 1

true;
priority 2

report
(‘Man in the m iddle atta

- -

A1:=vPid(m edium ,'sessA1');
A2:=vPid(m edium ,'sessA2');
B1:=vPid(m edium ,'sessB1');
B2:=vPid(m edium ,'sessB2');

checking

Condition 
Rule

Fig. 5. Observer process
impersonate. In an eavesdrop operation, the intruder

intercepts the message but does not send it to any

agent. A redirect operation means that the intruder

intercepts the message but does not forward it to the

original receiver. In an impersonate operation, the

intruder sends a faked message to the original

receiver.

The mechanisms used to prove security properties

are the SDL Validator condition rules. These rules

check different situations where protocol vulnerability

is possible. The observer process carries out the

checking mechanism. This is a special SDL process

type that is evaluated in each transition of the protocol

specification. It has access to all variables and states

of all process instances, so we can test it automati-

cally. In order to implement it we have to create an

SDL struct sort with a bvQ operator for each structured

type that we want to evaluate. Fig. 5 shows an

example of an observer process. We can see the

condition rules for checking the authentication prop-

erty, and the report result. The report contains a

security failure MSC scenario.
1,B2, m edium  PId;

checking

GetState(A2)= 'final') AND (GetState(B1)='final')) AND
( GetState(B2)/= 'final') AND ( ( Getstate(A1)/= 'final') )))

priority 1

tate(B2)='final')) AND
etstate(A2)/= 'final') ))) 

report
(‘Man in the m iddle attack - redirect ')

ck-redirect')
true;

priority 100

- -

Report
output

bredirectQ attack.



J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499498
Currently, confidentiality, authentication, and non-

repudiation of origin can be checked. For checking

confidentiality, we examine whether a specific value

(that we consider secret) can be deduced from the

intruder’s knowledge. Authentication is analyzed by

checking that all the principal processes finish at the

expected protocol step. Some authors [16] call this the

correspondence (or precedence) property. Finally,

non-repudiation of origin analysis consists of check-

ing that, in the intruder’s database knowledge, the

evidence is signed digitally by the origin agent, and

that it cannot be generated without this signature.

In order to validate our proposal we have carried

out the analysis of some of the most classic crypto-

graphic protocols, such as the Needham–Schroeder

symmetric key, SSL, etc. In [11] we described the

results of the analysis for the authentication protocol

Encrypted Key Exchange (EKE) [4]. This protocol

was specified in SRSL, using a well-known bman in

the middleQ attack evaluating two executions running

in parallel sessions. The attack followed the redirect

intruder’s behavior. The resulting scenario produced

by SDL Validator tool, describes a situation where

only one of the two agents in each session has finished

(agent A of the first session, and agent B of second

one), but not the other one.
6. Conclusions and future work

We have presented a new analysis method for

analysing and evaluating security protocols and their

possible attacks. Security protocols are specified in

SRSL, which can then be translated into a working

SDL system. Attacks are implemented by SDL

processes that specify the intruder’s behavior and

observer processes that check safety properties. One

of the benefits of our approach is that protocol

specifications are described independently from the

analysis procedures, so they can be re-used in other

environments as well. Furthermore, standard lan-

guages well known in telecommunication area are

used, so training time is short.

Several kinds of security attacks can be analyzed

using our approach. It is essential to study how they

can be produced in a real environment. We examine

the result scenario provided in an analysis procedure,

and redesign the security protocol if necessary.
Currently, we are extending SRSL so more com-

plex protocols can be specified, and other properties

analyze. We are studying the use of MSC-2000

features as well as the new release of UML for

specification purposes. Furthermore, we are develop-

ing a framework to implement protocol attacks in the

Internet environment for testing.
Acknowledgements

The work described in this paper has been

supported by the European Commission through the

IST Programme under the research project IST-2001-

32446 (CASENET), and by the Spanish Ministry of

Science and Technology under the research project

TIC-2003-8184-C02-01 (PRIVILEGE).
References

[1] A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L.

Compagna, S. Mfdersheim, M. Rusinowitch, M. Turuani, L.

Viganò, L. Vigneron, The AVISS security protocol analysis

tool, in: E. Brinksma, K.G. Larsen (Eds.), Proceedings of

CAV’02, LNCS 2404, Springer-Verlag, 2002, pp. 349–353.

[2] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, S.

Tasiran, Mocha: modularity in model checking, CAV 98:

computer-aided verification, LNCS 1427, Springer-Verlag,

1998, pp. 521–525.

[3] M. Burrows, M. Abadi, R. Needham, A logic of authentica-

tion, Proceedings of the Royal Society, Series A 426 (1871)

(1989) 233–271.

[4] S.M. Bellovin, M. Merrit, Encrypted Key Exchange: Pass-

word-Based Protocols Secure Against Dictionary Attacks,

Proceedings of IEEE symposium on research in security and

privacy, 1992, pp. 72–84.

[5] D. Dolev, A. Yao, On the security of public key protocols, IEEE

Transactions on Information Theory IT-29 (1983) 198–208.

[6] ITU-T Recommendation Z.100 (11/99), Specification and

description language (SDL), Geneva, 1999.

[7] ITU-T, Recommendation Z.120, Message sequence charts

(MSC), Geneva, (1996).

[8] ITU-T, Recommendation Z.120 (11/99), Message sequence

charts (MSC), Geneva, (1999).

[9] CCITT Recommendation X.800, Security architecture for

open systems interconnection for CCITT applications, (1991).

[10] ITU-T Recommendation X.810 (ISO/IEC 10181-1), Informa-

tion technology–open systems interconnection–security frame-

works for open systems—overview, (1995).

[11] J. Lopez, J.J. Ortega, J.M. Troya, Protocol engineering applied

to formal analysis of security systems, Infrasec’02, LNCS

2437, Bristol, UK, October 2002.



J. Lopez et al. / Computer Standards & Interfaces 27 (2005) 489–499 499
[12] W. Marrero, E. Clarke, S. Jha, Model checking for security

protocols, DIMACS workshop on design and formal verifica-

tion of security protocols, 1997.

[13] L. Paulson, The inductive approach to verifying cryptographic

protocols, Journal of Computer Security 6 (1998).

[14] SPORE. Security protocol open repository. http://www.lsv.ens-

cachan.fr/spore/.

[15] M. Rusinowich, M. Turuani, Protocol insecurity with finite

number of sessions is NP-complete, 14th IEEE computer

security foundations workshop June 11–13, 2001.

[16] P. Ryan, Scheneider, The Modelling and Analysis of Security

Protocols: The CSP Approach, Addison-Wesley, 2001.
Javier Lopez received his MS and PhD in

Computer Science in 1992 and 2000, from

the University of Malaga, respectively.

From 1991 to 1994, he worked as a System

Analyst and in 1994 he joined the Computer

Science Department at the University of

Malaga as an Assistant Professor, where he

currently is an Associate Professor. His

research activities are mainly focused on

information and network security, leading

some national and international research
projects in those areas. Prof. Lopez is the Spanish representative

of the IFIP TC-11 (Security and Protection in Information Systems)

Working Group.
Juan J. Ortega received his BSc and MSc

degrees in Computer Engineering from the

University of Malaga (Spain) in 1990 and

1995, respectively. Since 1997, he has been

with the Computer Science Department,

University of Malaga, where he is a part

time Assistant Professor. His current

research interests include formal methods

applied to the evaluation of the security of

distributed systems and computer networks.
Jose M. Troya received the MSc (1975)

and PhD (1980) degrees in physics from

the Universidad Complutense de Madrid.

From 1980 to 1988, he was an associate

professor at that university and, in 1988,

became a full professor at the University of

Malaga, where he leads the Software

Engineering Group. His research interests

include parallel programming, distributed

systems, and software architectures. He is

very involved in several national and
international research projects, has written articles in the most

relevant computer conferences and journals, supervised numerous

PhD thesis, and organized several workshops and international

conferences.

http://www.lsv.ens-cachan.fr/spore/

	Security protocols analysis: A SDL-based approach
	Introduction
	Specification of security properties
	Methodology overview
	The SRSL language
	Security analysis
	Data types package
	Agents Package
	Model medium-observer processes

	Conclusions and future work
	Acknowledgements
	References


