
 1

COMPARISONS OF PARIKH’S CONDITION
TO OTHER CONDITIONS

FOR CONTEXT-FREE LANGUAGES

G. Ramos-Jiménez, J. López-Muñoz and R. Morales-Bueno

E.T.S. de Ingeniería Informática - Universidad de Málaga

Dpto. Lenguajes y Ciencias de la Computación

P.O.B. 4114, 29080 - Málaga (SPAIN)

e-mail: morales@lcc.uma.es

 Abstract: In this paper we first compare Parikh’s condition to various pumping

conditions - Bar-Hillel’s pumping lemma, Ogden’s condition and Bader-Moura’s

condition; secondly, to interchange condition; and finally, to Sokolowski’s and

Grant’s conditions. In order to carry out these comparisons we present some

properties of Parikh’s languages. The main result is the orthogonality of the

previously mentioned conditions and Parikh’s condition.

 Keywords: Context-Free Languages, Parikh’s Condition, Pumping Lemmas,

 Interchange Condition, Sokolowski’s and Grant’s Condition.

1. INTRODUCTION

 The context-free grammars and the family of languages they describe, context

free languages, were initially defined to formalize the grammatical properties of natural

languages. Afterwards, their considerable practical importance was noticed, specially for

defining programming languages, formalizing the notion of parsing, simplifying the

translation of programming languages and in other string-processing applications. It’s

very useful to discover the internal structure of a formal language class during its study.

The determination of structural properties allows us to increase our knowledge about

this language class. An additional benefit is obtained when a particular property is found

to be easily testable; it then becomes a convenient tool for proving that some languages

do not belong to this class. In figure 1 we show a classification of the most well-known

conditions for context free languages.

Necessary

 conditions

Generation of

 new strings
Same length :

Iteration

PUMPING

OGDEN

BADER-MOURA

 INTERCHANGE

SOKOLOWSKI

GRANT

New one

Number of ocurrences : PARIKH

Necessary and sufficient condition : WISE

Conditions

 for C.F.L.

 Figure 1. Classification of Conditions for Context-Free Languages

J. Lopez, G. Ramos, and R. Morales, “Comparación de la Condición de Parikh con algunas Condiciones de los Lenguajes de Contexto Libre”, II
Jornadas de Informática y Automática, pp. 305-314, 1996.
NICS Lab. Publications: https://www.nics.uma.es/publications

 2

 Some of the comparative studies concerning the different conditions are [3 , [4 ,

[7 , [9 . Among these ones we underline [4 and [7 . R. Boonyavatana and G. Slutzki

[4 compare the interchange condition of Ogden, Ross and Winklmann to various

pumping conditions: the classic pumping condition of Bar-Hillel, Perles and Shamir;

Ogden’s condition; generalized Ogden’s condition of Bader and Moura; linear versions

of the previously mentioned conditions and the Sokolowski-type conditions. Also, they

formulated an interchange condition for linear context-free languages and compared it to

the other conditions. The same authors [7 carry out a systematic investigation of the

relationships between various pumping properties, the interchange condition, and

Sokolowski’s and the extended Sokolowski’s condition of Grant.

 None of these articles have compared Parikh’s condition to the other ones. That

is the aim of our paper. We compare Parikh’s condition to pumping conditions (Bar-

Hillel’s, Ogden’s and Bader-Moura’s), the interchange condition and Sokolowski’s and

Grants’s conditions, and we prove that Parikh’s condition is orthogonal to all of them,

as shown in figure 2. Specifically, we find languages for each of the zones of that figure,

where the significance of each zone is described in the subsequent paragraph concerning

notation.

 Figure 2. Comparisons of Parikh’s condition

 The paper is organized as follows: in Section 2 we present the basic definitions

and the introductory results. In Section 3, using the outcomes of Section 2, we compare

Parikh’s condition with the pumping condition. In Section 4, we briefly compare

Parikh’s condition with the interchange and, Sokolowski’s and Grant’s condition. Each

zone in figure 2 is identified by the following notation :

 CFL: Context-Free Languages PKC: Parikh’s Condition

 PC: Pumping Condition OC: Ogden’s Condition

 BMC: Bader-Moura’s Condition IC: Interchange Condition

 SC: Sokolowski’s Condition GC: Grant’s Condition

 For any condition C, C = PKC, PC, ..., GC, and any alphabet ,

 C() = L
*
 / L satisfies C

 So, as an example, CFL () is the set of context-free languages over .

 We omit when there is no ambiguity.

2. DEFINITIONS AND PRELIMINARY RESULTS

 In this section we present some basic definitions, notations and some preliminary

results. We assume that the reader is familiar with the basic theory of context-free

 3

languages and so we will only define general concepts and formulate various pumping-

type conditions for this language class.

 A context-free grammar is a construct G = (N,T,P,S) where N and T are two

disjoints sets of nonterminals and terminals respectively [8 ; P is a finite set of

productions and each production is of the form A where A is a nonterminal and

is a string of symbols from (N T)
*
; and finally, S is a special nonterminal called the

start symbol or axiom. The language generated by G, L(G), is a context-free language.

 For a word w, |w| denotes its length; and is the empty word. For a set Q, ||Q||

denotes the cardinality of Q. For a language L, Ln is the set of all words of length n in L.

 Bar-Hillel, Perles and Shamir (classical) pumping condition. A language

L
*
 satisfies PC if there exists a constant n such that if z L and |z| n, then we

may write z = uvwxy such that

 i) |vx| 1,

 ii) |vwx| < n, and

 iii) i 0 uv
i
wx

i
y L.

 A language L PC() if L satisfies the pumping condition. We omit when

there is no ambiguity.

 Ogden’s condition. A language L
*
 satisfies OC if there exists a constant n

such that if z L and we label in it d(z) “distinguished” positions, with d(z)>n, then we

may write z = uvwxy such that

 i) d(u) d(v) d(w) + d(w) d(x) d(y) 1,

 ii) d(vwx) n, and

 iii) i 0, uv
i
wx

i
y L.

 A language L OC() if L satisfies Ogden’s condition.

 Bader-Moura’s condition. A language L
*
 satisfies BMC if there exists a

constant n such that if z L and we label in it “distinguished” positions d(z) and e(z)

“excluded” positions, with d(z) > n
e(z)+1

, then we may write z = uvwxy such that:

 i) d(vx) 1 and e(vx) =0

 ii) d(vwx) n
e(vwx)+1

 and

 iii) for every i 0, uv
i
wx

i
y is in L.

 A language L BMC() if L satisfies Bader-Moura’s condition.

Pumping lemmas 1 , 2 , 10 : CFL() BMC() OC() PC()

 We now describe the Interchange condition. Put briefly this says that if a

language L satisfies it and contains many strings of some fixed length, then parts of

these strings may be interchanged, producing new strings which must also be in L. We

observe that the pumping conditions predict that increasingly longer strings will be

found in the language.

 Interchange condition. A language L
*
 satisfies IC if there is a constant cL

such that for any integer n 2, any subset Qn of Ln, and any integer m with n m 2 there

are k ||Qn|| /(cL n
2
) strings zi in Qn with the following properties:

 i) zi = wixiyi, i=1, ..., k ,

 ii) |w1| = |w2| = ... = |wk| ,

 4

 iii) |y1| = |y2| = ... = |yk| ,

 iv) m |x1| = |x2| = ... = |xk| > m/2, and

 v) wixjyi Ln i,j {1, ..., k}.

 A language L IC() if L satisfies the IC condition.

Interchange lemma 11 : CFL() IC()

 The Sokolowski’s criterium says, informally, that if a language L satisfies it and

a set of strings A is included in L, then there exists a string that does not belong to A but

to L.

 Sokolowski’s condition. A language L
*
 satisfies SC if for every subset „ ,

containing at least two distinct symbols and for u1, u2, u3
*
, if u1xu2xu3 | x „

+

L then there are two distinct words x‟, x‟‟ „
+
, such that u1x‟u2x‟‟u3 L.

 A language L SC() if L satisfies the SC condition.

Sokolowski’s lemma 13 : CFL() SC()

 This result provide quick and clear proofs that languages like Pascal, Modula-2,

etc. are not context-free languages.

 Grant observed that in the Sokolowski’s proof it is not neccesary to consider

strings of the form u1xu2xu3. Strings u1x1u2x2u3 are sufficient with the condition that x1

and x2 satisifes some binary relation which is verified for arbitrary long strings.

 We need two concepts:

- v‟ is previous to v, v‟< v, iff v‟ is obtained from v by omission of at least one letter.

- For u,v
*
, m > 0, End(u,v,m) (respectively Beg(u,v,m)) is true iff v is obtained from

u by omitting at least one letter from the last (resp. first) m elements of u.

 Grant’s condition. A language L
*
 satisfies GC if for a binary relation R over

*
, satisfying

 i) m x1 x2 |x1|,|x2| > m R(x1, x2)

ii) u1x1u2x2u3 | R(x1, x2) L

then

m x1x2 R(x1,x2) |x1|, |x2| m 1 2(u1 1u2 2u3) L

 ((1 < x1 2 = x2) (2 < x2 1 = x1)

 (End (x1, 1,m) Beg (x2, 2,m)))

 A language L GC() if L satisfies the GC condition.

Grant’s lemma 6 : CFL() GC() SC()

 We now consider Parikh’s condition. This condition refers to the global

structure of the strings of the language L. We consider the number of times that each

symbol appears in a string of L. Let us focus on those numbers forming a vector. If L is

infinite then we obtain infinite vectors. Parikh’s condition claims that such a set of

vectors has a simple structure.

 For an alphabet with r symbols, = {a1,...,ar}, we define #i(w), w
*
, as the

number of times that ai occurs in w.

 We also define :
* Nr

, called Parikh‟s application, as:

 5

(w) = (#1(w), #2(w), ..., #r(w))

 Let L be a language, L
*
, we define (L) = { (w) : w L}.

 Let the vectors be V0, V1,..., Vk Nr
. The subset A Nr

 is linear if

A = {V0 + X1V1 + ... + XkVk : Xi N, i=1,...,k}.

 One set S is semilinear if it is a finite union of linear sets.

Parikh’s condition. A language L
*
 satisfies PKC if (L) is semilinear.

 A language L PKC() if L satisfies PKC; that is,

PKC() = { L
*

 / L is Parikh} = {L
*
 / (L) is semilinear}

 Trivially,
*
 and

+
 belong to PKC().

Parikh’s Lemma 12 : CFL() PKC()

 Parikh’s lemma has a pumping character because for its proof, a pumping

process is neccessary in the derivation trees; nevertheless, this condition is different

from pumping conditions as we will see in section 3.

 It is known [Golan, Salomaa-Kuich] that Parikh’s languages over are the

rational subsets of the free commutative monoid generated by ; and so, Parikh’s results

can be stated in the following form (Theorem 2.6 [Autebert]): “Any context-free set in

the commutative monoid is rational“.

 We show now closure results of Parikh’s languages. Considering the definition

and properties of the rational sets we state the following results [Golan, Salomaa-

Kuich].

Theorem 1.

 (a) The rational sets are closed under concatenation and union

 (b) The rational sets are closed under direct morphisms

 (c) The intersection of a rational set with a recognizable set is a rational set

 We show now the converse with respect to concatenation and union over

disjoints alphabets.

Theorem 2. Let L1 1
*
 and L2 2

*
 be two languages over disjoints alphabets, where

|| 1|| = r and || 2|| = s :

 (a) if L1L2 PKC (1 2) then L1 PKC(1) and L2 PKC (2).

 (b) if L1 L2 PKC(1 2) then L1 PKC(1) and L2 PKC(2).

Proof :

Definition 1 7 . Let be an alphabet. Let f, g be two symbols, f, g . Let P(
*
) be

the class of languages over . We define four operations from P(
*
) to P(

*
) as

follows: For each L P(
*
)

 a(L) = L {f
n

g
n
 / n 1}

*
{f

n
g

m
 / n,m 1, n m}

*

 r(L) = L {f
n

g
n

/ n 1}
*
{f

n
g

m
 / n m}

 e(L) = L {f
n

g
n
 / n 1}

*

 s(L) = {f
n

zg
n
 / z L, n 1}

*

 6

Notation.- In the following pages we will represent x(L) as L
x
 , for x = a, r, e, s.

Lemma 1: If L PKC() then L f
n
 g

n
 / n 1 ,

*
f
n
 g

m
 / n m; n,m 1 and

*
f
n
 g

m
 /

n m PKC().

Proof: The sets f
n
 g

n
 / n 1 , f

n
 g

m
 / n m; n,m 1 and f

n
 g

m
 / n m are context-free

languages, hence they verify PKC. The PKC class is closed under disjoint concatenation

(theorem 1).

Theorem 3: If L PKC() then L
a
, L

r
 PKC({f,g}).

Proof: From lemma 1 and theorem 2.

 The following result is stronger than previous ones because it provides a

necessary and sufficient condition relating L and L
e
.

Theorem 4: L PKC() if and only if L
e

 PKC({f,g}).

Proof: The “only if” is from theorem 1(a) and lemma 1.

(If) We suppose that L
e
 PKC({f,g}).

 L
e
 = L1 L2 , where L1 = L{f

n
g

n
 / n 1} and L2 =

*
.

 Let :
*
 {f,g} Nr+2, where || || = r.

 (L
e
) = X is semilinear (by hypothesis) and (L2) = (

*
) = Y, that is obviously

semilinear. Thus, by theorem 5.6.2 5 , X-Y is semilinear.

 X-Y = (L1), hence L1 PKC({f,g}) and, by theorem 1, L PKC().

 Finally, we study the s-operation.

Lemma 2: (L
e
) = (L

s
).

Proof: Each word belonging to L
s
 is, obviously, simply a permutation of one word

belonging to L
e
, and viceversa.

Theorem 5: L PKC() if and only if L
s

 PKC({f,g}).

Proof: From theorem 4 and lemma 2.

3. COMPARISON OF PARIKH’S CONDITION TO PUMPING CONDITIONS

 In this section we will compare Parikh’s condition to pumping conditions. The

final results are depicted in figure 3. In this figure, each rectangle represents the set of

languages that satisfy the corresponding condition. We show that none of the zone A1,

B1, C1, D1, E1, F1, G1 and H1 are empty.

Proposition 1: L1 PKC (BMC-CFL); that is, to zone A1, where L1 is defined as

follows 1 : L1 = {z {a,b}
*
 / (q : z = (ab)

q
) (q prime)}

Proof: L1 (BMC - CFL) 1 .

 We show now that L1 PKC: we notice that, for example, the words of the

form (ab)
n
 L1 if n is not a prime number, but the words of the form a

n
b

n
 L1.

So, (L1) = N2
 - (0,0) is semilinear with only two linear sets.

 7

 Figure 3. Parikh’s condition compared to pumping conditions

Proposition 2: L2 PKC-PC; that is, to zone D1, where L2 is defined as follows 7 :

 L2 = {a
p
b

p
c

r
d

r
 / 1 p r} {a

p
b

q
c

r
d

s
 / 1 q p and p-q max (r,s)}

 {a
p
b

q
c

r
d

s
 / 1 r s and s-r max (p,q)} {a

p
b

q
c

s+1
d

s
 / p,q,s 1}

Proof: L2 PC [7 . It is an easy exercise to verify that L2 PKC.

Proposition 3: L3 PKC (OC-BMC); that is, to zone B1, where L3 is defined as

follows 7 : L3 = L2
r

Proof: L3 (OC-BMC) 7 . L3 PKC, from proposition 2 and theorem 3.

Proposition 4: L4 PKC (PC-OC); that is, to zone C1, where L4 is defined as

follows 7 : L4 = L2
a

Proof: L4 (PC-OC) 7 . L4 PKC, from theorem 3.

Proposition 5: L5 (PKC PC) ; that is, to zone H1, where L5 = { a
p
 / p prime}

Proof: Regular, context-free and Parikh’s languages define the same class if we

consider alphabets with only one letter Lewis, Harrison .

 L5 does not verify the pumping lemma for regular languages Lewis . Then L5 is

not a regular language; therefore L5 PC and L5 PKC.

Proposition 6: L6 (PC-OC)-PKC; that is, to zone G1, where L6 is defined as follows

[4 : L6 = L5
e

Proof: L6 (PC-OC) [4 . L6 PKC, from theorem 4 and proposition 5.

Proposition 7: L8 (OC-BMC)-PKC; that is, to zone F1, where L8 is defined as

follows [7 : L8 = L7
r
 ; L7 = { a

k
 / k n! , n 1}.

Proof: L8 (OC-BMC) [7 .

 We show that L8 PKC: L8

= L81 L82 = L7{f

n
g

n
 / n 1}

*
{f

n
g

m
 / n m}.

 Let’s suppose that (L8) is semilinear; that is, rational.

 (L8) = {(x,n,m) / n m} {(x,n,m) / x k!}.

 Let’s K be the set K = {(z,1,1)}. K is a reconizable set (it corresponds to the

regular language a*fg). Then (L8) K = {(z,1,1) / z k!} is rational (theorem 1).

 By projecting with respect to the first component, we obtain that S = {z / z k!}

is rational. S is a subset of N, then S must be recognizable and S = {z / z = k!} too. But

this is absurd because the language {a
n!

} is not regular [Harrison .

 8

 We study now the zone E1. We need some previous results.

Definition 2: Let a 1 and b 0 be two integers and let c, f and g tree letters. We

define the following language:

 PRIMES(a, b) = { f
i
c

p
g

i
 | i 1, p prime and p ai + b } { f

n
c

k
g

m
 | n m and k 0}

 We show now that the language PRIMES(a,b) is in zone E1; that is,

PRIMES(a,b) verifies Bader-Moura’s condition, but it does not verify the Parikh’s

condition. The proof is structured in three lemmas. The first one shows that the

lanaguage PRIMES(a,b) BMC; the second one is intermediate to show in the third

lemma that language does not verify Parikh’s condition.

Lemma 3: PRIMES(a, b) BMC.

Proof: Since the second “part” of PRIMES(a, b) is a context-free language, we only

need to consider z = f
i
c

p
g

i
 where p is a prime, p ai + b for some i 1 and z has a

marking such that d(z)>n
e(z)+1

 where n = max {a + 2, b} +1.

 If there exist some distinguished non excluded positions among f’s, then let v be

the leftmost distinguished non excluded position in f
i
, let w the symbol that follow v,

x = and define u and y accordingly.

 So, the three conditions of BMC are verified:

 i) d(vx) = d(v) = 1 and e(vx) = e(v) = 0

 ii) d(vwx) 2 n
e(vwx)+1

 , because n 4 and

iii) for every i 0, uv
i
wx

i
y is in L, because for i 1 the number of f’s is different

of the number of g’s, and the pumped word belongs to the second “part”.

If there exist some distinguished non excluded positions among g’s, then let x be

the rightmost distinguished non excluded position in g
i
, let w be the symbol before x,

v = and define u and y accordingly.

Thus, the three conditions of BMC are verified (similar to the above reasoning).

Finally, if there are no distinguished non excluded positions among f’s or g’s,

then there must exist some non excluded position among f’s (otherwise we would have

e(z) i which implies that n
e(z)+1

 n
i +1

 n(i + 1) = ni + n > (a + 2)i + b = ai + b + 2i

p + 2i = |z| d(z), contradicting our assumption d(z)>n
e(z)+1

). Thus, let v be the leftmost

non excluded position in f
i
. Let x be the leftmost distinguished non excluded position in

c
p
 (since if all positions in c

p
 are distinguished and excluded, and these are the only ones

distinguished, our assumption d(z)>n
e(z)+1

 is not verified; the same contradiction is

obtained if we consider the positions among f’s and g’s, that can be distinguished and

excluded, or excluded and non distinguished). Finally, we define u, w, y accordingly.

In this way, the three conditions of BMC are verified:

 i) d(vx) = 1 (v is non distinguished, and x is distinguished) and e(vx) = 0 (v and

x are non excluded)

 ii) d(vwx) e(vwx)+1 < n
e(vwx)+1

 and

iii) for every i 0, uv
i
wx

i
y is in L, because for i 1 the number of f’s is different

of the number of g’s, and the pumped word belongs to the second “part”.

Definition 3: Let a,b N, a 1, b 0. We define

 P(a,b) = (i, p, i) N3
 / i 1, p is prime, p ai + b

Lemma 4: a 1, b 0, P(a,b) is not semilinear.

 9

Proof: Let’s suppose that P(a,b) is semilinear. Then, the projection with respect to the

second component must be semilinear (Theorem 1). But this projection is {p N / p

prime}, that is not semilinear (proposition 5). Therefore, P(a,b) is not semilinear.

Lemma 5: PRIMES(a, b) PKC.

Proof: Let’s suppose that PRIMES(a,b) PKC; then, X = (PRIMES(a,b)) is

semilinear. Let Y = (f
n
c

k
g

m
 / n m, k 0). We know that Y is semilinear because

the language is context-free. By theorem 5.6.2 5 , X - Y is semilinear. Since the

elements of the second part of PRIMES(a,b) do not overlap with those of the first part,

we obtain that X - Y = P(a,b) is semilinear, which is a contradiction in respect to the

previous lemma.

Theorem 6: PRIMES(a,b) BMC - PKC; that is, to zone E1.

Theorem 7: Zones A1, B1, C1, D1, E1, F1, G1 and H1, in figure 3 are non empty.

4. COMPARISON OF PARIKH’S CONDITION TO INTERCHANGE

CONDITION, AND SOKOLOWSKI’S AND GRANT’S CONDITION.

 In a similar way to section 3 we do other comparisons. The final results are

depicted in figures 4 and 5. This section is very brief. The proofs of the following two

theorems only includes the relation of languages that are in each zone. The languages

used are in the literature. The complete proofs use the closure results of section 2 and, in

order to prove that a language verifies PKC, it is an easy exercise to obtain the suitable

semilinear set.

 The notation Li Lj (disjoint union) represents: Li 1
*
, Lj 2

*
, 1 2 = .

Figure 4. Parikh’s condition compared to Interchange, and Sokolowski’s

 and Grant’s condition

Theorem 8: Zones A2, B2, C2 and D2 in figure 4 are not empty.

Proof:

 L9 = {z {a,b}
*
 / (q : z = ab

q
) (q prime)} [1 ; L9 PKC({a,b}).

 L10 = {xuu
R
#vv

R
y / x,u,v,y {a,b,c}

*
} [4 ; L10 CFL({a,b,c}).

 L11 = L9 L10 is in zone A2.

 L12 = {uxxy / x x,y,u {a,b,c}
*
} [4 ; L12 PKC({a,b,c}).

 10

 L13 = L9 L12 is in zone B2.

 L14 = L5 L10 is in zone C2.

 L15 = L5 L12 is in zone D2.

Theorem 9: Zones A3, B3, C3, D3, E3 and F3 in figure 4 are not empty.

Proof:

 L12 is in zone A3.

 L16 = {a
n

b
n

c
n
 | n 0} is in zone B3.

 L17 = {xx | x {a,b,c}
*
} is in zone C3.

 L5 = {a
p
 / p prime} is in zone D3.

 L18 = L5 L16 is in zone E3.

L19= L5 L17 is in zone F3.

Acknowledgements:

 11

REFERENCES

[] J. Autebert, J. Berstel and L Boasson

 Context-free Languages and Pushdown Automata

 Handbook of Formal Languages, G. Rozenberg and A. Salomaa Eds.

 Springer-Verlag, 1997

[1] C. Bader and A. Moura

 A generalization of Ogden's lemma

 Journal of the ACM 29 (1982), 404-407

[2] Y. Bar-Hillel, M. Perles and E. Shamir

 On formal properties of simple phrase-structure grammars

 Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikationsforschung,

 14 (1961), 143-177

[3] R. Boonyavatana and G. Slutzki

 A generalized Ogden’s lemma for linear context-free languages

 EATCS Bull. 28 (1985), 20-26

[4] R. Boonyavatana and G. Slutzki

 The interchange or pump (di)lemmas for context-free languages

 Theoretical Computer Science 56(1988), 321-338

[5] S. Ginsburg

 “The Mathematical Theory of Context Free Languages”

 McGraw-Hill, 1966

[] J.S. Golan

 The Theory of Semirings withh Applications in Mathematics and Theoretical Computer

 Science Pitman Monographs and Surveys in Pure and Applied Mathematics 54

 Longman Sci. Tech., 1992

[6] P.W. Grant

 Extensions of Sokolowski’s theorem to prove languages are not context-free or not regular

 Internat. J. Comput. Math. 11(1982), 187-196

[] M.A. Harrison

 “Introduction to Formal Languages Theory”

 Adisson-Wesley, 1978

[7] R. Hewett and G. Slutzki

 Comparison between some pumping conditions for context-free languages

 Math. Systems Theory 21(1989), 223-233

[8] J. E. Hopcroft and J. D. Ullman

 “Introduction to automata theory, languages, and computation”

 Addison-Wesley, 1979

[9] S. Horváth

 A comparison of iteration conditions on formal languages

 Proc. Coll. Algebra, Combinatorics and Logic in Computer Science (1983), 453-463

[] W. Kuich and A. Salomaa

 “Semirings, Automata and Languages”

 Springer-Verlag, 1986

[] H.R. Lewis and C.H. Papadimitriou

 12

 “Elements of the Theory of Computation”

 Prentice-Hall, 1981

[10] W. Ogden

 A helpful result for proving inherent ambiguity

 Math. Systems Theory, vol.2, nº 3 (1968), 191-194

[11] W. Ogden, R.J. Ross and K. Winklmann

 An "interchange lemma" for context-free languages

 SIAM Journal Computing, 14, 2 (1985), 410-415

[12] R.J. Parikh

 On context-free languages

 Journal of the ACM 13, 4 (1966), 570-581

[13] Sokolowski, S.

 A method for proving programming languages non context-free

 Information Processing Letters 7, 3(1978), 151-153

[14] D.S. Wise

 A strong pumping lemma for context-free languages

 Theoretical Computer Science 3 (1976), 359-369

 13

Dear Dr. Smit,

All the reviewer’s comments have been very interesting and useful for us, and all of

them have been incorporated in the text.

Now, I explain where each comment has been added. For each comment I do a relative

reference,since the number of pages have changed.

 Bar-Hillel, Perles and Shamir pumping condition:

 |vwx| n has been changed to |vwx| < n

 Ogden’s lemma:

 I have changed d(x) 1 with d(u) d(v) d(w) + d(w) d(x) d(y) 1

 Grant’s condition:

 I have changed “by omission of at least one element” with

 “by omission of at least one letter”

 Closure results of Parikh’s languages

 I have reestructured this part of the paper. A new Theorem 1, with relevant

results, have been included and I have reestructured the old Theorems 1 and 2 in only

one, the Theorem 2. Their proofs are more clear and elegant by considering the referee

comment.

 Old pages 15, 16 and 17: typographical errors corrected

 Proposition 5:

 The proof has been reestructured and I have included a reference.

 Proposition 7:

 The proof has been changed by considering the useful comment of the referee.

Now the proof is more clear, brief and elegant.

 Old page 20: English error corrected

 Lemma 4:

 The proof has been changed by considering the useful comment of the referee.

 About skipping the sections 4 and 5, I think that:

 There was a connection in line 5 related to a condition in section 5. So I think

that I must include this section.

 The figure 1 provides a clear vision of the conditions for context-free

languages.

 The paper could be incomplete if these comparisons are omitted.

 Therefore, considering partially the comment of the referee, those sections have

been reduced as follows:

a) Now there is only one brief section

b) This section has only two figures and two theorems

c) In the demostration of each theorem we only include the list of suitable

languages, one for each zone.

 A section of acknowledgement to the anonymous referee have been included.

 Five new references related to the above corrections have been included.

 The papre has been reduced to ten pages.

 14

