E. B. Fernandez and A. Muoz, “A cluster of patterns for Trusted Computing”, International Journal of Information Security, In Press.
NICS Lab. Publications: https://www.nics.uma.es/publications

https://doi.org/10.1007/510207-024-00972-3

REGULAR CONTRIBUTION l')

Check for
updates

A cluster of patterns for trusted computing

Eduardo B. Fernandez' - Antonio Mufioz?

© The Author(s) 2025

Abstract

The proliferation of Internet of Things and cyberphysical systems has introduced unprecedented challenges in ensuring the
integrity and confidentiality of critical data, making robust security mechanisms essential. There are several mechanisms
intended to assure trust with respect to the software loaded into the system and the trustworthiness of the boot process. These
mechanisms start from a Root of Trust (RoT), from where all the other trusts, e.g., for components and software are derived. As
part of the RoT, a Secure Storage is needed. This Secure Storage can be considered as part of the RoT or considered a separate
component. After a RoT is established, a Trusted Boot can be performed. The execution of computational processes can then
be supported by using separate execution zones (Zone Isolation). More complex trust functions such as remote attestation can
be performed by a Trusted Platform Module (TPM). In this paper, we propose security patterns for these components. The
abstraction power of patterns can be used to define the basic aspects that each of these components must have, thus serving

as reference for designers and for security evaluation.

Keywords Trusted systems - Security patterns - Root of Trust - Trusted processing

1 Introduction

The rapid expansion of the Internet of Things (loT) and
cyberphysical systems has revolutionized various industries,
enabling seamless connectivity and smart automation. How-
ever, the widespread adoption of those technologies has
also introduced unprecedented security challenges. As dig-
ital systems become ubiquitous in critical applications such
as healthcare, industrial control systems, and smart cities,
assuring their integrity during their boot-up process becomes
paramount; the introduction of impostor software can pro-
vide many ways to attack the system. The abstraction power
of patterns can be used to define those aspects that each of the
software units to be used in the system must have. A pattern
is a a solution to a recurring problem in a specific context.
We define here a cluster of patterns that together describe the
possibilities available to designers to build systems which

B Antonio Muiioz
anto@uma.es

Eduardo B. Fernandez

fernande @fau.edu

Department of Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, USA

Languages and Computar Science Department, University of
Malaga, Malaga, Spain

Published online: 04 February 2025

will only use trusted software. These mechanisms start from
a Root of Trust (RoT), from where all the other trusts, e.g.,
for components and software, are derived. As part of the
RoT, a Secure Memory is needed, which can be considered
as part of the RoT or as a separate component. After a RoT
is established, a Secure Boot can be performed. The exe-
cution of computational processes can then be supported by
using two or more separate execution zones (Zone Isolation).
More complex trust functions such as remote attestation can
be performed by a Trusted Platform Module (TPM). A TPM
requires a RoT and a Trusted Boot; that is, a TPM is a com-
pound pattern (a pattern composed of other patterns). Figure 1
is a pattern diagram showing the relationships between these
patterns. The RoT provides trust for the Trusted Boot and the
TPM. Note that a TPM usually includes a RoT. The Secure
Memory is shown here as part of the RoT.
Our contributions here include:

— New patterns for RoT, Secure Boot, and Secure Memory.

— Revised patterns for TPM and Zone isolation.

— An example of the use of these patterns in a system
design, intended to validate them.

The Table 1 includes a comparison of the significant
contributions of the proposed work to the state of the art

@ Springer

72 Page2of21

E. B. Fernandez, A. Mufioz

Table 1 Significant advances of the proposed work compared to state-of-the-art (SOTA)

Aspect of contribu-
tion

State-of-the-art (SOTA)

Advances in this work

Modular and Interde-
pendent Security Pat-
terns Framework

Reusability and
Abstraction

New Patterns

Holistic System
Security

Advances in Secure
Zone Isolation

Addressing Chal-
lenges in Hardware
Security

System Modularity
and Integration
Enhanced Threat
Modeling and Miti-
gation

Validation and
Design Example

Research on TPMs or Secure Boot focuses on
isolated implementations. Integration of
patterns into cohesive clusters enhances
modularity and scalability

Conventional frameworks lack abstraction to
bridge theory and practice

Studies focus on specific technologies (e.g., TPM
or Secure Boot), leaving gaps for modular
patterns

Lacks end-to-end security, often ignoring
interplay between components

Hardware isolation exists but is rarely extensible
for secure software design

Hardware security solutions exist but lack
integration into frameworks

Fragmented methods specific to certain
applications (e.g., mobile, cloud)

Threat-countermeasure mappings often lack
depth

Validation focuses on components (e.g., Verified
Boot in Android), without system integration

Introduces interrelated pattern clusters
connecting functional dependencies (e.g., RoT
foundational for Secure Boot and TPM)

Adopts a design pattern approach for abstraction
and reusability, adaptable to diverse systems

Proposes novel patterns (e.g., RoT, Secure Boot,
Secure Memory) and extends existing ones
(e.g., Zone Isolation, TPM)

Ensures lifecycle security by connecting patterns
(e.g., Secure Boot for initialization, Zone
Isolation for runtime protection)

Zone Isolation pattern ensures execution
separation and controlled inter-zone
communication

Integrates tamper-resistant modules to defend
against physical and firmware attacks

Unified reusable pattern clusters for scalable,
integrated architectures

Detailed mappings align with MITRE ATT&CK
and NIST guidelines (e.g., RoT counters
side-channel attacks)

Demonstrates integration of proposed patterns
into secure mobile device design

trust

Secure
Boot

—_—
Trusted
Process

S

Boot trusted
execution

Zone
L] Isolation

Fig.1 Pattern diagram of the trust patterns

Secure
Storage

(SOTA). It highlights advancements in modular security
patterns, reusability, novel and extended patterns, holistic
system security, detailed threat modeling, and validation
through real-world design examples.

To better contextualize the patterns presented in this paper,
Fig. 1 illustrates the relationships between key components
and their roles within the trusted computing architecture.
This diagram provides a high-level view of the Root of Trust
(RoT), Secure Storage, Trusted Boot, Zone Isolation, and
TPM patterns.

The Root of Trust (RoT) serves as the foundational
component, providing a secure foundation for all other pat-
terns. From the RoT, trust is extended to Secure Storage,
which ensures the protection of sensitive data and crypto-

@ Springer

graphic keys. Trusted Boot leverages the RoT to validate
the integrity of the system boot process. Zone Isolation
builds on these components to create separate execution
environments, ensuring that sensitive and non-sensitive pro-
cesses operate independently. Finally, the TPM integrates
multiple functions, including attestation, secure storage, and
key management, to provide a cohesive Trusted Computing
framework. By structuring these patterns into an intercon-
nected cluster, Fig.1 shows their interdependencies and
collaborative functionality. This system-level understanding
ensures that designers can effectively use the patterns to build
secure and trustworthy systems.

The rest of the article is organized as follows: Sect. 2
presents some background on patterns and trusted comput-
ing. Section 3 has the Root of Trust pattern. Section4 shows
the Secure Storage pattern, while Sect. 5 presents the Trusted
Boot pattern, Sects. 6 and 7 describe the Zone Isolation and
TPM patterns, respectively. Section 8 presents an example of
the use of these patterns in the design of a complex system
and a discussion of some general design aspects. We end in
Sect. 9 with some conclusions.

A cluster of patterns for trusted computing

Page 3 of 21 72

2 Background
2.1 Patterns

As indicated above, a pattern is a solution to a recurring prob-
lem in a specific context. All patterns that describe solutions
to design problems can be called design patterns, as opposed
to patterns that describe other problems such as teaching
methodologies. In the context of security, a security pattern
describes a solution to a security problem by encapsulating
good design practices into a reusable and abstract framework.

Abstract Security Patterns (ASPs) describe a conceptual
security mechanism that realizes one or more security poli-
cies aimed at controlling (stopping or mitigating) a threat or
complying with a security-related regulation or institutional
policy [25]. To ensure consistency and usability, patterns are
described using a structured template composed of several
sections. Below, we detail the main components of a pat-
tern’s structure, following the extended POSA template [17]:

— Problem Defines the recurring issue the pattern addresses,
such as the need for trusted software loading or secure
data storage. It also identifies forces (e.g., trade-offs, lim-
itations) that influence the solution.

— Context Describes the conditions and environment where
the pattern applies, such as trusted computing environ-
ments with sensitive operations.

— Solution Outlines the approach to solving the problem,
using diagrams (e.g., UML class, sequence) to detail
interactions. For instance, Secure Boot solutions rely on a
Root of Trust to validate system integrity during startup.

— Structure Provides a static view of the pattern using
class diagrams. For example, the Root of Trust structure
includes Secure Memory, Trusted Processor, and Cryp-
tographic Systems.

— Dynamics Describes runtime behavior using sequence
diagrams. For example, Secure Boot dynamics illustrate
the validation of each boot module in a trusted sequence.

— Threats and Countermeasures Identifies potential threats
(e.g., tampering, side-channel attacks) and mitigations
(e.g., tamper-resistant hardware, cryptographic protec-
tions). Countermeasures align with frameworks like
NIST and MITRE ATT&CK.

— Consequences Highlights the advantages (e.g., flexibility,
secure execution) and trade-offs (e.g., performance over-
head) of using the pattern. For example, Zone Isolation
ensures strong separation but may introduce inter-zone
communication overhead.

— Implementation Details practical implementation
approaches, such as using hardware modules (e.g., TPM)
or firmware (e.g., UEFI Secure Boot).

— Known Uses Lists real-world applications. For example,
Secure Boot is used in platforms like Android Verified
Boot [27] and Microsoft BitLocker [34].

— Related Patterns Explores complementary or alternative
patterns. For instance, the Root of Trust pattern is foun-
dational for Secure Boot and TPM.

Patterns in this paper are grouped into a cluster, empha-
sizing their inter-dependencies. Figure 1 illustrates the rela-
tionships, with the Root of Trust as the foundation, extending
trust to Secure Boot, Zone Isolation, and TPM. This intercon-
nected approach ensures modularity, scalability, and robust
security for trusted computing systems.

2.2 Trusted computing

Trusted Computing (TC) is afoundational technology designed
to enforce consistent, expected behaviors in computers
through a combination of hardware and software mecha-
nisms [45]. The core objective of TC is to establish trust in
a system’s behavior by ensuring its integrity, confidentiality,
and authenticity. This is achieved through a set of interrelated
components and functions that form the backbone of secure
systems.

At the heart of Trusted Computing is the establishment of
a Root of Trust (RoT), a reliable and immutable component
that serves as the foundation for extending trust to other sys-
tem elements. The RoT verifies the authenticity and integrity
of the software and hardware in the system. It provides a
starting point for secure operations, such as Secure Boot and
Trusted Boot, which ensure that only validated software com-
ponents are executed during the system startup process. Key
components of TC include:

— Endorsement Key (EK) A unique 2048-bit RSA key pair
embedded in the hardware during manufacturing. It is
essential for secure transactions and serves as a root cre-
dential for generating additional keys used in attestation
and encryption processes.

— Memory Curtaining A mechanism for isolating sensi-
tive memory areas, even from the operating system. This
isolation prevents unauthorized access and ensures the
confidentiality of critical data, such as cryptographic keys
and application states.

— Sealed Storage Critical to protecting sensitive data,
Sealed Storage binds private data to specific software
and hardware configurations. This ensures that data can
only be accessed after the integrity of the system has been
verified, making it a cornerstone for Digital Rights Man-
agement (DRM) and other applications that require data
confidentiality.

— Remote Attestation A process that allows a system to
demonstrate its integrity to an external verifier by gener-

@ Springer

72 Page4of21

E. B. Fernandez, A. Mufioz

ating and presenting a software certificate. This certificate
is based on measurements of the system’s state, enabling
detection of unauthorized software changes and promot-
ing confidence in the system’s operation.

— TPM A secure hardware module that performs key man-
agement, cryptographic operations, and attestation. It
is a critical enabler of Trusted Computing, integrat-
ing functions such as secure storage, cryptographic key
generation, and measurement logging. The TPM also
supports Remote Attestation by securely storing integrity
measurements and providing cryptographic proofs to
external entities.

— Trusted Third-Party (TTP)In systems requiring anonymity,
a TTP certifies the Attestation Identity Key (AIK) used in
Remote Attestation. The TTP ensures that attestation can
occur without revealing sensitive information about the
attesting device, thereby enhancing privacy.

Trusted Computing Framework Together, these compo-
nents provide a robust framework for secure computing. For
example, the RoT initializes the secure boot process, ensur-
ing that all subsequent modules in the system are trusted. The
TPM logs and protects integrity measurements that can then
be used for remote attestation. Memory Curtain and Sealed
Storage provide runtime protection for sensitive data, ensur-
ing its confidentiality and integrity.

Relevance to Security Patterns Trusted Computing con-
cepts are integral to the security patterns presented in this
paper. The RoT serves as the foundational element for the
Root of Trust pattern, while the Secure Boot pattern builds
upon the RoT to validate system integrity at boot time. The
TPM pattern uses Sealed Storage and Remote Attestation
to ensure trusted operations, and the Zone Isolation pattern
uses Memory Curtaining to enforce strict separation between
execution environments.

By leveraging these trusted computing principles, the pat-
terns proposed in this work enable the systematic design of
systems that consistently maintain critical security goals such
as confidentiality, integrity, and availability across diverse
application domains. This integration highlights the synergy
between theoretical foundations and practical implementa-
tions, ensuring robust and adaptable solutions for secure
computing.

3 Root of Trust (RoT)

3.1 Intent

A Root of Trust is a trustable component that defines a start-
ing point for the chain of trust used for establishment and

attestation of the software modules being loaded onto a sys-
tem.

@ Springer

3.2 Context

Modern computing systems have increasing numbers of
interconnected devices, their complexity is also increasing,
and they are exposed to more elaborate attacks. There is
a variety of available software from different origins and
unknown level of trust.

3.3 Problem

We need to trust the authenticity of the software we are using.
This means that we need a secure way to load and start soft-
ware onto a computer system. This is called a Boot process
or just Boot. We need to make sure that every component of
the software we are loading is authentic. Otherwise, hackers
could replace or modify some of the software modules and
compromise the security of the system.

One of the primary consequences of not having a trusted
way to perform the boot of a system is that the boot pro-
cess becomes vulnerable to attacks. Furthermore, a lack of
trust in the system’s security properties can undermine inter-
operability and compatibility with other systems, leading to
communication failures and compatibility issues.

Additionally, without authentic software, secure updates
and remote attestation become difficult to implement. A
secure update mechanism requires a trusted source to verify
and authenticate the new software-firmware before installing
it. Similarly, remote attestation requires the ability to verify
the identity and integrity of the remote device.

The solution to this problem must satisfy the following
forces:

— Immutability. The initial module must be immutable; oth-
erwise, its verification functions have no meaning.

— Secure execution. During verification in the boot pro-
cess, the starting module and the following modules must
be protected from interference. Otherwise, attackers can
introduce malicious software.

— Trusted Anchor: We need a reliable anchor to launch
other applications; this allows applications to know their
platform is authentic.

3.4 Threats

A Root of Trust (RoT) is susceptible to two types of
threats [2]:

3.4.1 Physical threats

Where the attacker has physical access to the device. These
include:

A cluster of patterns for trusted computing

Page 5 of 21 72

— Side-channel attacks (T1-SCA). These attacks are based
on power analysis of the signals used by the software
modules. According to frameworks such as NIST[42]
countermeasures and MITRE ATT&CK|[6], these can be
mitigated through techniques such as secure hardware
design and power trace obfuscation.

— Fault injection attacks (T2-FIA). An attacker manipu-
lates a device’s electrical inputs (e.g., voltage or clock).
By violating the safe ranges of these operating param-
eters, a fault can be introduced into the processor,
resulting in skipped instructions or corrupted memory
transactions. NIST countermeasures emphasize the use
of input validation and secure hardware redundancy,
while MITRE ATT&CK highlights the importance of
monitoring anomalous behavior.

— Probe attacks (T3-PA). These access data by physically
probing exposed wires or pins. Secure encapsulation
and shielding, as recommended by NIST, can minimize
this risk. MITRE ATT&CK suggests employing tamper-
evident and tamper-resistant techniques to detect and
prevent such attacks.

— Tampering attacks (T4-TA). An attacker may change the
results of the verification of cryptographic keys. Frame-
works such as NIST suggests the use of tamper detection
mechanisms, while MITRE ATT&CK emphasizes the
importance of monitoring and logging to detect unautho-
rized changes.

3.4.2 Software threats (T5-SACA)

Software threats include scenarios where the attacker coex-
ists alongside hardware assets and targets critical software
components. These include:

— Application-level malware. This exploits vulnerabilities
in software applications to execute unauthorized actions
or gain access to sensitive data. Established frameworks
like MITRE ATT&CK provide detailed techniques for
application-level attacks (e.g., T1059 - Command and
Scripting Interpreter [10]) and recommend defenses such
as application whitelisting and behavioral anomaly detec-
tion. NIST countermeasures emphasize secure software
development practices and regular vulnerability assess-
ments.

— System-level malware. This type of malware can reside
in the operating system or firmware, allowing the attacker
to gain privileged access and persist undetected. The
MITRE ATT&CK includes techniques for firmware com-
promise (e.g., T1542 - Pre-OS Boot [12]) and OS-level
persistence (e.g., T1547 - Boot or Logon Autostart
Execution [13]). NIST recommends the use of secure
boot mechanisms, run-time integrity monitoring, and
firmware integrity validation.

Main -
cPU

1 1 1

Private ! Trusted Crypto

Processor Memory Processor system

ra—

Random
Number
Generatos

Key
Generator

Fig.2 Class diagram of Root of Trust (RoT)

3.5 Solution

Define a module called a RooT of Trust (RoT), protected by
hardware. The integrity of the RoT is verified and then it
sequentially loads the software modules of the system, thus
defining a chain of trust. The modules may include the oper-
ating system and applications. Control is transferred to the
next level only if the integrity of the current layer is verified.

3.5.1 Structure

Figure 2 shows the class diagram of the Root of Trust pattern.
Itincludes Private (Secure) Memory to store results of valida-
tion and cryptographic keys, a Trusted Processor to execute
validation and storage functions, and a Cryptographic Sys-
tem that contains a Random Number Generator and a Key
Generator. Class Main CPU indicates some type of processor
used to run applications.

3.5.2 Dynamics

The use cases for a RoT include: secure boot, issue and
store keys, remote attestation, and others. Figure 3 shows a
sequence diagram for a secure boot. When the user starts
the boot, the initiator module (RoT) loads the next module
(modulel), verifies its authenticity and if positive transfers
control to it, module 1 then takes over and performs the same
operations on the next module, until a final module, usually
the operating system, is reached.

3.6 Countermeasures
Since the defenses to the identified threats are implemented
in hardware or firmware, we do not show them as additions

to the class diagram of the RoT. These defenses include:

— Side-channel attacks (T1-SCA). Commercial offerings
such as the RoT of Rambus [49, 50] provide electric

@ Springer

72 Page6of21

E. B. Fernandez, A. Mufioz

~«RoT» modulel: module2:
initiator:

boot

load

verify

transferControl

load

= verify

transferControl

Fig.3 Sequence diagram for the use case Secure Boot

protection against various side-channel attacks such as
Differential Power Analysis (DPA), Simple Power Analy-
sis (SPA), Simple Electromagnetic Analysis (SEMA), Dif-
ferential Electromagnetic Analysis (DEMA), Correlation
Power Analysis (CPA), and Correlation Electromagnetic
Analysis (CEMA).

— Fault injection attacks (T2-FIA). Hardware or firmware
can be designed to compensate for fault injection attacks.
Hardware isolation is another solution.

— Tampering attacks (T3-TA). The hardware can be built to

avoid tampering. Hardware isolation is another solution.

Software attacks on critical assets (T5-SACA). Cryp-

tographic protection of critical assets protects against

software attacks. The private memory of the RoT can

have access controls as shown in Lohr et al. [31].

Probe attacks (T3-PA) can be mitigated by hardware

designs that incorporate physical barriers and shield-

ing techniques to prevent access to sensitive circuitry.

Additionally, encryption ensures that any data intercepted

through probing remains unintelligible.

3.7 Implementation

The Root of Trust (RoT) can be implemented as a software
unit [30], as a hardware module, or as part of a Trusted
Execution Environment (TEE) [2]. In general, hardware
implementations provide more security. Each RoT imple-
mentation has its strengths and weaknesses, and the selection
of the RoT implementation depends on the specific security

@ Springer

requirements of the system. Some of the RoT implementa-
tions that are commonly used in the industry are:

— Rambus Hardware Root of Trust (Rambus, Inc.) [50] A
silicon-based hardware root of trust falls into two cate-
gories: fixed function and programmable. Essentially, a
fixed-function root of trust is a state machine. These are
typically compact and designed to perform a specific set
of functions like data encryption, certificate validation
and key management. These compact, state machine-
based root of trust solutions are particularly well suited
for Internet of Things (IoT) devices. A hardware-based
programmable root of trust is built around a CPU. It can
execute a more complex set of security functions. A pro-
grammable root of trust is versatile and upgradable, able
to run new cryptographic algorithms and secure applica-
tions to meet evolving attack vectors. A Trusted Platform
Module (TPM) 7 is a hardware component that provides
RoT functionality as well as other functions.

— Trusted Execution Environment (TEE) TEE is a secure
environment that is isolated from the main operating sys-
tem (Sect. 6). They can be used to execute RoT's.

— Zheng et al. [59] consider the TPM connection to the rest
of the system to be insecure and propose a dual architec-
ture for trusted booting using a RoT.

— Hardware Security Modules (HSM) HSMs [3] are spe-
cialized hardware devices that are designed to provide
secure key storage and cryptographic operations. HSMs
are commonly used in financial institutions, government
agencies, and other organizations that require high levels
of security. These provide secure RoTs by storing cryp-
tographic keys in a tamper-resistant hardware device.

— DesignWare tRoot Secure This is a hardware-based RoT
from Synopsis that they announce as highly secure,
emphasizing that it can provide a scalable platform to
deliver diverse security functions and applications. Like
other implementations, Synopsis tRoot [54] uses a secure
separate processor to host the public key of the root of
trust with its own key management and storage.

The set of required roots defined by Trusted Computing
Group (TCG) offers essential functionalities to describe the
trustworthiness aspects of a platform [28]. Although it is
impossible to ascertain if a Root of Trust behaves correctly,
it is feasible to understand how these roots are implemented.
Certificates play a crucial role in ensuring the trustworthiness
of a root’s implementation. For instance, a certificate may
specify the manufacturer and the evaluated assurance level
(EAL) of a TPM, instilling confidence in the Roots of Trust
incorporated into the TPM. Moreover, a certificate from a
platform manufacturer can provide assurance that the TPM
is correctly installed on a compliant machine, making the

A cluster of patterns for trusted computing

Page 7 of 21 72

platform’s Root of Trust trustworthy. TCG mandates three
Roots of Trust in a trusted platform:

— Root of Trust for Measurement (RTM): The RTM is
responsible for reliably initiating measurements of the
platform’s state during the boot process or system initial-
ization. It ensures that integrity measurements are taken
and recorded for critical system components, enabling
the evaluation of the platform’s trustworthiness. This is
the first critical step in the chain of trust.

— Root of Trust for Storage (RTS): The RTS provides a
secure mechanism for storing integrity measurements
and cryptographic keys. It ensures that sensitive informa-
tion, such as platform configuration and security status,
is protected from unauthorized access or tampering,
thereby maintaining data confidentiality and integrity.

— Root of Trust for Reporting (RTR): The RTR is respon-
sible for securely reporting the stored integrity measure-
ments and cryptographic proofs to an external verifier.
This process, known as attestation, allows third parties
to assess the trustworthiness of the platform and its com-
pliance with security policies.

While existing hardware and software solutions for RoT
are well established, the conceptual utility of the RoT pat-
tern lies in its ability to generalize these implementations
into a reusable framework. The pattern provides a high-
level abstraction that can standardize design principles and
guide the development of new trusted systems. In addition,
reverse engineering and conformance testing can be used to
verify that existing implementations adhere to the pattern’s
structure and principles, ensuring consistency and reliability
across platforms.

Certificates also play a critical role in the validation of
RoT implementations. For example, platform vendors issue
certificates that specify compliance with security standards
such as Evaluated Assurance Level (EAL). This certification
process ensures that the RoT behaves as intended and that its
integration into the platform is trustworthy.

By providing a structured framework, the RoT pattern
allows system designers to adapt its principles to differ-
ent implementations, bridging the gap between theoretical
abstractions and practical applications while maintaining
robust security.

3.8 Known uses

— Mobile devices, e.g., Motorola [51], Huawei [29], and
others, use a RoT to establish trust in the device’s boot
process. This is critical for maintaining the security and
integrity of mobile devices, which are often used to access
sensitive information.

— A RoT is commonly used in cloud computing systems
to provide a secure foundation for virtual machines and
containers. In this context, a RoT is used to establish
trust between the cloud provider and the customer [46],
as well as between different customers sharing the same
infrastructure. By establishing trust, RoT can help pre-
vent attacks such as virtual machine escape [33], in which
an attacker gains access to sensitive data by exploiting
vulnerabilities in the virtualization layer.

— RoT is used on the Internet of Things (IoT) to establish
trust between loT devices and the cloud or other backend
systems [47]. By establishing trust, RoT can help prevent
attacks such as device spoofing and man-in-the-middle
attacks, which are common in those environments.

— A RoT is also used in many other types of systems,
including automotive systems [48], industrial control
systems [57], and critical infrastructure [21]. In these sys-
tems, the RoT is used to establish trust in the system’s
firmware, software, and hardware components, and to
ensure that only authorized updates are installed.

— Other known uses of RoTs include on-the-fly drive
encryption [32], rootkit detection [46], identification of
possible unauthorized modifications at both the OS and
application level [57], prevention of improper reads or
writes of unauthorized programs in memory, and they
even have some presence in hardware-based digital rights
management (DRM) solutions [18].

3.9 Consequences

The RoT pattern provides the following advantages:

— Immutability As the RoT is implemented in hardware it
can be protected against illegal modification.

— Secure execution The RoT can provide secure execution.
A Secure Boot process validates each loaded module and
protects the system against invalid software.

— Trusted Anchor A RoT provides a reliable anchor upon
which to launch other applications, with the premise that
there are, at least to some extent, guarantees of platform
trustworthiness.

— Secure storage The results of verification and the cryp-
tographic keys used for protection can be stored in the
private memory of the RoT or in a separate module
(Sect.4).

— Flexibility. The functions of the RoT do not depend on
the implementation of the application processors.

Its liabilities include:

— The Root of Trust pattern introduces additional complex-
ity and overhead into a system, as additional validation

@ Springer

72 Page8of21

E. B. Fernandez, A. Mufioz

steps and checks may be required. This complexity can
be difficult to manage and can introduce potential vulner-
abilities if not properly designed and implemented. It can
also impact system performance and require additional
resources.

— Potential for compromise of the initial trust anchor. If the
RoT is compromised, the entire system’s security can be
compromised. This can occur if the RoT is implemented
using software, as software is inherently vulnerable to
attack.

— Potential for failure of the RoT itself. If the RoT fails,
the entire system can become untrusted. This can occur
if the RoT is not designed with sufficient fault tolerance.

4 Secure storage
4.1 Intent

Control access to stored data based on authorization rules
and proof of integrity of the requester.

4.2 Context

Trusted computing environments where highly sensitive
information is kept.

4.3 Problem

Hardware is considered trusted, but we need to make sure that
only authorized and unmodified software can access highly
sensitive information, e.g., secret keys.

The solution to this problem must satisfy the following
forces:

Security. We need to control access to storage; otherwise,
an attacker would be able to read and modify application data,
change secret keys, or use these keys to access sensitive data.

Flexibility. We want to allow only legitimate modifications
to the operating systems or applications.

4.4 Threats

— Impostor access to secure storage (T6-IASS). An attacker
with a stolen certificate attempts to read or modify
sensitive data. Frameworks such as MITRE ATT&CK
categorize these attacks under credential access tech-
niques, particularly T1552 [58] (Unsecured Credentials).
Countermeasures recommended by NIST include enforc-
ing strong access controls, encrypting sensitive data in
storage, and employing certificate revocation mecha-
nisms to mitigate unauthorized access.

— A compromised operating system (T7-COS) attempts to
retrieve secret keys. MITRE ATT&CK provides insights

@ Springer

into these attacks under the category T1555 [14] (Creden-
tials from Password Stores) and T1570 [16] (Lateral Tool
Transfer), highlighting how attackers can exploit oper-
ating system-level weaknesses to gain access to secure
key storage. NIST suggests measures such as runtime
integrity verification, isolating key storage in hardware-
based security modules, and continuously monitoring for
signs of compromise at the operating system level.

4.5 Solution

A Root Key is used to cryptographically protect data and
other keys. This Root Key is used by the Rook Key Control
to allow access to data.

4.5.1 Structure

Figure 4 shows the class diagram of this pattern. A Root
Key protects the data. The Root Key Control encrypts and
decrypts data and verifies the integrity of the software trying
to access the data.

4.5.2 Dynamics

Figure 5 shows the use case “Access data in a secure stor-
age”. When an application requests access to some data, the
Root Key Control verifies its integrity and the integrity of its
execution environment. If successful, the Root Key Control
uses the Root Key to decrypt the requested data. Now the
application can access the data.

4.6 Countermeasures
— Impostor access to secure storage (T6-IASS): An impos-
tor can be authenticated but it cannot pass the integrity
test.
— A compromised operating system (T7-COS) will have

changes; because of this lack of integrity its attempt will
be rejected by the Root Key Control.

4.7 Implementation
The same issues discussed for the RoT apply to this pattern.
4.8 Known uses
There are various implementations of Secure Storage:
— Cell Processor Secure Storage The Cell processor [52]

provides secure storage accessible only when the proces-
sorisina 'secure state’. In this state, the software running

A cluster of patterns for trusted computing

Page 9 of 21 72

Root Key

Hardware protected e

Root Key Control 1 request

+ encrypt(clear : Data) : Data
*| + decrypt(cipher : Data) : Data 1
- verifylntegrity() : bool

EEE—
verify integrity *

1 executes in

1
‘ verify integrity Execution Environment

Fig.4 Class diagram of the Secure Storage pattern (from [31])

‘ Application: ‘ RootKeyControl:

’ ExecEnv: ‘ ’ Data: ‘

init

request
(app.data)

verify integrity verify integrity

decrypt
(Root Key) -

access

Fig.5 Sequence diagram of use case “Access data in a secure storage”

on the processor is measured and validated through a
secure boot mechanism. This design ensures that secure
storage is available only to verified and trusted software.

— Rambus Hardware Root of Trust The Rambus Hard-
ware Root of Trust [50], developed by Rambus, Inc.,
includes a secure storage unit as part of its architec-
ture. This secure storage is designed to protect crypto-
graphic keys, sensitive data, and other critical assets in a
hardware-isolated environment.

— TPM Sealing The Trusted Computing Group (TCG)
specifies a sealing mechanism [55], implemented in the
TPM. This functionality allows a key, usable only within
the TPM, to have its usage restricted by defining spe-
cific values for Platform Configuration Registers (PCRs).
Since the PCRs securely store integrity measurements
recorded during the authenticated boot process, the key’s
usage can be restricted to software that successfully
passes integrity verification.

— OMTP TR1 Recommendation The Open Mobile Ter-
minal Platform (OMTP) TR1 specification [44] out-
lines detailed requirements for secure storage in mobile
devices, ensuring compliance with stringent security
standards.

4.9 Consequences

This pattern has the following advantages:

Security The countermeasures can stop the identified
threats.

Flexibility Applications that pass the integrity checks of
the Root Key Control can amake changes to system software.

Liabilities include: Software updates are more difficult
because of the need to show integrity before accessing stor-
age.

5 Secure boot
5.1 Intent

Establish and ensure the integrity, authenticity, and trustwor-
thiness of the boot process in computing systems.

5.2 Context

A computing environment involving connected devices and
handling sensitive or potentially sensitive information. We
assume we have a root of trust to start the loading.

5.3 Problem

Systems are often threatened at a fundamental level dur-
ing the boot process, where unauthorized or compromised
code can be executed, leading to serious security breaches.
A vulnerable boot sequence could allow a tampered oper-
ating system or malicious boot loader to be loaded. Such
breaches at the boot level compromise the integrity of the
entire system, often before the operating system itself starts.
In addition, the presence of rootkits or bootkits that embed
themselves within the boot process can evade detection by
standard security measures and gain deep system access.
These threats are of particular concern because they can per-
sist undetected through system reboots and anti-virus scans.
In addition, the execution of unauthorized or unverified soft-
ware during system startup poses significant risks, including
compromising system security and data integrity. This is
exacerbated in environments where regulatory compliance is
critical, as unauthorized software can lead to non-compliance
issues. The fundamental nature of these threats requires a
mechanism to ensure that only verified and trusted software
components are executed during the critical boot phase.

5.4 Solution

The solution to this problem must satisfy the following
forces:

@ Springer

72 Page100f21

E. B. Fernandez, A. Mufioz

— Tamperproof. The initial module must be immutable; oth-
erwise, its verification functions have no meaning.

— Secure execution. During its verification process in the
boot process, the starting module and the following mod-
ules must be protected from interference. Otherwise,
attacks can introduce malicious software.

— Hardware Integrity: Ensuring the underlying hardware
hasn’t been tampered with, as compromised hardware
can undermine the security of the entire system.

— Software Supply Chain Attacks: Mitigating risks associ-
ated with the software supply chain, such as the inclusion
of malicious code or unauthorized modifications during
the software development or distribution process.

— Compatibility and Flexibility: Balancing security with
compatibility for various software and hardware, ensur-
ing that security measures do not unduly restrict legiti-
mate software or hardware functionality.

— User Trust and Compliance: Maintaining user trust and
meeting regulatory compliance standards, especially in
industries where data security and privacy are paramount.

5.5 Threats

Secure Boot is susceptible to several types of threats. These
threats, when mapped to established frameworks such as
NIST countermeasures and MITRE ATT&CK, highlight spe-
cific attack vectors and potential mitigations:

— Firmware Corruption or Tampering (T8-FCT) The
integrity of Secure Boot can be compromised if the
firmware itself is corrupted or tampered with, allow-
ing malicious code to bypass security checks. This
aligns with MITRE ATT&CK technique T1542.001 [7]
(Firmware Corruption) and NIST-recommended con-
trols, including firmware integrity verification and the
use of digitally signed firmware updates.

— Exploitation of Vulnerabilities in Secure Boot Process
(T9-EoVSB) Potential vulnerabilities within the Secure
Boot process, such as flawed verification algorithms or
insecure handling of cryptographic keys, can be exploited
to circumvent security measures. MITRE ATT&CK tech-
niques T1542.001 [7] (Pre-OS Boot) o T1542.002 [36]
(Component Firmware) apply here, and NIST advises
secure algorithm design, robust key management, and
penetration testing.

— Unauthorized Key Installation (T10-UKI) The installa-
tion of unauthorized cryptographic keys into the Secure
Boot key database can lead to the booting of untrusted
software, thereby undermining the security guarantees of
Secure Boot. This threat is related to MITRE ATT&CK
technique T1556.001 [38] (Credential Manipulation via
Key Installation). NIST recommends implementing strict
access controls and auditing key management activities.

@ Springer

— Bootloader Exploits (T11-BE) Exploits targeting the

bootloader can potentially bypass Secure Boot restric-
tions, allowing for the execution of unauthorized code at

system startup. MITRE ATT&CK technique T1542.003 [37]

(Bootkit) addresses such exploits, and NIST countermea-
sures include using a TPM to secure the bootloader.

— Physical Access Attacks (T12-PAA) Attackers with phys-

ical access to the hardware can attempt to manipulate the
Secure Boot settings or hardware configuration to disable
or circumvent the Secure Boot mechanism. This aligns
with MITRE ATT&CK technique T1562.001 [8] (Impair
Defenses: Disable or Modify Tools).

Social Engineering Attacks (T13-SEA) These involve
tricking authorized personnel into disabling Secure Boot
or making insecure configurations, thus compromising
the security of the boot process. MITRE ATT&CK tech-
nique T1566 [15] [15] (Phishing) is relevant, and NIST
advises awareness training and policy enforcement to
mitigate such risks.

Supply Chain Attacks (T14-SUCA) Compromise in the
supply chain, such as the inclusion of compromised com-
ponents or software, can undermine the efficacy of Secure
Boot by introducing malicious elements before deploy-
ment. This is mapped to MITRE ATT&CK technique
T1195 [11] (Supply Chain Compromise), with NIST
recommending supply chain risk management (SCRM)
practices.

— Malware Targeting Secure Boot Components (T15-MTSBC)

Malware specifically designed to target and exploit
weaknesses in the components involved in Secure Boot
can compromise the boot process. This corresponds to
MITRE ATT&CK technique T1542.003 [37] (Bootkit),
and NIST suggests endpoint protection and real-time
monitoring.

— Insider Threats (T16-1T) Malicious insiders within an

organization could potentially disable or misconfigure
Secure Boot settings, leading to a compromise in system
integrity. MITRE ATT&CK technique T1562.001 [8]
(Impair Defenses: Disable or Modify Tools) applies. This
technique highlights how adversaries, including insid-
ers, can disable or modify security settings, such as
Secure Boot, to evade detection and compromise system
integrity. NIST advises implementing role-based access
control (RBAC) and auditing administrative activities,
emphasizing tamper-proof audit trails and referencing
CyberArk [20] as an example.

Outdated or Weak Cryptographic Algorithms (T17-
OWCA) Utilizing outdated or weak cryptographic algo-
rithms in Secure Boot can make the system susceptible
to cryptographic attacks, rendering the Secure Boot pro-
cess ineffective. This risk aligns with MITRE ATT&CK
technique T1600.001 [9] (Weaken Encryption: Reduce
Key Space). NIST emphasizes regular updates to cryp-

A cluster of patterns for trusted computing

Page 11 of 21 72

Fig.6 Class diagram of the 7N\
Secure Boot pattern

Bootstrap Module

verification data

verify transfer control

RoT

tographic libraries and compliance with the latest stan-
dards, such as FIPS 140-2 [43], to mitigate this threat.

5.6 Solution

The Boostrap Modules define a chain of trust. One of these
modules is the Root of Trust. Each module is connected to
the following module in the chain; it verifies it, stores the
results of verification, and if successful transfers control to
the next module.

Trusted Boot refers to a security process that ensures a
computer or device’s operating system and firmware are
authenticated and have not been tampered with or altered
during the startup process. This process ensures each com-
ponent in the boot process is validated for integrity, but it does
not prevent untrusted software from running after the verifi-
cation. In essence, “Secure Boot”” and “Trusted Boot” (known
as specializations of SB) address the need for stronger, more
resilient defenses against advanced persistent threats (APTs)
that target the boot process and system integrity.

The primary challenges that both mechanisms aim to
address are multifaceted. Firstly, they counteract the threat of
sophisticated malware, such as rootkits, which can be embed-
ded deeply into the system at the boot level.

5.6.1 Structure

Figure 6 shows the class model of this pattern. Each Bootstrap
Module is connected to its successor. It keeps verification
data and verifies the authenticity of that module. After the
verification is successful, it transfers control to that module.
The sequence is started by the Root of Trust, the initial mod-
ule.

5.6.2 Dynamics

Figure 6 shows the sequence diagram for the use case Secure
Boot, illustrating a practical example of how the pattern could

be implemented in a real system. The RoT starts the boot pro-
cess. The RoT and each Boot Module verify the authenticity
of the next module and transfer control to it. The Operating
System is the last module loaded and is in charge of loading
the applications.

In the first verification approach, cryptographic hash func-
tions, like SHA-256, are used to compute hash values of
program binaries, which are then compared to reference val-
ues. Any mismatch indicates modifications to the binary. The
second approach involves cryptographically signing each
program binary with a vendor-specific signature key. The
binary’s signature can be verified to ensure it remains unmod-
ified after its generation.

The chain of trust is built through a sequence of integrity
checks, wherein each stage validates the next. If an integrity
violation is detected, execution is halted, and the system stops
or invokes a backup module [4]. The root of trust for the
entire chain of integrity measurements lies in the very first
boot module, which must be protected against unauthorized
modifications. Additionally, the integrity verification data,
such as hash reference values or signature verification keys,
also requires protection.

5.7 Countermeasures

Since the defenses to the identified threats are implemented
in hardware or firmware, we do not show them as additions to
the class diagram of the Secure Boot. These defenses include:

— Firmware Corruption or Tampering (TS8-FCT) Secure
Boot counters this threat by implementing integrity
checks and cryptographic signing of firmware. This
ensures that any unauthorized modifications to the
firmware are detected, maintaining the integrity of the
Secure Boot process.

— Exploitation of Vulnerabilities in Secure Boot Process
(T9-EoVSB) To combat potential vulnerabilities, Secure
Boot is regularly updated and patched. This, along with
comprehensive security testing and vulnerability assess-
ments, helps identify and mitigate any weaknesses that
could be exploited.

— Unauthorized Key Installation (T10-UKI) Strict access
controls and authentication mechanisms are employed to
manage the Secure Boot key database. This is reinforced
by regular audits and monitoring to detect and prevent
unauthorized key installations.

— Bootloader Exploits (T11-BE) The bootloader is kept up-
to-date and securely coded to prevent exploits. Advanced
security measures like code signing and integrity verifi-
cation are implemented for additional protection.

— Physical Access Attacks (T12-PAA) Hardware-based
security measures, such as Trusted Platform Modules
(TPMs), are used to safeguard Secure Boot settings.

@ Springer

72 Page12o0f21

E. B. Fernandez, A. Mufioz

Additionally, tamper-evident hardware designs help detect
and prevent physical tampering.

— Social Engineering Attacks (T13-SEA) Regular secu-
rity awareness training for personnel is conducted to
mitigate the risk of social engineering. Policies against
unauthorized changes to Secure Boot configurations are
established and enforced.

— Supply Chain Attacks (T14-SUCA) The countermeasure
includes rigorous supply chain security practices, vet-
ting of suppliers, and secure handling of components
and software. Cryptographic verification of software and
components from suppliers is also a crucial part of this
strategy.

— Malware Targeting Secure Boot Components (T15-
MTSBC) Deployment of advanced malware detection
and prevention tools, regular updates of Secure Boot
components, and monitoring for signs of compromise
form the core of this countermeasure.

— Insider Threats (T16-IT) To address insider threats, the
least privilege access controls are implemented, along
with regular audits of Secure Boot configurations. Behav-
ioral monitoring is also used to detect and mitigate actions
by malicious insiders.

— QOutdated or Weak Cryptographic Algorithms (T17-
OWCA) Secure Boot constantly updates its cryptographic
algorithms to align with current best practices and
employs strong, industry-standard cryptographic algo-
rithms for all operations.

5.8 Implementation

Figure 7 shows an implementation-oriented sequence dia-
gram for a Secure Boot. Upon the system’s initialization,
the hardware commences the boot sequence by powering up,
thereby activating the foundational phase where the Root of
Trust (RoT) is established. Subsequently, the Unified Exten-
sible Firmware Interface (UEF]), an integral element of the
RoT, assumes control to conduct an integrity check of the
system BIOS, ensuring the primary firmware is authentic
and unbreached. Following the firmware’s validation, the
process transitions control to the bootloader, exemplified by
GRUB, whose integrity is meticulously validated against the
RoT to confirm its inviolability. The bootloader, in its trusted
state, proceeds to load the operating system kernel, metic-
ulously verifying the operating system’s signature prior to
transferring control; this step is crucial to ascertain that the
kernel is the genuine, untampered version intended for the
system. With the kernel securely loaded, the operating sys-
tem takes the helm, embarking on a thorough verification and
loading of its components and drivers. This rigorous inspec-
tion ascertains the security of each element, safeguarding
the system against compromised components. Culminating
the secure boot process, the operating system undertakes the

@ Springer

(am] [moesen] [aos | [cowmomoner] [cosena

establish

check integrity

verified

verify S signature
verified

loads kernel

Fig.7 Sequence diagram for the use case “Secure Boot”

-

Bootoader ‘Operating
(GRUB) Systom (keme))

Fig.8 Secure data access sequence diagram

initialization and management of applications. At this junc-
ture, applications are granted execution privileges solely after
stringent authentication, verified by the preceding security
layers, thus ensuring a fortified commencement of the sys-
tem’s operations.

Diagram from Fig. 8 depicts the secure data access proce-
dure involving an application, Root Key Control, Execution
Environment (ExecEnv), and the Data entity. The process
begins with the application initiating a request, followed by
integrity verifications by the Root Key Control and ExecEnv.
Upon successful verification, the ExecEnv decrypts the root
key, granting the application access to the data while main-
taining the integrity and security of the system.

The UEFI, replacing traditional BIOS, initiates the Secure
Boot by validating its integrity with Root of Trust (RoT) sup-
port, crucial for system security. This involves checking the
UEFTI’s digital signature against RoT’s security elements like
cryptographic keys. Upon passing this verification, the UEFI
assesses the bootloader, such as GRUB for Linux, verifying
its authenticity through RoT’s cryptographic keys. GRUB
then validates the operating system kernel’s signature, ensur-
ing it’s secure and permitted to run. Once verified, the kernel
oversees loading and verifying OS components and drivers
with RoT’s backing, ensuring system integrity. The operat-
ing system then controls, running applications and managing
services securely, completing the Secure Boot process and
establishing a ready and secure system. This sequential pro-
cess from hardware start-up to application launch forms a
comprehensive chain of trust, securing the boot process by
verifying each component’s trustworthiness.

A cluster of patterns for trusted computing

Page 13 of 21 72

5.9 Known uses

— Arbaugh et al. presented a bootstrap system that used a

secure boot process [4].

Windows Trusted Boot Microsoft Windows implements
Trusted Boot to safeguard the boot process after Secure
Boot has verified the initial boot sequence [35]. Trusted
Boot in Windows begins where Secure Boot ends, with
the Windows bootloader verifying the Windows kernel’s
digital signature. It then verifies all other components
of the startup process, including boot drivers and Early
Launch Anti-Malware (ELAM) drivers. If tampering is
detected, it prevents the component from loading, poten-
tially repairing it to restore system integrity.

Unified Extensible Firmware Interface (UEFI) Secure
Boot This is a protocol provided by UEFI firmware and
is a standard step in the Secure Boot process, which is a
part of the Trusted Boot methodology. UEFI Secure Boot
ensures that only signed, verified bootloaders and kernels
are allowed to be executed, preventing unauthorized code
from running at boot time.

Measured Boot Measured Boot [31], often integrated
with Trusted Platform Module (TPM) technology, takes
measurements of each component of the boot process and
stores this information in the TPM. The integrity of these
measurements can be later verified to ensure that the boot
process has not been compromised.

thoot (Trusted Boot) [59] An open-source implementa-
tion that works with Intel’s Trusted Execution Technol-
ogy (TXT) and TPM to provide a secure boot environ-
ment for Linux. tboot can ensure that the platform boots
into a known good state by verifying the integrity of the
launch environment and the OS.

Linux Trusted Boot Trusted Boot on Linux systems often
involves the use of a Trusted Platform Module (TPM).
The boot process, in this case, includes a TPM taking
measurements of the BIOS/EFI layer and creating cryp-
tographic hashes for each binary image, which are then
stored in the TPM’s Platform Configuration Registers
(PCRs). This ensures the integrity of the boot process
and can also support remote attestation, allowing exter-
nal verification of the system’s boot integrity.

— Android Verified Boot (AVB) Android devices use Veri-

fied Boot to ensure the integrity of the device’s software.
AVB involves checking the cryptographic signatures of
each partition before mounting them to ensure they match
the signatures provided by the device manufacturer. This
process is enforced by the bootloader and is critical for
Android’s security model.

Chrome OS Verified Boot Chrome OS implements a Ver-
ified Boot process that checks each stage of the boot
process for tampering. This includes the firmware, kernel,
and other critical components. If any modifications are

detected, Chrome OS attempts to repair itself by reverting
to a known good state.

These known uses demonstrate the broad application of
Trusted Boot processes across various platforms and devices,
each leveraging cryptographic verification to ensure the
integrity and trustworthiness of the system from the initial
power-on to the launching of the operating system and appli-
cations.

5.10 Consequences

The pattern provides the following advantages:

— Tamperproof Design Our security pattern ensures the
immutability of the initial module offers the advantage
of safeguarding the integrity of verification functions.
Since these functions are foundational to the security sys-
tem, their inviolability is crucial. This advantage directly
counteracts the force of needing a tamperproof system,
ensuring that the initial verification mechanisms remain
effective and unaltered.

— Secure Execution Benefit By protecting the initial and
subsequent modules from interference during the verifi-
cation process in the boot process, this security pattern
ensures secure execution. This is particularly vital in
preventing the introduction of malicious software dur-
ing critical phases of operation. It addresses the force of
secure execution, ensuring that the system remains intact
and uncompromised throughout its operation.

— Hardware Integrity Preservation This advantage in this
context lies in its ability to verify and ensure the integrity
of the underlying hardware. This is crucial since com-
promised hardware can undermine the entire system’s
security. By addressing this force, the pattern helps in
maintaining a robust foundation for overall system secu-
rity.

— Verification Rigor Establishes a stringent verification
mechanism to prevent unauthenticated module execu-
tion. This advantage speaks to the need for rigorous
validation of software component integrity and origin,
bolstering system security against unauthorized access
or manipulation.

— Key Security Highlights the importance of protecting
cryptographic keys with the highest security standards to
avoid system-wide vulnerabilities. Addressing the need
for key security ensures that cryptographic mechanisms,
essential for data protection and secure communications,
remain uncompromised.

— Physical Safeguarding Ensures hardware components are
protected from physical tampering, addressing the risk
posed by physical interference. This advantage is vital

@ Springer

72 Page 14 0f 21

E. B. Fernandez, A. Mufioz

for upholding the trustworthiness and security posture of
the entire system.

— Compatibility and Flexibility Balance Balances security
measures with the need for compatibility with various
software and hardware, ensuring security implementa-
tions do not restrict legitimate functionality. This directly
addresses the challenge of integrating robust security
without compromising on system usability and flexibil-
ity.

— User Trust and Compliance Fulfillment By enhancing
system security and integrity, the pattern significantly
boosts user trust and aids in meeting regulatory compli-
ance, especially critical in data-sensitive industries. This
advantage ensures the system not only remains secure but
also aligns with user expectations and legal standards,
addressing the force of user trust and compliance.

The pattern has the following liabilities:

— There is some overhead in verifying signatures.
— Extra complexity (maintenance, scalability, upgrading).

6 Zone isolation
6.1 Intent

Provide two execution environments: one is intended to sup-
port the standard functions of phones: make phone calls, take
pictures, or store lists of contacts. The other is intended for
secure business functions such as accessing databases, using
development environments, and employee email. The sepa-
ration is performed by creating two types of strictly separated
virtual processors.

6.2 Context

Corporate databases contain data that may be valuable
because they include information about business plans, cus-
tomer medical records, and similar. We want our employees
to have secure access to these resources according to their
business functions. People want to use their smart phones
and tablets for all kinds of applications, e.g. digital payments
as well as all their private functions such as phone calls,
interactions with friends, and similar. When using mobile
devices to perform work functions we require a highly secure
execution environment; for example, to store access rights,
cryptographic keys, and trusted processes [56].

6.3 Problem

Mixing employees’ private functions with company informa-
tion may leak valuable company information. A malicious

@ Springer

user who has compromised the private zone could get data
that can help her attack the work zone. A malicious applica-
tion run by an unsuspecting user could also collect similar
information. We need to keep these two environments strictly
separated with controlled interactions.

The following forces apply to the possible solution:

— Function requirements Different zones may be used dif-
ferently which may impose different requirements on
them; for example, real-time requirements for phone calls
or cameras. We should be able to provide different types
of zones to accommodate the needs of different applica-
tions.

— Isolation We want to make sure that the different zones
are strongly isolated. When an operating system in a zone
crashes or it is penetrated by a hacker, the effects of this
situation should not propagate to other operating sys-
tems running on different zones. For example, an attacker
should not be able to access data in another zone.

— Flexibility If there are significant changes in the threats
or the type of applications or system software, we may
need to modify the environment to implement different
defense mechanisms.

— Performance overhead We would like to have minimum
performance overhead to perform this isolation.

— Trust When the devices are part of some ecosystem we
need to create trusted environments. It would be valuable
to use the secure zone as a source of trust attestation.
System activities such as bootstrapping also require a
trusted root.

— Controlled interzone communications Both zones need
to communicate and there must be a way to perform this
communication in a secure way.

7 Trusted platform module (TPM)

We show only its basic sections and new sections on Imple-
mentation and Known Uses. The rest can be found in [39].

7.1 Intent

TPM provides assured software execution by verifying that
the hardware and software are legitimate and can be trusted
before execution takes place. A chain of trust and an inte-
grated set of cryptographic keys are fundamental for that
purpose. It may also (or instead) be intended to store secret
keys and perform encryption or decryption on request.

7.2 Context

Many cyber-physical systems are safety-critical (patient
monitoring, vehicle navigation, water purification) and a

A cluster of patterns for trusted computing

Page 15 of 21 72

false operating system or other system software could be
catastrophic. We need a way to attest these systems to make
them trustworthy.

7.3 Problem

Having a way to certify that a computing platform is trusted
and executes only trusted software is necessary for many
types of applications. The lack of such a facility would make
the processing and use of critical information very risky. Sim-
ilarly, in many applications dealing with sensitive data we
need a place to securely store private keys; otherwise the
integrity of the whole system cannot be guaranteed.

The solution to this problem is affected by the following
forces:

— Attestation We need a way to attest that a platform is
legitimate and that any software executing in it is also
legitimate. Otherwise, we cannot guarantee that the soft-
ware execution is secure.

— Authenticated Boot Process A mechanism is required to
log the boot sequence, thereby establishing a transitive
trust chain. The integrity of all subsequent processing
is dependent on this chain. Sealed-Bound Key Mecha-
nism. It’s necessary to have a system that ensures keys
for encryption and decryption are securely stored within
a trusted platform. This requires binding the creation of
these keys to the state of the platform.

— Secure cryptography We need ways to generate keys in
a secure way so we can use them to encrypt/decrypt doc-
uments and data. In any other case, the entirety of the
matter would be subject to uncertainty.

— Maintaining Data Integrity It is imperative to have the
capability to confirm that data has not been altered
without proper authorization. Failing to do so would com-
promise the reliability of our data processing.

— Assured Secure Processing It is essential to have mech-
anisms in place that guarantee software does not illicitly
leak or alter information during execution, especially
when handling critical documents.

7.4 Implementation

TPMs have been traditionally implemented as a set of discrete
chips soldered to a computer’s motherboard. This implemen-
tation allows a manufacturer to evaluate and certify the TPM,
separate from the rest of the system. Nevertheless, recent
implementations integrate TPM functionality into the same
chipset as other platform components while still providing
logical separation similar to discrete TPM chips. Currently,
five different types of TPM in its newest version 2.0 imple-
mentations can be considered [29] and [5]. Chakraborty [19]
have built an implementation using a Subscriber Identity

Module (SIM), appropriate for mobile devices. This article
also compares the properties of different TPM implementa-
tions with respect to their security of TPM, applicability, and
deployability.

7.5 Known uses

— IBM’s password manager uses it for storing keys.

— Microsoft windows management instrumentation uses

TPM for cryptographic co-processing.

Intel’s Trusted eXecution Technology.

AMD’s Secure Technology rely on a hardware TPM.

— Microsoft Bitlocker uses it to release disk encryption cre-
dentials only to a trustworthy bootloader.

— Browsers such as Chrome make use of TPM for different

purposes.

8 Related patterns

This section explores patterns related to the ones discussed
in this paper, highlighting their connections, roles, and the
contexts in which they can be applied. These patterns com-
plement or extend the capabilities of the patterns proposed
here, offering designers a broader framework for building
secure and trustworthy systems.

— Service Certification Based on Trusted Computing (TC)
[41]: This pattern leverages Trusted Computing mecha-
nisms to certify services by ensuring that the software
operating on a platform does not leak or alter sensi-
tive data. Core features include cryptographic primitives,
secure key generation, and a Dynamic Root of Trust
(DRT). This aligns with the Root of Trust (RoT) and
Secure Storage patterns discussed in this paper, empha-
sizing their roles in providing foundational trust for
service certification.

— Enterprise Service Bus [24]: A key element in integrating
services across architectures, this pattern defines a com-
mon communication bus accessible by various services.
It complements the TPM by acting as a secure integration
point for attested and authorized services.

— Authenticator [22]: After verifying the identity of a sub-
ject, this pattern grants access based on registration. It
parallels the Secure Boot and Trusted Boot patterns by
focusing on identity validation as part of the system ini-
tialization and access control processes.

— Authorizer [22]: Responsible for managing resource
access control, this pattern is crucial for implementing
Role-Based Access Control (RBAC). It complements
Zone Isolation by ensuring that interactions between iso-
lated zones follow strict authorization policies, thereby
enhancing security.

@ Springer

72 Page160f21

E. B. Fernandez, A. Mufioz

— TPM [39]: This pattern verifies the legitimacy of hard-
ware and software before execution, ensuring assured
software execution. It directly relates to Secure Boot and
Trusted Boot by serving as a central component in estab-
lishing and maintaining the chain of trust.

— Zone Isolation Using Virtual Processors [23]: This pat-
tern creates isolated execution environments, each with
dedicated resources for specific functions, such as secure
business operations or standard user functions. It com-
plements the Secure Boot and RoT patterns by ensuring
that isolated zones maintain integrity and do not interfere
with each other.

— Secure Boot and Secure Memory Patterns [31]: Presented
by H. Lohr et al., these patterns provide mechanisms to
maintain the integrity of a system’s state and establish
secure links between hardware and software components.
These complement the RoT, TPM, and Secure Storage
patterns by ensuring that system integrity is preserved
across all stages of operation.

These patterns form a cohesive framework that designers
can use in conjunction with the proposed cluster of patterns
to address a wide range of security requirements in trusted
computing environments.

9 Example

It is important for system designers to have an integrated set
of security functions that can provide protection for all sys-
tem aspects. It is also useful to have alternatives that allow
designers to select the most convenient security mechanism.
As an example, we will consider a designer attempting to
build a highly secure mobile device, inspired by [19]. The
need for identity attestation in the device and the need for
having secure processes such as Secure Boot suggests the
use of a TPM. The TPM can be built as part of the SIM.
A component of the TPM can be used as Root of Trust to
provide a Secure Boot to load the software of the device.
A TEE can be used to protect the processes of the software
that implements the TPM. The device’s data can be protected
using Secure Storage. The Trusted Process can be protected
by using a TEE. Figure 9 shows a pattern diagram of the struc-
ture of this phone. The points on the side of the SIM indicate
that we can use other patterns to structure the architecture of
the mobile device. We note also that there is no pattern for a
SIM, see the Conclusions.

10 Related work

The field of trusted computing has been explored extensively
inliterature, with significant contributions addressing various

@ Springer

Mobile Device

-

SIM Zone Isolation

a

TPM Trusted Process
> = K
RoT Secure
Boot

-

Secure
Storage

Fig.9 Pattern diagram of the portable device design

components, mechanisms, and their integration. However,
the use of security patterns as a framework for describing and
designing these components has received limited attention,
leaving a gap that our work aims to address.

Oppliger and Rytz [45] provided a comprehensive survey
of trusted computing, focusing on its potential to resolve
critical security issues in modern systems. While their work
covers foundational concepts, it does not mention the use
of patterns as a means to structure or standardize trusted
computing architectures.

Recent contributions by Ali et al. [2] narrow the focus
to specific trusted devices, offering insights into their oper-
ational mechanisms and security features. These studies
provide valuable details on the hardware and software inte-
gration of trusted computing components, such as Trusted
Execution Environments (TEEs) and Trusted Platform Mod-
ules (TPMs). However, they do not explore the potential
of security patterns for abstracting and standardizing these
designs.

The concept of a Root of Trust (RoT) has been extensively
studied as a foundational element in trusted computing. RoT

A cluster of patterns for trusted computing Page 17 of 21 72

Table 2 Cluster of patterns in trusted computing (complete)

Pattern

POSA fields

RoT

Secure Storage

Secure Boot

Intent: Establish a secure foundation for a chain of trust
Context: Complex systems with varying trust levels
Problem: Unauthorized software during boot compromises integrity

Solution: Define a hardware-protected module that verifies the integrity of software modules in a chain of trust. Each
component is loaded only after verification

Threats: T1-SCA: Side-channel attacks

T2-FIA: Fault injection attacks

T3-TA: Physical tampering of hardware

T4-HSA: Hardware spoofing attacks

T5-SACA: Malware targeting boot sequence

Countermeasures: T1-SCA: Secure hardware design, power trace obfuscation

T2-FIA: Hardware redundancy, error detection

T3-TA: Tamper-proof enclosures, physical monitoring

T4-HSA: Strong authentication for hardware devices

T5-SACA: Cryptographic protection of software modules

Consequences: Advantages: Immutability, Secure execution, Trusted Anchor, Secure storage, RoT and Flexibility
Liabilities: Introduces complexity, performance overhead, and dependency on initial trust anchor
Implementation: Rambus Hardware RoT [50], TPMs [5], TEE [40], HSM [3], DesignWare tRoot [54]

Known Uses: Mobile devices, IoT devices, cloud computing, automotive systems, industrial controls, critical
infrastructure, on-the-fly drive encryption and rootkit detection

Intent: Protect sensitive data based on requester integrity

Context: Trusted environments storing high-confidentiality data

Problem: Unauthorized access or modification of secure data

Solution: Use a Root Key to cryptographically protect data and verify access requests based on software integrity
Threats: T6-IASS: Impostor access using stolen credentials or certificates

T7-COS: Operating systems compromised to retrieve secure keys

Countermeasures: T6-IASS: Multi-factor authentication, certificate revocation

T7-COS: Hardware-isolated key storage, integrity checks

Consequences: Advantages: Ensures secure storage, prevents unauthorized access, supports flexibility for authorized
software updates

Liabilities: Adds complexity to updates, requires robust key management
Implementation: The same issues discussed for the RoT apply to this pattern

Known Uses: The Cell processor, The Rambus Hardware Root of Trust, TPM Sealing, Open Mobile Terminal
Platform (OMTP) TR1 secure storage

Intent: Ensure integrity and authenticity during boot sequence
Context: Systems requiring trusted initialization

Problem: Malicious code compromises system integrity

Solution: Implement a chain of trust where each boot module verifies the next, starting from a Root of Trust
Threats: T8-FCT: Firmware corruption or tampering

T9-EoVSB: Exploitation of Secure Boot vulnerabilities

T10-UKI: Unauthorized key installations in Secure Boot database
T11-BE: Bootloader exploits bypassing protections

T12-PAA: Physical access attacks circumventing Secure Boot
T13-SEA: Social engineering attacks to misconfigure Secure Boot
T14-SUCA: Supply chain attacks introducing malicious components
T15-MTSBC: Malware Targeting Secure Boot Components

T16-IT: Insider Threats

@ Springer

72 Page 180f21 E. B. Fernandez, A. Mufioz

Table2 continued

Pattern POSA fields

T17-OWCA: Outdated or Weak Cryptographic Algorithms
Countermeasures: T8-FCT: Cryptographic firmware signing and updates
T9-EoVSB: Penetration testing, secure algorithm design

T10-UKI: Strict access controls, database audits

T11-BE: TPM-based bootloader validation

T12-PAA: Physical tamper detection, secure hardware

T13-SEA: Employee training, configuration policy enforcement
T14-SUCA: Supplier vetting, cryptographic component validation
T15-MTSBC: Deploy advanced malware detection and prevention tools
T16-IT: Least privilege AC, audits and Secure Boot configurations
T17-OWCA: Constant update of cryptographic algorithms

Consequences: Advantages: Prevents unauthorized execution, maintains system integrity, mitigates supply chain
risks

Liabilities: Adds boot-time delays, requires robust cryptographic management
Implementation: UEFI Secure Boot, TPM integration, Android Verified Boot, Chrome OS Verified Boot
Known Uses: Windows Trusted Boot, Linux Trusted Boot, Chrome OS Verified Boot
Zone Isolation Intent: Provide isolated zones for secure and non-secure processes
Context: Mixed-use environments requiring data separation
Problem: Data leakage or unauthorized cross-zone access
Solution: Use hardware or virtual processors to enforce strict isolation between execution zones
Threats: T15-XZDA: Cross-zone data leakage or unauthorized access
T16-MCZ: Malicious applications in compromised zones
Countermeasures: T15-XZDA: Controlled communication, memory isolation
T16-MCZ: Secure context switching and zone integrity monitoring
Consequences: Advantages: Enhances security through strict isolation, supports flexible zone management
Liabilities: Adds performance overhead, requires sophisticated management
Implementation: ARM TrustZone, virtualization technologies
Known Uses: Corporate devices, secure banking, IoT systems
TPM Intent: Enable tamper-proof authentication and cryptographic operations
Context: Critical systems requiring trusted execution
Problem: Compromised hardware or software impacts trust
Solution: Use a hardware module to perform cryptographic operations and store secure keys, ensuring system
integrity
Threats: T17-WCA: Use of weak cryptographic algorithms
T18-UKC: Unauthorized key compromise
Countermeasures: T17-WCA: Regular cryptographic library updates, compliance with standards
T18-UKC: Tamper-proof hardware, secure key management

Consequences: Advantages: Enhances secure storage, supports remote attestation, provides robust cryptographic
support

Liabilities: Adds hardware cost, requires proper integration with other components
Implementation: TPM 2.0, SIM-based TPMs, integrated TPMs

Known Uses: BitLocker, Chrome, IBM password management

@ Springer

A cluster of patterns for trusted computing

Page 19 of 21 72

provides the basis for extending trust to other system com-
ponents, such as Secure Boot, Trusted Boot, and TPMs [30].
Most existing work emphasizes the technical implementation
of RoT and its security capabilities [26]. Nevertheless, there
is a lack of research exploring RoT within a pattern-oriented
framework, which could provide reusable design templates
for system architects.

Zone isolation is another crucial aspect of trusted comput-
ing, particularly for applications requiring strict separation
of processes, such as mobile devices and embedded sys-
tems. Sun et al. [53] investigated hardware-assisted isolated
computing environments, demonstrating their importance in
enhancing security. However, these studies often focus on
implementation-specific details and do not address the design
principles that could make these solutions reusable and adapt-
able across different systems.

The role of TPMs in trusted computing has been well-
documented, particularly in facilitating complex trust func-
tions such as remote attestation and secure storage [1, 31].
While TPMs provide critical functionality for secure com-
puting, existing research focuses predominantly on their
technical details and practical applications. The integration
of TPMs into a pattern-based framework for trusted comput-
ing remains an open area of research.

Despite the wealth of knowledge in trusted computing,
the literature has largely overlooked the potential of secu-
rity patterns to abstract and generalize the design of trusted
computing systems. Security patterns offer a reusable and
structured approach to design, enabling designers to address
recurring problems in trusted computing with proven solu-
tions. This gap underscores the novelty of our work, which
introduces a cluster of security patterns for trusted com-
puting. These patterns provide a unified framework for
describing the architecture and functional capabilities of
trusted components, thereby bridging the gap between theo-
retical concepts and practical implementation.

Despite the wealth of knowledge in trusted comput-
ing, the literature has largely overlooked the potential of
security patterns to abstract and generalize the design of
trusted computing systems. Security patterns offer a reusable
and structured approach to design, enabling designers to
address recurring problems in trusted computing with proven
solutions. This gap underscores the novelty of our work,
which introduces a cluster of security patterns for trusted
computing. These patterns are designed to bridge the gap
between theoretical concepts and practical implementations
by providing a modular and reusable framework for trusted
computing components. By leveraging the abstraction power
of patterns, our work aims to equip designers and evaluators
with a flexible and effective approach for building secure and

trustworthy systems. This contribution not only advances the
theoretical foundations of trusted computing but also paves
the way for more robust and adaptable system designs in
practice.

11 Conclusions

We have presented a cluster of patterns about trusted com-
puting. The patterns in the cluster present alternatives to
designers when assembling a software system that requires
handling highly sensitive information. Each pattern includes
in its template information useful to decide which pattern is
more appropriate given the type of application and its secu-
rity requirements. A design example shows the reasoning in
selecting patterns. As we indicate in Sect. 10, this is the only
work that brings the use of patterns to the design of systems
that require trusted computing (Table 2).

Acknowledgements The authors acknowledge that they received no
funding for this study. As co-authors, we wish to acknowledge the
pivotal contributions of Dr. Eduardo B. Fernandez to this manuscript.
Tragically, Dr. Fernandez passed away before the completion of this
work. His dedication to advancing scientific knowledge, his profound
insights, and his unwavering commitment to excellence were instrumen-
tal in shaping this study. This publication is a tribute to his enduring
legacy and a reflection of his invaluable role in its realization. I am
deeply honored to have collaborated with him and to present this work
in his memory.

Funding Funding for open access publishing: Universidad de Malaga/
CBUA

Data availability: Data will be made available on request.
Declarations

Conflict of interest The corresponding author declares that there is no
Conflict of interest on behalf of all authors.

Compliance with ethical standards The authors of this study have not
conducted any research with humans or animals.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

@ Springer

72

Page 20 of 21

E. B. Fernandez, A. Mufioz

References

10.

11.

12.

13.

14.

15.

16.

20.

21.

22.

23.

24.

. Alam, M., Ali, T., Khan, S., Khan, S., Ali, M., Nauman, M.,

Alghathbar, K.: Analysis of existing remote attestation techniques.
Secur. Commun. Netw. 5(9), 1062-1082 (2012)

. Ali, U, Omar, H., Ma, C., Garg, V., Khan, O.: Hardware root-

of-trust implementations in trusted execution environments. IACR
Cryptol. ePrint Arch. 2023, 251 (2023)

. Amael, J.T., Natan, O., Istiyanto, J.E.: High-security hardware

module with PUF and hybrid cryptography for data security (2024).
arXiv preprint arXiv:2409.09928

. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable

bootstrap architecture. In: Proceedings of the IEEE Symposium
on Security and Privacy, pp. 65-71. IEEE Computer Society Press
(1997)

. Arthur, W., Challener, D., Goldman, K.: A Practical Guide to TPM

2.0: Using the New Trusted Platform Module in the New Age of
Security. Springer (2015)

. MITRE ATT&CK: MITRE ATT&CK (2021). https://attack.mitre.

org

. MITRE ATT&CK: Sub-technique t1542.001: system firmware

(2024). Accessed 26 Nov 2024

. MITRE ATT&CK: Sub-technique t1562.001: disable or modify

tools (2024). Accessed 26 Nov 2024

. MITRE ATT&CK: Sub-technique t1600.001: weaken encryption:

reduce key space (2024). Accessed 26 Nov 2024

MITRE ATT&CK: Technique t1059: command and scripting inter-
preter (2024). Accessed 26 Nov 2024

MITRE ATT&CK: Technique t1195: supply chain compromise
(2024). Accessed 26 Nov 2024

MITRE ATT&CK: Technique t1542: pre-os boot (2024). Accessed
25 Nov 2024

MITRE ATT&CK: Technique t1547: boot or logon autostart exe-
cution (2024). Accessed 25 Nov 2024

MITRE ATT&CK: Technique t1555: credentials from password
stores (2024). Accessed 25 Nov 2024

MITRE ATT&CK: Technique t1566: phishing (2024). Accessed
26 Nov 2024

MITRE ATT&CK: Technique t1570: lateral tool transfer (2024).
Accessed 25 Nov 2024

. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.:

Pattern-Oriented Software Architecture: A System of Patterns, vol.
1. Wiley (1996)

. Chabaud, F.: Setting hardware root-of-trust from edge to cloud, and

how to use it. In: C&ESAR, pp. 115-130 (2022)

. Chakraborty, D., Hanzlik, L., Bugiel, S.: {simTPM}: user-centric

{TPM} for mobile devices. In: 28th USENIX Security Symposium
(USENIX Security 19), pp. 533-550 (2019)

CyberArk Software Ltd: Cyberark: leader in identity security
(2024). Accessed 26 Nov 2024

Ehret, A., Moore, P., Stojkov, M., Kinsy, M.A.: Hardware root-of-
trust support for operational technology cybersecurity in critical
infrastructures. In: 2023 IEEE High Performance Extreme Com-
puting Conference (HPEC), pp. 1-7. IEEE (2023)

Fernandez, E.B.: Security patterns in practice: building secure
architectures using software patterns. Wiley Series on Software
Design Patterns (2013)

Fernandez, E.B., Forneron, J.: A security pattern for zone isola-
tion using virtual processors in mobile and embedded systems. In:
12th Latin American Pattern Languages of Programs Conference,
Valparaiso, Chile, November (2018)

Fernandez, E.B., LaRed, M.D.: Patterns for the secure and reliable
execution of processes. In: Proceedings of the 15th International
Conference on Pattern Languages of Programs (PLoP 2008),
Nashville, TN, October (2008)

@ Springer

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

. Microsoft:

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Fernandez, E.B., Yoshioka, N., Washizaki, H., Yoder, J.: Abstract
security patterns and the design of secure systems. Cybersecurity
(2022)

Fiorin, L., Palermo, G., Lukovic, S., Catalano, V., Silvano, C.:
Secure memory accesses on networks-on-chip. IEEE Trans. Com-
put. 57(9), 1216-1229 (2008)

Google: Android verified boot (AVB) (2013). Accessed 3 Dec 2024
Hoeller, A., Toegl, R.: Trusted platform modules in cyber-physical
systems: on the interference between security and dependability. In:
2018 IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW), pp. 136-144 (2018)

Huawei: Emui 8.0 security technical white paper. https:/
consumer-img.huawei.com/content/dam/huawei-cbg-site/en/
mkt/legal/privacy-policy/EMUIOctober2017

Li, Y., Cheng, Y., Gligor, V., Perrig, A.: Establishing software-only
root of trust on embedded systems: facts and fiction. In: Christian-
son, B. etal. (eds.) Security Protocols 2015, LNCS 9379, pp. 50-68
(2015)

Lohr, H., Sadeghi, A-R., Winandy, M.: Patterns for secure boot
and secure storage in computer systems. In: 2010 International
Conference on Availability, Reliability and Security (ARES 2010),
pp. 569-573 (2010)

Maene, P.: Lightweight roots of trust for modern systems-on-chip
(2019)

Mao, J., Zhu, H., Fan, J., Li, L., Chang, X.: Towards trust proof
for secure confidential virtual machines (2024). arXiv preprint
arXiv:2405.01030

Microsoft: Bitlocker drive encryption (2007). Accessed 3 Dec 2024
Secure boot. https://learn.microsoft.com/en-us/
windows-hardware/design/device-experiences/oem-secure-boot
Accessed 2023

MITRE ATT&CK: Technique T1542.002: component firmware
(2024). Accessed 26 Nov 2024

MITRE ATT&CK: Technique T1542.003: BOOTKIT (2024).
Accessed 25 Nov 2024

MITRE ATT&CK: Technique T1556.001: credential dumping:
LSASS memory (2024). Accessed 25 Nov 2024

Muiioz, A., Fernandez, E.B.: TPM, a pattern for an architecture for
trusted computing. In: Proceedings of the European Conference
on Pattern Languages of Programs (EuroPLoP), vol. 2020, pp. 1-8
(2020)

Muiioz, A., Rios, R., Romén, R., Lopez, J.: A survey on the
(in)security of trusted execution environments. Comput. Secur.
(2023)

Muiioz, A., Lopez, J.: A security pattern for cloud service certifi-
cation. ScienceDirect 1(1), 1-7 (2018)

National Institute of Standards and Technology: Framework
for Improving Critical Infrastructure Cybersecurity, Version 1.0
(2014). Accessed 25 Nov 2024

National Institute of Standards and Technology: FIPS 140-2: secu-
rity requirements for cryptographic modules (2001). Accessed 26
Nov 2024

Open Mobile Terminal Platform Group (OMTP): Open mobile ter-
minal platform group (OMTP) (2015). Accessed 26 Nov 2024
Oppliger, R., Rytz, R.: Does trusted computing remedy computer
security problems? IEEE Secur. Priv. 3(2), 16-19 (2005)

Parmar, P., Bhavsar, M.: Achieving trust using rot in IAAS cloud.
Procedia Comput. Sci. 167, 487-495 (2020)

Parthipan, L., Chen, L., Newton, C.J.P, Li, Y., Liu, F,, Wang, D.:
Drot: a decentralised root of trust for trusted networks. In: Interna-
tional Conference on Information and Communications Security,
pp. 683-701. Springer (2023)

Plappert, C., Lorych, D., Eckel, M., Jiger, L., Fuchs, A., Hedder-
gott, R.: Evaluating the applicability of hardware trust anchors for
automotive applications. Comput. Secur. 135, 103514 (2023)

A cluster of patterns for trusted computing

Page 21 of 21 72

49.

50.

51.

52.

53.

54.

55.

Rambus: Hardware root of trust: everything you need to know.
Accessed 25 Nov 2024

Inc. Rambus. Root of trust rt-600 series: security anchored in
hardware (2021). https://www.rambus.com/security/root-of-trust/
rt-600-series/

Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution
environment: what it is, and what it is not. In: 2015 IEEE Trust-
com/BigDataSE/Ispa, vol. 1, pp. 57-64 (2015)

Shimizu, K., Nusser, S., Plouffe, W., Zbarsky, V., Sakamoto, M.,
Murase, M.: Cell broadband engine” ¥ processor security architec-
ture and digital content protection. In: Proceedings of the 4th ACM
International Workshop on Contents Protection and Security, pp.
13-18 (2006)

Sun, H., Sun, K., Wang, Y., Jing, J., Wang, H.: Trustice: hardware-
assisted isolated computing environments on mobile devices. In:
2015 45th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pp. 367-378. IEEE (2015)
Synopsys, Inc: DesignWare tRoot Secure Hardware Root of Trust.
Accessed 1 Dec 2024

Trusted Computing Group: TCG TPM Specification, Version 1.2,
Revision 103 (2007). Accessed 26 Nov 2024

56.

57.

58.

59.

Winter, J.: Trusted computing building blocks for embedded linux-
based arm trustzone platforms. In: STC’08, pp. 21-30, Fairfax, VA,
USA. ACM (2008)

Wu, Y., Skipper, G., Cui, A.: Uprooting trust: Learnings from an
unpatchable hardware root-of-trust vulnerability in siemens s7-
1500 ples. In: 2023 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 179-190. IEEE Computer
Society (2023)

Zahid, S., Mazhar, M.S., Abbas, S.G., Hanif, Z., Hina, S., Shah,
G.A.: Threat modeling in smart firefighting systems: aligning
MITRE ATT&CK matrix and NIST security controls. Internet
Things 22, 100766 (2023)

Zheng, C., Li, J., Yao, X.: Design and implementation of trusted
boot based on a new trusted computing dual-architecture. Comput.
Secur. 127, 103095 (2023)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

