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Abstract. First-order temporal logic, the extension of first-order logic with operators dealing with
time, is a powerful and expressive formalism with many potential applications. This expressive logic
can be viewed as a framework in which to investigate problems specified in other logics. The monodic
fragment of first-order temporal logic is a useful fragment that possesses good computational prop-
erties such as completeness and sometimes even decidability. Temporal logics of knowledge are
useful for dealing with situations where the knowledge of agents in a system is involved. In this
paper we present a translation from temporal logics of knowledge into the monodic fragment of
first-order temporal logic. We can then use a theorem prover for monodic first-order temporal logic
to prove properties of the translated formulas. This allows problems specified in temporal logics of
knowledge to be verified automatically without needing a specialized theorem prover for temporal
logics of knowledge. We present the translation, its correctness, and examples of its use.
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1. Introduction

Temporal logics have been shown useful in computer science and artificial intelli-
gence in order to specify how a system changes over time (Chomicki and Niwinski,
1995; Manna and Pnueli, 1992). First-order temporal logics (FOTLs) allow the
use of both first-order syntax and operators relating to change over time. This
powerful and expressive language has generally been avoided because of problems
with completeness. However, a particular fragment of first-order temporal logic,
the monodic fragment (Hodkinson et al., 2000), has the completeness and some-
times even the decidability property. We can use this fragment as a unifying frame-
work for other non-classical logics such as temporal logics of knowledge or belief
(Fagin et al., 1995), spatio-temporal logics (Gabelaia et al., 2003), or temporal
description logics (Artale and Franconi, 1999).

TeMP (Hustadt et al., 2004) is an implementation of a resolution-based
calculus for monodic first-order temporal logic over expanding domains (Konev
et al., 2003). By providing satisfiability-preserving translations from the logics
mentioned above into the monodic fragment of first-order temporal logic, we can
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then use TeMP to prove problems from a range of logics. This avoids having to
develop a number of special-purpose theorem provers. In this paper we explore
this idea by considering the case of temporal logic of knowledge.

Temporal logics of knowledge are useful in order to specify systems where the
knowledge of an agent is important and that knowledge changes over time. The
logic we use in this paper is the fusion of linear time temporal logic with finite
past and infinite future combined with the multimodal logic S5n. Temporal logics
of knowledge have been used for the specification and verification of multiagent
systems (Fisher and Wooldridge, 1997; Halpern, 1987; Meyer and van der Hoek,
1995), security protocols (Dixon et al., 2003, 2004; Syverson, 1993), games in-
volving knowledge such as Cluedo (Dixon, 2004), and puzzles such as the muddy
children puzzle (Dixon et al., 1998; Fagin et al., 1995).

Here we provide a satisfiability-preserving translation from temporal logic of
knowledge into monodic first-order temporal logic. Translations of modal logics
into first-order classical logics are given in, for example, (Gabbay et al., 2003).
The translation used here is based on that in (Schmidt and Hustadt, 2003) and
avoids a direct encoding of the transitivity axiom, thereby making it particularly
suitable for mechanization. We provide experimental results from case studies
expressed in a temporal logic of knowledge, KL(n), which have been translated
into monodic first-order temporal logic. Properties of these case studies have been
proved by using TeMP.

The paper is organized as follows. In Section 2 we present the syntax and
semantics of KL(n) and describe a normal form for this logic. In Section 3 we
describe monodic first-order temporal logic. In Section 4 we provide a translation
from formulae in the normal form of KL(n) to monodic first-order temporal logic
and prove its correctness. In Section 5 we give an example using the translation, and
in Section 6 we discuss the experimental results from various problems expressed
in KL(n). In Section 7 we compare the results obtained by using the translation
presented in Section 4 with the results obtained by using the standard translation
from KL(n) into the monodic fragment of FOTL. We provide concluding remarks
in Section 8.

2. Temporal Logic of Knowledge

The logic KL(n) is the fusion of linear-time temporal logic with multi-modal S5.
The description here follows that of (Halpern and Vardi, 1989). We first give the
syntax and semantics of KL(n), where each modal relation is restricted to be an
equivalence relation (Halpern and Vardi, 1989).

2.1. SYNTAX

Formulas of KL(n) are constructed from a set of propositional symbols P =
{p, q, r, . . .}, the standard propositional connectives ¬ (not), ∨ (or), ∧ (and),
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and ⇒ (implies), and future-time temporal connectives including ♦ (sometime in
the future), © (at the next moment in time), � (always), U (until), and W (unless,
or weak until). We interpret these temporal connectives over a discrete, linear tem-
poral model of time with finite past and infinite future. Thus, the model of time
is isomorphic to the set of natural numbers, N, with the usual order relation <,
“less than.” For knowledge we assume a set of agents Ag = {1, . . . , n}, and we
introduce a set of unary modal connectives Ki for i ∈ Ag, where a formula Kiφ is
read as “agent i knows φ.”

Formally, the set of well-formed formulas of KL(n), WFFK , is defined as follows:

• false, true, and any element of P is in WFFK .
• If A and B are in WFFK , then so are the following.

¬A A ∨ B A ∧ B A ⇒ B KiA (for i ∈ Ag)

♦A �A AUB AWB ©A

We define some particular classes of formulas that will be useful later.

DEFINITION 1. A literal is either p or ¬p, where p ∈ P .

DEFINITION 2. A modal literal is either Kil or ¬Kil, where l is a literal and
i ∈ Ag.

2.2. SEMANTICS

We first assume that the world may be in any of a set S of states and that a timeline
t is an infinitely long, linear, discrete sequence of states, indexed by the natural
numbers. Now, let TLines be the set of all timelines.

DEFINITION 3. A model M is a structure M = 〈TL, R1, . . . , Rn, π〉, where

• TL is a set of timelines, with a distinguished initial timeline t0. A point q is a
pair q = (t, u), where t ∈ TL and u ∈ N is a temporal index into t . Let Points
be the set of all points.

• Ri , for all i ∈ Ag is the agent accessibility relation over Points, that is,
Ri ⊆ Points × Points, where each Ri is an equivalence relation.

• π is a function, π : Points × P → {T , F }, called valuation.

As usual, we define the semantics of the language via the satisfaction relation
“|=”. For KL(n), this relation holds between pairs of the form 〈M, q〉 (where M is
a model and q is a point in TL × N), and formulas in WFFK . The rules defining this
satisfaction relation are given below.

〈M, (t, u)〉 |= true
〈M, (t, u)〉 
|= false
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〈M, (t, u)〉 |= p iff π((t, u), p) = T (where p ∈ P )

〈M, (t, u)〉 |= ¬A iff 〈M, (t, u)〉 
|= A

〈M, (t, u)〉 |= A ∨ B iff 〈M, (t, u)〉 |= A or 〈M, (t, u)〉 |= B

〈M, (t, u)〉 |= ©A iff 〈M, (t, u + 1)〉 |= A

〈M, (t, u)〉 |= �A iff ∀u′ ∈ N, if (u ≤ u′) then 〈M, (t, u′)〉 |= A

〈M, (t, u)〉 |= ♦A iff ∃u′ ∈ N such that (u ≤ u′) and 〈M, (t, u′)〉 |= A

〈M, (t, u)〉 |= AUB iff ∃u′ ∈ N such that (u′ ≥ u) and 〈M, (t, u′)〉 |= B,

and ∀u′′ ∈ N, if (u ≤ u′′ < u′)
then 〈M, (t, u′′)〉 |= A

〈M, (t, u)〉 |= AWB iff 〈M, (t, u)〉 |= AUB or 〈M, (t, u)〉 |= �A

〈M, (t, u)〉 |= KiA iff ∀t ′ ∈ T L. ∀u′ ∈ N, if ((t, u), (t ′, u′)) ∈ Ri

then 〈M, (t ′, u′)〉 |= A

Note that even if the condition for the definition of ♦ is u ≤ u′ rather than
u < u, the temporal resolution rule (see (Dixon et al., 1998)) for this logic is still
valid; this is one of the purposes of including ♦.

For convenience in presenting the normal form for KL(n) we introduce a symbol
start, such that 〈M, (t, u)〉 |= start if and only if t = t0 and u = 0.

For any formula A, if there is some model M and timeline t such that
〈M, (t, 0)〉 |= A, then A is said to be satisfiable. If for any formula A, for all
models M there exists a timeline t such that 〈M, (t, 0)〉 |= A then A is said
to be valid. Note, this is the anchored version of the (temporal) logic; that is,
validity and satisfiability are evaluated at the beginning of time (see, for example,
(Emerson, 1990)).

As agent accessibility relations in KL(n) models are equivalence relations, the
axioms of the normal modal system S5 are valid in KL(n) models. S5 axioms
are K stating that K(φ ⇒ ψ) ⇒ (Kφ ⇒ Kψ), T (Reflexivity) stating that
Kφ ⇒ φ, and 5 (Euclideaness) stating that ¬Kφ ⇒ K¬Kφ. However, there are
other complete axiom systems for S5, for example, using reflexivity, symmetry, and
transitivity axioms. This last axiom system is the approach adopted in this paper.
The system S5 is widely recognized as the logic of idealized knowledge, and for
this reason KL(n) is often termed a temporal logic of knowledge.

2.3. NORMAL FORM

Formulas in KL(n) can be transformed into a normal form called separated normal
form for temporal logic of knowledge, abbreviated as SNFK (Dixon et al., 1998).
In this transformation, complex subformulae are replaced by new propositions,
and the truth value of these propositions is linked to the formulas they replaced in
all states. In addition, non-core temporal operators are simplified. To achieve this,
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we introduce a new operator �∗, which allows nesting of Ki and � operators. This
operator is defined in terms of the common knowledge operator C and E (everybody
knows) operators. The operator �∗ is defined as the maximal fixpoint of

�∗φ ⇔ �(φ ∧ C�∗φ).

Thus, the semantics for the C and E operators is

〈M, (t, u)〉 |= Eφ iff ∀i ∈ Ag, 〈M, (t, u)〉 |= Kiφ,

and

〈M, (t, u)〉 |= Cφ iff 〈M, (t ′, u′)〉 |= φ if (t ′, u′) is modally reachable
from (t, u),

where modal reachability is defined as follows.

DEFINITION 4. Let M be a KL(n)-model and (t, u), (t ′, u′) be points in M . Then
(t ′, u′) is modally reachable from (t, u) iff either (i) ((t, u), (t ′, u′)) ∈ Ri for some
agent i ∈ Ag; or (ii) there exists some point (t ′′, u′′) in M such that (t ′′, u′′) is
reachable from (t, u) and (t ′, u′) is reachable from (t ′′, u′′).

Essentially, the common knowledge of φ, that is, Cφ, holding in a state implies
that φ holds in every state reachable by following any Ri relation, or in other words,
everybody knows that everybody knows that everybody knows . . . φ.

Formulas in SNFK are of the general form

�∗ ∧

j

Tj ,

where each Tj , known as a clause, must be in one of the varieties given in Figure 1,
where ka , lb, and l are literals and mib are either literals or modal literals involving
the Ki operator. Thus a Ki clause (also known as a modal clause) may not con-
tain both modal literals Kil1 and Kjl2 (or Kil1 and ¬Kjl2, or ¬Kil1 and ¬Kjl2)
if i 
= j . Each Ki clause contains literals, or modal literals involving the Ki

operator where at least one of the disjuncts is a modal literal. The outer �∗ op-
erator that surrounds the conjunction of clauses is usually omitted in our notation.
Similarly, for convenience the conjunction is dropped, and we consider just the set
of clauses Tj .

3. Monodic First-Order Temporal Logic

3.1. SYNTAX

First-order (discrete linear time) temporal Logic, FOTL, is an extension of classical
first-order logic with operators that deal with a linear and discrete model of time
(isomorphic to N with the usual order relation, <, less than).
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start ⇒
r∨

b=1

lb (an initial clause)

g∧

a=1

ka ⇒ ©
r∨

b=1

lb (a step clause)

g∧

a=1

ka ⇒ ♦l (a sometime clause)

true ⇒
r∨

b=1

mib (a Ki-clause)

true ⇒
r∨

b=1

lb (a literal clause)

Figure 1. Clauses in SNFK .

Formulas in FOTL are constructed in a standard way (Fisher, 1997; Hodkinson
et al., 2000) from the following:

• Predicate symbols P0, P1, . . . each of which is of some fixed arity (nullary
predicate symbols are called propositions);

• Individual variables x0, x1, . . . ;

• Individual constants c0, c1, . . . ;

• Boolean operators ∧, ¬, ∨, ⇒, true (‘true’), false (‘false’);

• Quantifiers ∀ and ∃; and

• Temporal operators ‘♦’ (sometime in the future), ‘©’ (at the next moment
in time), ‘�’ (always) ‘U’ (until), and ‘W ’ (unless, or weak until).

Thus,

• true and false are FOTL formulas.

• If t1, . . . , tn are constants or variables and P is a n-ary predicate symbol, then
P(t1, . . . , tn) is a FOTL formula.

• If φ and ψ are FOTL formulas and x is an individual variable, then the
following are FOTL formulas.

¬φ φ ∨ ψ φ ∧ ψ φ ⇒ ψ ∀xφ ∃xφ

♦φ �φ φUψ φWψ ©φ
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DEFINITION 5. A FOTL formula φ is called monodic if any subformula of the
form T φ, where T is one of ♦, �, © (or φ1T φ2, where T is one of U or W ),
contains at most one free variable.

3.2. SEMANTICS

Formulas in FOTL are interpreted in first-order temporal structures of the form
M = 〈Dn, In〉, where Di is a nonempty set and In is an interpretation of predicate
and constant symbols over Dn. We make the expanding domains assumption, that
is, whenever n < m, Dn ⊆ Dm.

DEFINITION 6. A (variable) assignment, a, is a function from the set of individ-
ual variables to

⋃
n∈N

Dn. We denote the set of all variable assignments by V.

For every moment of time n, there is a corresponding first-order structure,
Mn = 〈Dn, In〉; the corresponding set of variable assignments Vn is a subset of
the sets of all assignments,

Vn = {a|a(x) ∈ Dn for every variable x}.
Intuitively, FOTL formulas are interpreted in sequences of such moments in time,
M0, M1, . . . with truth values in different moments being connected by means
of temporal operators.

DEFINITION 7. The truth relation Mn |=a φ in a structure M, only for those
assignments a that satisfy the condition a ∈ Vn, is defined inductively in the usual
way under the following understanding of the temporal operators.

Mn |=a ©φ iff Mn+1 |=a φ

Mn |=a �φ iff for all m ∈ N, if (m ≥ n) then Mm |=a φ

Mn |=a ♦φ iff there exists m ∈ N such that (m ≥ n) and Mm |=a φ

Mn |=a φUψ iff there exists m ≤ n, and Mm |=a ψ, and for all i ∈ N,

if (n ≤ i < m) then Mi |=a φ

Mn |=a φWψ iff Mn |=a φUψ or Mn |=a �φ

DEFINITION 8. M is a model for a formula φ (or φ is true in M) if there exists
an assignment a such that M0 |=a φ.

DEFINITION 9. A formula is satisfiable if it has a model. A formula is valid if it
is satisfied in any temporal structure under any assignment.
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4. A Translation from a Temporal Logic of Knowledge to Monodic
First-Order Temporal Logic

4.1. MOTIVATION

As mentioned earlier, KL(n) is a very useful logic for specifying systems involving
the evolution of knowledge. Our intention is to use an existing theorem prover
for first-order temporal logic in order to verify properties specified in KL(n). The
translation of temporal logic of knowledge into the monodic fragment of first-
order temporal logic is possible and has been shown in (Gabbay et al., 2003). This
standard translation π ′

0 is as follows, where φ is a KL(n) formula.

π ′
0[φ] = ∀x.π ′

1(φ, x).

π ′
1 is defined in the following way.

π ′
1(p, x) = P(x)

π ′
1(¬p, x) = ¬P(x)

π ′
1(φ ∗ ψ, x) = π ′

1(φ, x) ∗ π ′
1(ψ, x) for ∗ ∈ {∨, ∧, ⇒}

π ′
1(T φ, x)= T π ′

1(φ, x) for T ∈ {♦, ©}
π ′

1(φT ψ, x) = π ′
1(φ, x)T π ′

1(ψ, x) for T ∈ {U, W}
π ′

1(Kip, x) = ∀y(Ri(x, y) ⇒ P(y))

Here P is a unary predicate, Ri is the accessibility relation for the modal
operator Ki , φ and ψ are formulas in KL(n), and T is a temporal operator.
Since this relation is an equivalence relation, we should add to the translation
reflexivity, symmetry, and transitivity properties of the accessibility relation, as
follows.

∀xRi(x, x) Reflexivity

∀x, y(Ri(x, y) ⇒ Ri(y, x)) Symmetry

∀x, y, z(Ri(x, y) ∧ Ri(y, z) ⇒ Ri(x, z)) Transitivity

However, this translation is not ideal for automated theorem proving, mainly be-
cause the transitivity axiom is included. This property is hard to handle efficiently
by first-order theorem provers. The problem arises in how the orderings are dealt
with for the clausal form of this formula. This makes the procedure derive more
inference clauses compared to other clauses. This could lead the procedure to
not terminate (see Section 7 for practical results). For this reason, we present a
translation from KL(n) into the monodic fragment of first-order temporal logic that
includes reflexivity and symmetry axioms as before but deals with transitivity in
a different way. This translation is based in the axiomatic translation principle
presented in (Schmidt and Hustadt, 2003).
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4.2. THE AXIOMATIC TRANSLATION

We are interested in translating KL(n) formulas into the monodic fragment of first-
order temporal logic. Without loss of generality we can assume that formulas are
already in SNFK normal form.

Let φ be a set of clauses written in the normal form SNFK , that is,

φ = �∗ ∧

j

Tj .

Then φ can be translated into first-order temporal logic by applying the transforma-
tions π0 and π1 as follows, where Q is a new predicate symbol and st is a constant
representing the initial moment in time.

π0[φ] = Q(st) ∧ �
∧

j

∀xπ1(Tj , x).

In the following p is a literal, φ and ψ are formulas in KL(n), Q is the new predicate
symbol introduced in order to define the beginning of time, QKip is a new predicate
uniquely associated with Kip, and Ri is the accessibility relation for the modal
operator Ki . The translation π1 is as given in Figure 2.

For each Kip we add the clauses

�(QKip(x) ⇒ (∀y.Ri(x, y) ⇒ QKip(y))) (1)

and

�(QKip(x) ⇒ (∀y.Ri(x, y) ⇒ P(y))). (2)

For each ¬Kip we add the clause

�(Q¬Kip(x) ⇒ (∃y.Ri(x, y) ∧ ¬P(y))). (3)

π1(start, x) = Q(x)

π1(true, x) = true
π1(false, x) = false

π1(p, x) = P(x)

π1(¬p, x) = ¬P(x)

π1(φ ∨ ψ, x) = π1(φ, x) ∨ π1(ψ, x)

π1(φ ∧ ψ, x) = π1(φ, x) ∧ π1(ψ, x)

π1(φ ⇒ ψ, x) = π1(φ, x) ⇒ π1(ψ, x)

π1(©φ, x) = ©π1(φ, x)

π1(♦φ, x) = ♦π1(φ, x)

π1(Kip, x) = QKip(x)

π1(¬Kip, x) = Q¬Kip(x)

Figure 2. π1 translation.
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For every modal operator, Ki , we also add reflexivity and symmetry axioms to the
translation.

∀x.Ri(x, x) Reflexivity
∀x, y.(Ri(x, y) ⇒ Ri(y, x)) Symmetry

4.3. CORRECTNESS

In this section we show that the axiomatic translation presented in Section 4.2 is
correct.

THEOREM 1. Let φ be a set of clauses in SNFK . φ is satisfiable if and only if
π0[φ] is also satisfiable.

Proof. We first show that if φ is a satisfiable set of clauses in SNFK , then π0[φ]
is also satisfiable.

The translated clauses are interpreted over first-order temporal structures M =
〈Dn, In〉, as defined in Section 3.2, where In is an interpretation of predicate and
constant symbols over the domain Dn. The idea is to build a model for π0[φ] based
on an existing KL(n) model of φ.

Let M = 〈TL, R1, . . . , Rn, π〉 be a KL(n) model of φ. We define a FOTL model
MM = 〈Dn, In〉 as follows. If Points is the set of points (t, u) over timelines in TL,
then Dn = Points for every n ∈ N.

For every n ∈ N and every proposition symbol p occurring in P , the interpre-
tation In is defined as

In |= P(x)[x → (t, u)] iff 〈M, (t, u)〉 |= p.

Furthermore,

In |= Q(x)[x → (t, u)] iff t = t0 and u = 0,

where Q is the new proposition symbol that we introduce in order to represent the
beginning of time,

In |= Ri(x, y)[x → (t1, u1), y → (t2, u2)] iff ((t1, u1), (t2, u2)) ∈ Ri ,
In |= QKip(x)[x → (t, u)] iff for all (t ′, u′) ∈ Dn if In |=

Ri(x, y)[x → (t, u), y → (t ′, u′)],
then In |= P(y)[y → (t ′, u′)],

In |= Q¬Kip(x)[x → (t, u)] iff there exists (t ′, u′)∈Dn and In |=
Ri(x, y)[x → (t, u), y → (t ′, u′)],
and In |= ¬P(y)[y → (t ′, u′)].

First we prove that for any subformula ψ of φ that is true at some point (t, u)

in M; that is, 〈M, (t, u)〉 |= ψ , then for every n ∈ N, In |= π1(ψ, x)[x → (t, u)].
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The proof proceeds by induction on the structure of ψ .

• If ψ is true, then for every point (t, u) 〈M, (t, u)〉 |= true and obviously
In |= true[x → (t, u)].

• If ψ is false, then for every point (t, u) 〈M, (t, u)〉 
|= false and In 
|=
false[x → (t, u)].

• If ψ = start, 〈M, (t, u)〉 |= start if and only if t = t0 and u = 0. We have
π1(start, x) = Q(x) and by definition of In, In |= Q(x)[x → (t, u)] if and
only if t = t0 and u = 0.

• For p ∈ P , by definition In |= π1(p, x)[x → (t, u)] if and only if
〈M, (t, u)〉 |= p.

• Let ψ be ¬p, where p is a propositional symbol. If 〈M, (t, u)〉 |= ¬p, then
〈M, (t, u)〉 
|= p, following the definition of the propositional case,
In 
|= P(x)[x → (t, u)]. So, In |= ¬P(x)[x → (t, u)].

• Let ψ be of the form σ ∨ ω. If 〈M, (t, u)〉 |= σ ∨ ω, then 〈M, (t, u)〉 |= σ

or 〈M, (t, u)〉 |= ω. By induction hypothesis, In |= σ(x)[x → (t, u)] or
In |= ω(x)[x → (t, u)].

The same applies for ∧ and ⇒.

• Let ψ be of the form ©σ . If 〈M, (t, u)〉 |= ©σ , then 〈M, (t, u + 1)〉
|= σ . Therefore by induction hypothesis and the definition of In, In |=
π1(σ, x)[x → (t, u + 1)]. Since all the interpretations are the same In+1 |=
π1(σ, x)[x → (t, u + 1)], that is, In |= π1(©σ, x)[x → (t, u)].

• Let ψ be of the form ♦σ . If 〈M, (t, u)〉 |= ♦σ , then there exists an index l,
l ≥ u such that 〈M, (t, l)〉 |= σ . Therefore by induction hypothesis and the
definition of In, In |= π1(σ, x)[x → (t, l)]. Since all the interpretations are
the same, Il |= π1(σ, x)[x → (t, l)], that is, In |= π1(♦σ, x)[x → (t, u)].

• Let us now consider a formula of the form Kip. If 〈M, (t, u)〉 |= Kip, then for
every t ′ and for every u′ ∈ N if ((t, u), (t ′, u′)) ∈ Ri , then 〈M, (t ′, u′)〉 |= p.
By definition of In, In |= π1(p, y)[y → (t ′, u′)] if and only if 〈M, (t ′, u′)〉
|= p. Also by definition of In, In |= Ri(x, y)[x → (t, u), y → (t ′, u′)] since
((t, u), (t ′, u′)) ∈ Ri . In |= QKi

p(x)[x → (t, u)] by definition of In. Thus,
In |= π1(Kip, x)[x → (t, u)].

• Now we consider the case of a formula ψ of the form ψ = ¬Kip. If
〈M, (t, u)〉 |= ¬Kip, then there exists a point (t ′, u′) such that ((t, u), (t ′, u′))
∈ Ri and 〈M, (t ′, u′)〉 
|= p, that is, 〈M, (t ′, u′)〉 |= ¬p. By definition of In,
In |= Q¬Kip(x)[x → (t, u)] and In |= π1(¬p, y)[y → (t ′, u′)]. Therefore,
In |= π1(¬Kip, x)[x → (t, u)].

So far, we have shown that for every clause Tj in SNFK if 〈M, (t, u)〉 |= Tj ,
then In |= π1(Tj , x)[x → (t, u)]. If φ = �∗ ∧

j Tj is satisfiable in M , then it
means that for all points (t, u) ∈ Points 〈M, (t, u)〉 |= Tj . We have shown that
if 〈M, (t, u)〉 |= Tj , then In |= π1(Tj , x)[x → (t, u)]. Since we have defined
Points = Dn for all n ∈ N, we can deduce that �

∧
j (∀x(π1(Tj , x))).



306 M. C. FERNÁNDEZ-GAGO ET AL.

Next we consider a set of SNFK clauses, φ, such that π0[φ] is satisfiable. We
must show that there is a model M for KL(n) such that M |= φ.

If M is a model for π0[φ], then M0 |= π0[φ], where π0[φ] = Q(st) ∧
�

∧
j ∀xπ1(Tj , x). Therefore M0 |= Q(st) and M0 |= ∀xπ1(Tj , x) for all j and

for all i ∈ N, that is, Mi |= π1(Tj , x)[x → d] for all d ∈ D0.
We now construct a model M = 〈TL, R1, . . . , Rn, π〉 for KL(n) as follows.

• We define (t0, 0) = st . If d ∈ Dn, then we define a point as (d, n).
• We construct the timelines in the following way.

For every d ∈ ⋃
n≥0 Dn, let min(d) = n if and only if d ∈ Dn and either

n = 0 or n > 0 and d 
∈ Dn−1. Thus, for every n ≥ 0 and d ∈ Dn we define a
timeline as (d, n) = tdn−min(d), which assures us that the timeline has an initial
moment.

As set of states S we use the set {(d, n) | d ∈ Dn}. With each element d of⋃
n≥0 Dn we associate a timeline td .
Since we are assuming the case of expanding domains, if d ∈ Dn then

d ∈ Dm for m ≥ n. This, together with the fact that we define the timelines
in such a way that they have an initial moment, ensures that we can define
timelines.

• The relation Ri is defined as follows. Let (t, u) and (t ′, u′) be points in M . Let
(t, u) corresponds to (d, n) and (t ′, u′) to (d ′, n′). Then ((t, u), (t ′, u′)) ∈ R′

i

if, and only if n = n′ and In |= Ri(x, y)[x → d, y → d ′]. Let Ri be the
transitive closure of R′

i .
• The valuation π : Points × P → {T , F } is defined in a similar way as we

defined In. Let (t, u) be a point corresponding to (d, n). If p is a proposition
symbol then we define π as follows.

π((t, u), p) =
{

true if In |= P(x)[x → (t, u)],
false if In 
|= P(x)[x → (t, u)].

In the following we consider every single case of a clause Tj in the normal form
such that π1(Tj , x) is satisfiable in M0. To show that φ is satisfiable in M , we must
show that the clause Tj is true at every point (t, i), for i ∈ N, in the KL(n) model
we have constructed. Let (t, i) correspond to (d, n).

• Let Tj be a clause of the form start ⇒ ∨m
j=1 lj . We know that M0 |=

∀xπ1(start ⇒ ∨m
j=1 lj , x), that is, M0 |= (Q(x) ⇒ ∨m

j=1 Lj(x))[x → d]
for some d ∈ D0.

Recall that Q is the new predicate symbol introduced in order to represent
the beginning of time. We know that M0 |= Q(st), so there is a d ∈ D0 such
that I0 |= Q(x)[x → d]. Let d correspond to (t0, 0) by definition and by
construction of the model M , 〈M, (t0, 0)〉 |= ∨m

j=1 Lj .
• Let Tj be a clause of the form

∧g

a=1 ka ⇒ ©∨r
j=1 lj . We know that

Mn |= ∀xπ1(
∧g

a=1 ka ⇒ ©∨m
j=1 lj , x), that is, Mn |= (

∧g

a=1 Ka(x) ⇒
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© ∨m
j=1 Lj(x))[x → d] for all d ∈ Di . This means In |= ∧g

a=1 π1(ka, x) ⇒
© ∨m

j=1 π1(lj , x)[x → d]. So either In 
|= ∧g

a=1 π1(ka, x)[x → d] or In+1 |=∨m
j=1 π1(lj , x)[x → d]. By definition of the KL(n) model M we have con-

structed, (d, n+1) corresponds to (t, i +1), and either 〈M, (t, i)〉 
|= ∧g

a=1 ka

or 〈M, (t, i + 1)〉 |= ∨m
j=1 lj is true.

• The same applies for clauses of the form
∧g

a=1 ka ⇒ ♦l and true ⇒ ∨m
j=1 lj

for ka and lj literals.
• Now we consider clauses of the form true ⇒ ∨r

b=1 mib, where all mib are
modal literals.

We know that Mn0
|= π1(true ⇒ Kip1 ∨ · · · ∨ Kipr, x)[x → d0]. Let

(d0, n0) correspond to (t, u).
So,

In0 |= (true ⇒ QKip1(x) ∨ · · · ∨ QKipr
(x))[x → d0], (4)

and

In0 |= (QKip1(x) ∨ · · · ∨ QKipr
(x))[x → d0]. (5)

In addition, we have the following.

In0 |= (QKip1(x) ⇒ (∀yRi(x, y) ⇒ QKip1(y)))[x → d0] (6a)

In0 |= (QKip2(x) ⇒ (∀yRi(x, y) ⇒ QKip2(y)))[x → d0] (6b)
...

In0 |= (QKipr
(x) ⇒ (∀yRi(x, y) ⇒ QKipr

(y)))[x → d0] (6c)

In0 |= (QKip1(x) ⇒ (∀yRi(x, y) ⇒ P1(y)))[x → d0] (7a)

In0 |= (QKip2(x) ⇒ (∀yRi(x, y) ⇒ P2(y)))[x → d0] (7b)
...

In0 |= (QKipr
(x) ⇒ (∀yRi(x, y) ⇒ Pr(y)))[x → d0] (7c)

In0 |= ∀xRi(x, x) (8)

In0 |= ∀x, yRi(x, y) ⇒ Ri(y, x). (9)

If clause 5 holds, it means that for some index l, 1 ≤ l ≤ r , In0 |=
QKipl

(x)[x → d0]. From clauses 8 and 9 we know that Ri is reflexive and
symmetric. From clauses 6 whenever there is a sequence d0, d1, . . . , dn such
that (di, di+1) ∈ Ri , for all i ≤ n − 1, then In0 |= QKipl

(x)[x → di] and
In0 |= QKipl

(y)[y → di+1]. So In0 |= QKipl
(y)[y → d1] for all d1 ∈

{d|(d0, d) ∈ (Ri ∪ R̆i)}, where Ri ∪ R̆i is the reflexive, symmetric, and
transitive closure of Ri . By clauses 7 and 8, if In0 |= QKipl

(x)[x → d],
then In0 |= Pl(x)[x → d].
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By the construction of M , ((t, u), (t ′, u′)) ∈ R′
i if, and only if, (d0, d1) ∈ Ri

for d0 corresponding to (t, u) and d1 corresponding to (t ′, u′) and Ri is the
transitive closure of R′

i . As we have shown that In0 |= Pl(x)[x → d1] for
every d1 ∈ {d|(d0, d) ∈ (Ri ∪ R̆i)}, by construction of M 〈M, (t ′, u′)〉 |= pl ,
where (t ′, u′) corresponds to d1 ∈ {d|(d0, d) ∈ (Ri∪R̆i)}. Thus, 〈M, (t, u)〉 |=
Kipl .

Since

〈M, (t, u)〉 |= true ⇒ Kip1 ∨ · · · ∨ Kipr

iff

〈M, (t, u)〉 |= Kip1 ∨ · · · ∨ Kipr

iff there exists l, 1 ≤ l ≤ r , such that 〈M, (t, u)〉 |= Kipl , that is, for all t ′ and
for all u′ if ((t, u), (t ′, u′)) ∈ Ri , then 〈M, (t ′, u′)〉 |= pl . �

4.4. GUARDED MONODIC FRAGMENT

The guarded monodic fragment of FOTL is decidable (Hodkinson, 2000). For this
reason, in this section, we investigate whether the translation we presented in
Section 4 falls into this FOTL fragment.

DEFINITION 10 [Guarded Monodic Fragment]. The formulas of the guarded
monodic fragment GMF are inductively defined as follows:

(1) If A is an atom, then A is in GMF, where t1, . . . , tn, s, t are constants or
variables.

(2) GMF is closed under Boolean combinations.
(3) If φ ∈ GMF and G is an atom, for which every free variable of φ is among the

arguments of G, then ∀x(G ⇒ φ) ∈ GMF and ∃x(G ∧ φ) ∈ GMF, for every
sequence x of variables. The atom G is called a guard.

(4) If φ(x) ∈ GMF and φ(x) contains at most one free variable, then ©φ(x) ∈
GMF, �φ(x) ∈ GMF, and ♦φ(x) ∈ GMF.

(5) If φ(x) ∈ GMF and φ(x) contains exactly one free variable x, then ∀xφ(x)

and ∃xφ(x) are in GMF.

NOTE 1. Although the standard definition of the guarded fragment (see, for ex-
ample, (Grädel, 1999)) does not contain item 5, its addition does not extend the
notion of the guarded fragment; see (de Nivelle, 2000; Degtyarev et al., 2003).

Examining the axiomatic translation π0 presented in Section 4.2 shows that,
under this definition of the guarded fragment, for any formula ψ in KL(n)we can
apply a satisfiability preserving translation to ψ obtaining φ such that φ is in SNFK ,
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and the result of the transformation, π0(φ), is a guarded monodic formula. The
class of guarded monodic formulae is decidable (Hodkinson, 2000) and, moreover,
a decision procedure based on temporal resolution exists (Degtyarev et al., 2003).

5. Example

In the following we show the validity of the formula φ = (�Kp ⇒ ©Kp) using
the approach described above. First, we negate φ and transform it into SNFK .

¬φ = �Kp ∧ ©¬Kp.

We anchor it to t0.

start ⇒ t0
t0 ⇒ �Kp ∧ ©¬Kp.

Thus, the normal of form ¬φ is the following set of SNFK .

start ⇒ t0
true ⇒ ¬t1 ∨ Kp

true ⇒ ¬t0 ∨ t1
true ⇒ ¬t0 ∨ t3

t3 ⇒ ©t1
t3 ⇒ ©t3
t0 ⇒ ©t2

true ⇒ ¬t2 ∨ ¬Kp

According to the translation defined in Section 4, for every Kp we add some new
clauses.

(QKp(x) ⇒ (∀y.R(x, y) ⇒ QKp(y)))

(QKp(x) ⇒ (∀y.R(x, y) ⇒ P(y)))

For ¬Kp we add the clause

Q¬Kp ⇒ (∃yRi(x, y) ∧ π1(¬p, y)).

After applying π1, the resulting clauses are as follows.

true ⇒ ¬Q(x) ∨ T0(x)

true ⇒ ¬T1(x) ∨ QKi
p(x)

true ⇒ ¬T0(x) ∨ T1(x)

true ⇒ ¬T0(x) ∨ T3(x)

T3(x) ⇒ ©T1(x)

T3(x) ⇒ ©T3(x)

T0(x) ⇒ ©T2(x)

true ⇒ ¬T2(x) ∨ Q¬Ki
p(x)

QKp(x) ⇒ (∀y.R(x, y) ⇒ QKp(y))

QKp(x) ⇒ (∀y.R(x, y) ⇒ P(y))

Q¬Kp(x) ⇒ (R(x, skolem(x)))

Q¬Kp(x) ⇒ ¬P(skolem(x)))
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Then we apply π0, obtaining, as the final translation, the following.

Q(st)
∀x(true ⇒ ¬Q(x) ∨ T0(x))

∀x(true ⇒ ¬T1(x) ∨ QKi
p(x))

∀x(true ⇒ ¬T0(x) ∨ T1(x))

∀x(true ⇒ ¬T0(x) ∨ T3(x))

∀x(T3(x) ⇒ ©T1(x))

∀x(T3(x) ⇒ ©T3(x))

∀x(T0(x) ⇒ ©T2(x))

∀x(true ⇒ ¬T2(x) ∨ Q¬Kp(x))

∀x(QKp(x) ⇒ (∀y.R(x, y) ⇒ QKp(y)))

∀x(QKp(x) ⇒ (∀y.R(x, y) ⇒ P(y)))

∀x(Q¬Kp
(x) ⇒ (R(x, skolem(x))))

∀x(Q¬Kp(x) ⇒ ¬P(skolem(x))))

Together with the latter set of clauses, as we mentioned in Section 4, we must add
reflexivity and symmetry properties. There is only a K operator in this example;
therefore we add the following.

∀x.R(x, x) Reflexivity
∀x, y.(R(x, y) ⇒ R(y, x)) Symmetry

6. Experimental Results

6.1. TeMP

The main motivation for investigating variations of the standard translation of KL(n)

to monodic FOTL (Section 4) is our interest in using TeMP (Hustadt et al., 2004),
a theorem prover for the monodic fragment of FOTL. TeMP is based on a clausal
resolution calculus for the monodic fragment of FOTL with expanding domains
(Konev et al., 2003). TeMP implements the fine-grained temporal resolution
calculus (Konev et al., 2005), which in turn makes the monodic temporal resolu-
tion work (Degtyarev et al., 2003) practical. The implementation of TeMP uses
the fact that inference steps in this calculus can be simulated by inference steps
in a first-order ordered resolution calculus. In particular, TeMP uses the theorem
prover Vampire (Riazanov and Voronkov, 2002; Voronkov, 1995) as an efficient
implementation of first-order resolution.

At present TeMP is the only automated theorem prover for the monodic frag-
ment of FOTL.

In the following section we describe several case studies that have been formal-
ized in KL(n). We apply the axiomatic translation from Section 4 and use TeMP,
described in Section 6.1, to carry out the proofs.
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6.2. CLUEDO

Cluedo is a board game, commercially produced by Hasbro (Cluedo, 1946), where
players gather information about a murder. The suspects, murder weapons, and
rooms where the murder took place are represented by cards. One card of each
type is removed and kept aside representing the murderer, the murder weapon,
and the room where the murder took place. The remaining cards are shuffled and
handed to the players. The players aim to find out who the murderer was, which
murder weapon was used, and where the murder took place. To achieve this, they
use the knowledge of their own cards, the knowledge obtained from cards that other
players revealed during the game, or statements that another player does not have
such a card. Players take turns to make a suggestion: a suspect, weapon, and room.
If the player to the left holds one of these cards, it is shown to the player making
the suggestion but without the other players seeing it. If the player to the left does
not hold any of the suggested cards, he declares it, and the player to his left must
try to show one of the cards to the suggesting player. This process continues until
a card is shown to the suggesting player or no card has been shown for any player
for this suggestion. Players use the knowledge about their cards and the cards that
have or have not been shown in order to eliminate suspects, weapons, and rooms
for their next suggestions. When a player knows the murderer, weapon, and room,
then he makes an accusation and checks the cards kept aside. If the player is right,
this player wins the game. If the player is wrong, this player cannot make further
suggestions and accusations but can answer the suggestions from other players.

The Cluedo game has been specified in (Dixon, 2004) using KL(n). The game
has been reduced (in order to make the specification simpler) to four suspects
(Prof. Plum, Rev. Green, Col. Mustard, and Miss Scarlett), four murder weapons
(lead piping, spanner, revolver and rope), and no rooms. We assume three players:
Catherine, Wendy, and Jane, abbreviated as c, w, and j , respectively.

We denote by Kip that player i knows p, where i ∈ {c, w, j }. We use proposi-
tions in order to specify which player holds each of the cards.

• ri is true if player i holds the Miss Scarlett card.
• gi is true if player i holds the Rev. Green card.
• yi is true if player i holds the Col. Mustard card.
• bi is true if player i holds the Prof. Plum card.
• li is true if player i holds the lead piping card.
• si is true if player i holds the spanner card.
• vi is true if player i holds the revolver card.
• pi is true if player i holds the rope card.

We denote that a suspect is the murderer, or a weapon is the murder weapon, as
follows.

• rm is true if Miss Scarlett is the murderer.
• gm is true if Rev. Green is the murderer.
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• ym is true if Col. Mustard is the murderer.
• bm is true if Prof. Plum is the murderer.
• lm is true if lead piping is the murder weapon.
• sm is true if spanner is the murder weapon.
• vm is true if revolver is the murder weapon.
• pm is true if rope is the murder weapon.

We assume that time zero occurs before the deal is made. At time one the deal has
taken place and the first player (Catherine, in our case) makes a suggestion. At time
two the second player makes a suggestion and so on.

As an example, we assume that at time one the following deal has been made

Player Catherine Wendy Jane Murder Hand

Cards Miss Scarlett Revolver Col. Mustard Lead Piping
Rev. Green Rope Spanner Prof. Plum

After this deal is made, we can prove the following statements.

1. At time one Catherine knows that Miss Scarlett is not the murderer. This is
specified in KL(n) as

©Kc¬rm.

2. At time two Catherine makes the suggestion “Miss Scarlett and the lead piping.”
After all players have had their turn to show a card and no cards are revealed,
Catherine is expected to make an accusation. Since no accusation is made by
Catherine, Jane and Wendy can deduce that Catherine holds one of these cards
(i.e., Miss Scarlett or lead piping), which is specified in KL(n) as follows, where
i ∈ {c, j, w}.

© ©Ki(rc ∨ lc).

At this point Catherine should also be able to deduce that the lead piping is the
murder weapon. This statement is written in KL(n) as

© ©Kclm.

3. At time three Wendy makes the suggestion lead piping and Col. Mustard. Jane
shows Wendy the Col. Mustard card. Thus, at time three, Catherine knows Jane
holds either the lead piping or Col. Mustard, that is, ©©©Kc(lj ∨yj ). Since,
in the previous stage, Catherine deduced that the murder weapon was the lead
piping, she can deduce now that the murderer is Prof. Plum. That is, at stage
three Catherine can deduce both the murderer and the murder weapon, that is,

© © ©Kc(lm ∧ bm).



FIRST-ORDER TEMPORAL VERIFICATION IN PRACTICE 313

Table I. Results by TeMP for various Cluedo problems

Case SNFK clauses Clauses in FOTL syntax Clauses generated Time

1 83 143 476 0.047 s

2 101 193 977 0.074 s

3 123 236 5707 1.246 s

4 120 237 7926 0.640 s

5 84 147 460 0.029 s

6 95 172 548 0.035 s

4. We have also proved that from time one onwards Catherine knows that Miss
Scarlett is not the murderer, that is,

©�Kc¬rm.

5. At time one we can also prove that Wendy knows the revolver is not the murder
weapon.

©Kw¬vm.

6. If Catherine makes the suggestion “Col. Mustard and the lead piping” (instead
of what was suggested in part 2), Wendy will not show any card to Catherine,
but Jane will show her Col. Mustard. Thus, at time two Catherine knows that
Col. Mustard is not the murderer.

© ©Kc¬ym.

The results obtained by using TeMP in order to prove the above statements are
presented in Table I.

6.3. MUDDY CHILDREN

We consider the muddy children problem, a well-known problem concerning rea-
soning about knowledge. We use a version taken from (Fagin et al., 1995):

Imagine n children playing together. . . . Now it happens during their play that
some of the children, say k of them, get mud on their foreheads. Each can see
the mud on others but not on his own forehead. Along comes the father, who
says, “At least one of you has mud on your forehead”, thus expressing a fact
known to each of them before he spoke (if k > 1). The father then asks the
following question, over and over: “Does any of you know whether you have
mud on your own forehead?” Assuming that all the children are perceptive,
intelligent and truthful, and they answer simultaneously, what will it happen?
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Table II. Results by TeMP

Case SNFK clauses Clauses in FOTL syntax Clauses generated Time

1 26 69 271 0.015 s

2 23 61 186 0.029 s

There is a “proof” that the first k−1 times he asks the question, they will say
“No,” but then the kth time the children with muddy foreheads will all answer
“Yes.”

We consider the case of only two children, in order to make the problem simpler.
The translation of this example into KL(n) can be seen in (Dixon et al., 1998). This
formalization of the problem makes time explicit. We use m1 to denote that child
one has a muddy forehead and m2 to show that child two has a muddy forehead.
If the father announces that at least one of the children’s foreheads is muddy,
that is,

�(m1 ∨ m2)

then we could prove the following statements.

1. If initially both children’s foreheads are muddy, then we can prove that at time
two both children know they are muddy, that is,

© ©(K1m1 ∧ K2m2).

2. If we assume that only child one has a muddy forehead, then at time one child
one will know that he is muddy.

©K1m1.

The results are presented in Table II.

6.4. THE NEEDHAM–SCHROEDER PROTOCOL WITH PUBLIC KEYS

The well-known Needham–Schroeder communication protocol with public keys
(Needham and Schroeder, 1978) intends to establish authentication between
an agent A who initiates the protocol and an agent B who responds to A. The
complete protocol consists of seven messages, but we here focus on a simplified
version consisting of only three messages. These are sufficient to illustrate the
specification and verification of the protocol in KL(n). The messages we omit are
those whereby the agents request other agent’s public keys from a server.
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The protocol can then be described as the three following steps:

Message Direction Contents

Message 1 A → B: {NA, A}pub_key(B)

Message 2 B → A: {NB, NA}pub_key(A)

Message 3 A → B: {NB}pub_key(B)

Message contents of the form {X, Y }pub_key(Z) represent messages containing both
X and Y encrypted with Z’s public key. Elements of the form NX are special items
of data called nonces. Typically, agents in the protocol will generate their own
unique nonce (often encrypted), which is initially unknown to all other agents.

MESSAGE 1. A sends B an encrypted nonce together with A’s identity, all
encrypted with B’s public key.

MESSAGE 2. When B receives Message 1, it decrypts the message to obtain NA.
Then B returns to A the nonce NA and generates another nonce of his own, NB ,
and sends it back, this time encrypted with A’s public key.

MESSAGE 3. When A receives Message 2, it returns B’s nonce, this time en-
crypted with B’s public key in order to prove A’s authenticity.

It would seem that A could be sure he is talking to B because only B “should”
be able to decrypt Message 1. In the same way, B has reason to be sure that he is
talking to A because only A “should” be able to decrypt Message 2. However, this
is not always the case.

We use KL(n) to specify the Needham–Schroeder protocol (full details of the
specification and axioms can be found in (Dixon et al., 2003, 2004)). We use a
first-order notation, but we assume finite sets of agents, keys, and so forth, so it
is essentially propositional. We use the following syntactic conventions. Let M1

and M2 be variables over messages, Key be a variable over keys, N1 be a variable
over nonces, and X, Y, . . . be variables over agents. Moreover, for every agent, X,
we assume there are keys pub_key(X) and priv_key(X), while in this protocol
A and B are constants representing two specific agents. We identify the following
predicates:

• send(X, Msg, Key) is satisfied if agent X sends message Msg encrypted
by Key;

• rcv(X, Msg, Key) is satisfied if agent X receives message Msg encrypted
by Key;

• Msg(M1) is satisfied if M1 is a message;
• val_pub_key(X, V ) is satisfied if the value of the public key of X is V ;
• val_priv_key(X, V ) is satisfied if the value of the private key of X is V ;
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• val_nonce(N1, V ) is satisfied if the value of nonce N1 is V ; and
• contains(M1, M2) is satisfied if the message M2 is contained within M1.

Using this notation, we can specify axioms related to the protocol such as the
following.

• Structural assumptions concerning keys and message contents. For example,

∀X, Key, M1.send(X, M1, Key) ⇒ ¬contains(M1, priv_key(X))

– agents will not reveal their private key to others.
• Scenario assumptions concerned with specifying this particular protocol. For

example,

∀X, Y, Z. (contains(m1, X) ⇔ ((X = A) ∨ (X = NA)))∧
(contains(m2, Y ) ⇔ ((Y = NA) ∨ (Y = NB)))∧
(contains(m3, Z) ⇔ (Z = NB))

– message m1 contains only NA and A, message m2 contains only NB and NA,
and message m3 contains only NB .

• Basic knowledge axioms concerned with the agents knowledge of keys,
nonces, and so forth.

∀X, N, V . KXval_nonce(N, V ) ⇒ ©KXval_nonce(N, V )

– agents never forget nonces they know.
• Communication axioms concerned with sending and receiving messages.

∀X, M1, N1 ©((Msg(M1) ∧ contains(M1, N1)) ⇒
(∃V1KXval_nonce(N1, V1) ⇔
◦ [KXval_nonce(N1, V1)

∨(∃Y.∃V.rcv(X, M1, pub_key(Y ))

∧KXval_priv_key(Y, V ))]))
– for all moments except the first moment, if M1 is a message that contains
N1, an agent knows the content of N1 either if it already knew the content of
N1 or if it received an encrypted version of M1 that it could decode.

Here, ◦ is a temporal operator meaning the previous moment in time.

Using TeMP, after the translation in Section 4 has been applied, we can prove
the following statements related to this protocol.

1. B’s knowledge on receipt of NA

Once B receives a nonce encoded by B’s public key, then B knows the value of
that nonce.

This is translated into KL(n) as

�(rcv(B, m1, pub_key(B)) ⇒ ©∃V. KBval_nonce(NA, V )),

where m1 is a message.
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Table III. Results for the Needham–Schroeder protocol

Case SNFK clauses Clauses in FOTL syntax Clauses generated Time

1 105 297 7425 0.733 s

2 58 102 306 0.048 s

3 168 269 20577 3.516 s

4 167 267 76277 8.020 s

2. Confirmation of B’s knowledge
Once A receives m2 (which, in turn, contains NA), it can infer that B knows
NA, that is,

rcv(A, m2, pub_key(A)) ⇒ ©∃V KAKBval_nonce(NA, V ),

where m2 is a message.
3. C’s ignorance

C will never know that the value of A’s nonce is an.
This statement is specified in KL(n) as

�¬KCval_nonce(NA, an).

4. Reception of the nonce
C will never receive the value of the nonce an

�¬rcv(C, m1, pub_key(C)),

where the nonce of A, NA is contained in m1.

The results obtained by applying TeMP are stated in Table III.

Remarks. In this section we presented some examples and showed the useful-
ness and practicality of the translation presented in Section 4. For this purpose, all
the cases we have tested by using TeMP are unsatisfiable; that is, TeMP shows the
unsatisfiability of the negation of the statement we want to prove (we recall TeMP
is a resolution-based theorem prover). We have not included any case where the set
of clauses given to TeMP as an input were satisfiable because we consider that the
unsatisfiable cases are more meaningful for the nature of the examples presented.
Testing for satisfiability will take longer for TeMP because all the models need to
be checked, whereas for the unsatisfiable cases, as long as one of the models is not
satisfied, the proof terminates.

By observing the results in Tables I, II, and III, one can see that there are cases
with a very large number of clauses generated compared to other cases from the
same example. This is due, mainly, to the type of resolution operation that TeMP
performs for these cases. For them temporal resolution (Fisher et al., 2001) needs
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to be carried out. Temporal resolution takes place between clauses that occur at
different moments in time, since this is the most complex part of the resolution
method.

7. Comparisons with the Standard Translation

In Section 4 we presented the standard translation from temporal logic of knowl-
edge into the monodic fragment of first-order temporal logic and we mentioned
that this translation was not ideal for the purpose of automated theorem proving.
Thus, we now present the results obtained by applying TeMP to the same examples
we have shown in Section 6 but using the standard translation.

Cluedo. The results obtained are shown in Table IV. Comparing results in Table I
and the ones in Table IV, we observe that using the standard translation, TeMP
performs faster for cases 1 and 6. However, it does not produce any result for cases
2, 3, and 4, and it is slower for case 5. Thus, the usage of the axiomatic translation
presented in Section 4 improves the performance of TeMP because these three
cases (2, 3, and 4) can be verified, which did not happen by using the standard
translation.

Muddy Children. The results are similar to those in the previous case, if we com-
pare the results obtained in Tables V and VI, even though in cases where TeMP on
the standard translation is faster. It fails on the other case.

The Needham–Schroeder Protocol with Public Keys. Again, by using the stan-
dard translation one can prove the second statement faster than by using the trans-
lation presented in this paper. However, with the standard translation we could not
prove the other statements.

Overall, these experiments seem to indicate that the axiomatic translation pre-
sented in this paper improves the robustness and reliability of the prover. TeMP

Table IV. Results obtained by TeMP for the Cluedo example
using the standard translation

Case Number of clauses generated Time in seconds

1 313 0.019

2 – Does not terminate

3 – Does not terminate

4 – Does not terminate

5 309 0.034

6 351 0.023
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Table V. Results obtained by TeMP for the muddy children
example using the standard translation

Case Number of clauses generated Time in seconds

1 – It does not terminate

2 162 0.009

Table VI. Results obtained by TeMP for the Need-
ham–Schroeder protocol with public keys example using
the standard translation

Case Number of clauses generated Time in seconds

1 – It does not terminate

2 214 0.011

3 – It does not terminate

4 – It does not terminate

finds proofs in a reasonable time in more cases than for the standard translation.
As we mentioned earlier, the inclusion of transitivity causes some problems when
using theorem provers. This is, mainly, due to the fact that a large amount of clauses
may be generated by resolution, which in some cases may lead the process not to
terminate. However, for the examples where there are not many clauses derived
from transitivity, the standard translation might be faster because, in general, this
translation provides fewer input clauses than does the translation presented in this
paper.

8. Conclusions

In this paper we have presented a translation from a temporal logic of knowledge,
KL(n), into the monodic fragment of first-order temporal logic and proved its cor-
rectness. This translation allows us to use a recently developed monodic first-order
temporal logic theorem prover in order to verify a variety of properties specified in
KL(n).

We have illustrated the usefulness and practicality of this translation by formal-
izing a variety of examples in KL(n) and proving related properties by applying our
translation and using the theorem prover TeMP. All these examples had previously
been proven by hand.

According to the results presented in Section 7, the standard translation from
KL(n) into monodic FOTL does not always allow us to prove certain properties
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when using the theorem prover TeMP, whereas by using the translation presented
in this paper significantly more properties can be proved.

By carrying out the experimental results in Section 6 we have also been able to
detect some flaws and modify certain axioms stated in (Dixon et al., 2003) for the
Needham–Schroeder security protocol.

As mentioned earlier, the monodic fragment of FOTL can be used as a unify-
ing framework for other logics such as temporal logics of knowledge and belief,
spatio-temporal logics or temporal description logics. Thus, we intend to develop
translations from these logics into the monodic fragment of FOTL. These trans-
lations, as shown for the translation presented in this paper, will allow us to use
TeMP in order to test case studies formalized in these logics.
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