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Abstract

Cyber-attacks against Industrial Control Systems (ICS) can lead to
catastrophic events which can be prevented by the use of security mea-
sures such as the Intrusion Prevention Systems (IPS). In this work we
experimentally demonstrate how to exploit the configuration vulnerabil-
ities of SNORT one of the most adopted IPSs to significantly degrade
the effectiveness of the IPS and consequently allowing successful cyber-
attacks. We illustrate how to design a batch script able to retrieve and
modify the configuration files of SNORT in order to disable its ability to
detect and block Denial of Service (DoS) and ARP poisoning-based Man-
In-The-Middle (MITM) attacks against a Programmable Logic Controller
(PLC) in an ICS network. Experimental tests performed on a water distri-
bution testbed show that, despite the presence of IPS, the DoS and ARP
spoofed packets reach the destination causing respectively the disconnec-
tion of the PLC from the ICS network and the modification of packets
payload.

Keywords: Digital Twin Network, 6G, Industrial Internet of Things,
Industry 5.0, Cybersecurity.

1 Introduction

Critical infrastructures are the physical and cyber systems so vital for the well-
ness of population to the point that their destruction or disability would gener-
ate an impairing impact in terms of injury to people, environmental pollution
or physical damage to equipment. In this framework, Industrial Control Sys-
tems (ICS) can be considered as the “core” of such infrastructures where the
Programmable Logic Controllers (PLC) are the most used interface between
cyber domain and the physical plant [1]. ICSs are largely employed in several
fields such as water treatment [2], smart grids [3], oil and natural gas pipelines
[4], chemical process control [5], power generation and distribution systems [6].
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Actually, ICSs have increased interaction with the Internet to exploit its wide
range of valuable functions in order to support business needs, allowing remote
control and facilitate intelligent decision making. As a result of the strength-
ening connectivity, ICSs became vulnerable to cyber attacks to the point that
on the dark Web there are several tools and information to support malicious
actions against ICS [7], [8].
The research of a specific and well-defined software or hardware configuration
to be infected is often one of the first steps for an attacker. An authoritative
example is Stuxnet which was studied to sabotage Iranian Natanz uranium en-
richment base in 2010. The goal was to infect a specific PLC (Siemens Simatic
S7-300) dedicated to the control of centrifuges for separating nuclear material
after taking advantage of zero-day vulnerabilities in Windows Operating Sys-
tems [9].
Later on, in 2015, the malware BlackEnergy3 has been used to attack the
Ukrainian power grid, causing circuit disconnections and a large-scale black-
out [10].
The relevance of cyber risk imposed to Critical Infrastructure operators’ the
adoption of specific security initiatives in order to protect their ICSs with re-
spect to malicious actions and overcome the old (and ineffective) security by
obscurity strategy [11]. In this framework a cornerstone element of such strate-
gies is the use of an Intrusion Prevention System (IPS), i.e, a system designed
to monitor real time network flow in order to filter and block not-legitimate
traffic [12]. To this end, IPSs use information and models about the legitimate
flow to label eventually deviations as abnormal, hence an alert is raised. Due
to its effectiveness, IPSs itself become attractive targets for malicious attackers,
which make use of several types of attacks as described in [13] and [14]. It is
important to realize that IPSs are software programs based on a set of default
parameters, following a specific policy, and thus subjects to vulnerability, by
definition [15]. However, from the best of our knowledge, a studying model that
exploits this kind of configuration vulnerability against IPSs is still missing.
In this paper, IPSs’ vulnerabilities, such as readable and writable plain-text
configuration files, are inquired. We focus on SNORT [16], the foremost IPS,
considering Windows environment as it is the most used OS in ICSs [17]. With
the aim to demonstrate the relevance of such vulnerabilities in Windows OS,
we elaborate a batch script able to exploit configuration vulnerabilities in order
to disable the ability of SNORT to detect and reject Denial of Service (DoS)
attacks and ARP poisoning in an ICS network. Such script works in a stealth
manner without compromising the proper functioning of Windows OS or en-
abling host remote control. In this way, an attacker can only compromise Snort
ability to detect specific attacks making the system vulnerable to these kinds of
threats. Specifically, such a strategy can be considered as the preliminary step
for a destructive cyber attack as shown by experimental tests where undetected
DoS and ARP poisoning-based Man-In-The-Middle (MITM) attacks induce re-
spectively the disconnection of PLC from the ICS network and the redirect to
the attacker of legitimate traffic. In this second case, we show that the attacker
can stealthily modify packets payload changing tanks water level values sent to
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the Human Machine Interface (HMI) by the PLC.
The paper is organized as follows. Section 2 briefly describes some prelim-

inary aspects about IPSs, DoS attack and ARP poisoning hacking technique.
Section 3 focuses on essential aspects of SNORT configuration vulnerabilities.
Section 4 presents the steps for the implementation of the batch script. Section
5 analyzes the experimental setup while Section 6 reports experimental results
and possible countermeasures. Some conclusive remarks are collected in Section
7 which concludes the paper.

2 Preliminaries

2.1 Intrusion Prevention Systems: SNORT

SNORT is one of the most important signature based IPSs on the market [18]. It
basically verifies if packets taken from the network to be protected are malicious
or not relying on a list of rules written by the user [19]. If a packet matches a
particular rule, SNORT returns an alarm and eventually blocks the suspecting
traffic and log the event in an output file.
The syntax of a SNORT rule is reported below [20]:

[action][protocol][sourceIP][sourceport]

->[destIP][destport]([Rule options]).

At beginning, the rule defines the action to be executed when a packet matches
the rule criteria defined in options. The three main actions are: alert which
generates an alert and logs the packet in a file; drop which blocks and logs the
packet and reject which blocks the packet, logs it, and then sends a TCP reset
if the protocol is TCP or an ICMP port unreachable message if the protocol is
UDP.
The rule distinguishes packets in terms of the protocol and the source and
destination IP and MAC addresses. Finally, some options can be added in order
to enable more power and flexibility in the detection, searching, for example,
for specific bytes in the packet payload. When a rule fires, an alert is triggered
and the event is logged in an output file.

Rules can be listed in order to detect many attacks such as scanning attacks,
ARP poisoning and Denial of Service attacks. In this article we focus on the
rules adopted to detect and prevent DoS attack and ARP poisoning; however,
the approach can be easily generalised in order to prevent different types of
attack.

2.2 DoS attack

As reported by Kasperky ICS CERT in 2019 [21], 14.6% of the vulnerabilities
identified in an industrial control system could lead to a DoS attack. If not
effectively recognized, this kind of attack can cause the disabling of legitimate
accesses to the target system compromising its availability [22]. An attacker can
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carry out a DoS attack sending to the victim a huge number of packets in a small
time slot: the victim saturates its resources compromising its functioning. There
are several types of DoS attacks such as Smurf attack in which the attacker sends
ICMP packets and SYN flood, in case of TCP packets [23].

2.3 Detection of SYN flood using SNORT

As stated above, one of the most common DoS attack is the SYN flood attack.
In this view, a SNORT rule can be set to recognize and avoid SYN flood attacks
against a particular victim in the network. As described in [24], the rule has to
identify if hosts have received an high number of packets in a small time period
(for example three seconds). According to the syntax presented in Section 2.1,
an example of a SNORT rule for the identification of SYN flood attacks is
reported below:

reject tcp any any -> $DST_IP_ADDRESS $DST_PORT (msg :" TCP flood

";sid:1000003; rev :1; detection_filter : track by_dst,

count 5000 , seconds 3;)

This rule is able to detect a SYN flood attack if the victim, identified by
the ip address $DST IP ADDRESS, receives on a specific port, identified by
$DST PORT, more than 5000 TCP packets in a time period of 3 seconds from
any host of any network. The only way to provide this behavior is the use of
the option detection filter with its fields count and seconds. In this case, the
rule tracks the packets in relation to their destination regardless of their source.
The result is the rejection of these packets with the closing of the TCP connec-
tion.

2.4 ARP poisoning

ARP poisoning is an hacking technique that exploits leak of authentication in
the ARP protocol which is widely used to resolve Internet layer addresses to
link layer ones in a switched LAN. The main goal is to modify IP and MAC
addresses pair information saved in the hosts ARP tables. To this end, the
attacker sends spoofed ARP reply messages onto a local area network in order
to associate the attacker’s MAC address with the IP address of another host,
such as the default gateway, causing any traffic meant for that IP address to be
sent to the attacker instead [25].

2.5 Detection of ARP poisoning using SNORT

The detection of ARP poisoning requires SNORT to compare Ethernet addresses
with those defined in the ARP packets. To this end, a simple detection rule is
not sufficient: a specific SNORT component, called preprocessor, has to be used.
A preprocessor is a type of plugin which enables SNORT to manipulate traffic
patterns in order to defeat those attacks which cannot be detected by signature
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matching via simple detection rules. Specifically, as described in Section 2.1,
SNORT detection engine checks if a single aspect of one packet, like the protocol
or a particular value in the payload, verifies criteria defined in a SNORT rule
[26]. On the contrary, preprocessors can handle data stretched over multiple
packets and can perform more complex operations like TCP stream reassembly,
IP defragmentation and comparing fields of multiple protocols in a single packet
[27].
The arpspoof preprocessor is able to detect an ARP poisoning attack by de-
termining if source MAC address is different from the one included in the ARP
message, indicating a spoofed reply.
This preprocessor has to be activated in SNORT configuration file by adding
the following line:

preprocessor arpspoof

Actually, in order to enable preprocessor events and to define the type of
action to be executed when an ARP spoofed packet is detected, specific rules
are required. Arpspoof preprocessor rules are predefined in SNORT and are
uniquely identified by the gid keyword number 112. An example is reported
below.

reject ( msg: "ARPSPOOF_ETHERFRAME_ARP_MISMATCH_SRC"; sid: 2; gid

: 112; rev: 1; metadata: rule-type preproc ; classtype:bad-

unknown; )

Notice that these rules define only the action (reject) without performing the
detection which is previously executed by the preprocessor. Without these spe-
cific rules, even if arpspoof preprocessor is still working, malicious packets will
not be dropped and no event will be shown compromising SNORT effectiveness.

Thus, the result is the rejection of ARP spoofed packets which will be logged
in a csv extension file as described in Section 2.3.

3 Analysis of SNORT configuration vulnerabil-
ity

This section investigates configuration vulnerability [28, 29] about IPSs, focusing
in particular on SNORT installed on Windows Operating Systems.

The main vulnerability of SNORT for Windows environment is strictly re-
lated to the installation phase and the configuration of default parameters of
the tool. This vulnerability is properly defined as configuration vulnerability
and in SNORT is due to: readable and writable plain-text parameters files and
predefined folders structure.
By default, in SNORT, all files, including configuration ones, can be easily read
and written due to the lack of any type of security measure, such as encryption
or authentication.
Moreover, these files are always located in the same sub-folder shown in Figure 1.
By default, the main configuration file, SNORT.conf, is located at C:\SNORT\etc\.
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Figure 1: SNORT folder tree

It is used to define the correct functioning of SNORT and contains both configu-
ration of active preprocessors and paths of all support files. In particular, it con-
tains absolute paths of rules files and of specific-preprocessors rules files which
are located respectively at C:\SNORT\rules\ and at C:\SNORT\preproc rules\.
Files located in rules folder, such as local.rules, icmp.rules and smtp.rules,
contain the default and custom list of rules which define how SNORT iden-
tifies malicious events in network traffic. Thus, as described in Section 2.3,
they are fundamental for attack detection and prevention. Files located in
preproc rules folder, such as preprocessor.rules, contain the default rules
specific for SNORT preprocessors. As described in Section 2.5, they are essen-
tial to enable preprocessor events and to define the action to be executed when
malicious packets are detected by the preprocessor itself.
Unfortunately, despite their critical role, an attacker can change or disable spe-
cific rules because rules files are readable and writable plain-text. Therefore, on
the basis of these information about default configuration parameters, an at-
tacker is able to create a sequence of malicious instructions, described in Section
4, which can degrade SNORT effectiveness in detecting one or multiple attacks.
Thus, the neglect and the avoidance of security choices in initial configuration
phase can lead to significant consequences in terms of possible attacks which
will be stealthily launched against the vulnerable network.
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4 Batch Script for SNORT Configuration Vul-
nerabilities Exploitation

In this Section, we describe the fundamental steps to develop a batch script
to manipulate SNORT configuration files in order to degrade its effectiveness.
Notice that the proposed batch script is based exclusively on the knowledge
of default parameters and configuration of SNORT. The proposed procedure
exploits SNORT configuration vulnerability in terms of knowledge of default
directory structure and the presence of readable and writable plain-text files.
We assume that the batch script is accidentally run by the user who has Ad-
ministrator privileges on the OS, e.g. in the presence of phishing attack via
email link as in the case of BlackEnergy3 [30] or via USB flash drive as it was
for Stuxnet [31].
The main objective of the script is to corrupt SNORT rules files. In particular,
we want to identify and disable the rules devoted to the recognition of DoS SYN
flood attack and of ARP poisoning in order to make the system vulnerable to
these kinds of threats. Moreover, the script has been implemented in order to
work in a stealth manner without leaving traces of its activity according to the
following requirements:

• Filtering process: SNORT will regularly work in an unchanged fashion
except for its ability to manage DoS and ARP poisoning attacks.

• Resource access: there will be no traces of the script effects. To this
end, after rules files corruption, the last modification date and the file size
are set to the values prior to the attack.

• Background execution: the user will not have any visual effect of the
execution of malicious code.

• Restoration attempt: the rules files will be corrupted at any restart of
the Operating System despite the user’s attempt to restore them.

Notice that, the script is developed to corrupt and disable specific rules
related to the filtering of the DoS and ARP poisoning traffic exclusively, with-
out stopping the entire filtering process or modifying the rest of the rules or
preprocessors that define the behaviour of SNORT.

We now describe in detail the actions performed by the proposed script and
its architecture.
A main batch file with Powershell ISE support has been developed for the
implementation of the entire project. A batch file is a type of file in Microsoft
Disk Operating System (MS-DOS) containing a sequence of commands executed
in the command prompt one by one, in the exact order they are written in a
file.

As illustrated in Figure 2, the batch file is being carried out in three phases.
At first, the script performs a dynamic research on victim’s entire PC, looking
for the presence of SNORT installation files. Once they are found, it saves
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SNORT.conf allocation path; in fact, even if this file is typically present in the
directory C:\SNORT\etc\ folder, it could still be placed elsewhere by the user.
In this way, the batch script is unaffected by any sort of modifications in terms
of file allocation made by the user.

During the second phase, the script reads SNORT configuration file searching
for the path of all rules files which are included during SNORT execution, such
as local.rules, icmp.rules and preprocessor.rules described in Figure 1.
In this way, the attacker knows the path of rules files which are used by SNORT
to inspect network traffic. Typical file inclusion lines in SNORT.conf are reported
below:

include $RULE_PATH/icmp.rules
include $RULE_PATH/local.rules
include $RULE_PATH/smtp.rules
include $PREPROC_RULE_PATH/preprocessor.rules

where, $RULE PATH and $PREPROC RULE PATH are variables whose values are
the absolute paths of rules files and preprocessors rules files folders respectively.
Thus, the script seeks all lines which include a file name with the extension
.rules and the word include.
In the third and last phase, the main batch file is ready to corrupt rules files:
this procedure follows four main stages.
During the first one, rules files are corrupted in order to disable specific rules
which detect SYN flood DoS attacks and ARP poisoning. For each selected rules
file, a keyword research is performed. According to the syntax of a SNORT rule
reported in Section 2.1 and as described in Section 2.3, the only way to detect
SYN flood DoS attack is to use the rule option detection filter; thus, the
batch file will search for all rules containing this keyword. If it is present, the
rule is disabled adding, at the beginning of the line, the comment symbol #.

On the contrary, as described in Section 2.5, preprocessor rules are uniquely
identified by the keyword gid number 112; thus, the batch file will comment
all rules which contain this identification number. Recall that, in this way,
arpspoof preprocessor is still working but, disabling its rules, SNORT will not
be able to show alerts and to block effectively ARP spoofed packets.
During the second stage, the batch file is used to restore the last modification
date of rules files. In this way the corruption procedure does not leave any
temporal traces on such files.
The third stage ensures that the size of the corrupt rules file remains unchanged.
The number of added characters is considered in order to keep the total number
unchanged; thus, the file size is restored to the value prior to the attack.
The fourth and last stage ensures the restoration attempt requirement. It cre-
ates a shortcut of the main batch file inside the Windows “StartUp” folder,
which can be found with a parametric research of the path in the victim’s PC.
Creating the shortcut in this specific folder ensures that script automatically
runs every time victim restarts or shuts down the operating system, without
typing or selecting any commands. It also ensures that if victim has restored
rules files previously corrupted by the script, these will be compromised again.
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Figure 2: Script actions on victim PC

Finally, the batch file performs an automatic shutdown of SNORT process fol-
lowed by an automatic restart of such process on all active network interfaces,
ensuring the correct compromise of SNORT which is now unable to recognize
DoS attacks and ARP poisoning due to the corrupted rules file.

5 Experimental set-up

5.1 WDT Testbed

The effectiveness of the proposed attack strategy has been experimentally eval-
uated against the ICS in the WDT (Water Distribution Testbed) testbed [32]
which reproduces a real plant consisting of 5 tanks, 20 solenoid valves and 4
pumps which control the water passage (see Figure 3). Water level in tanks is
measured by pressure sensors placed under them.

Two PLCMODICONM340, equipped with BMX P342020 processor, DDM16025
discrete I/O and AMM0600 mixed analog I/O modules, are used to control the
plant. The PLCs communicate with the SCADA (Supervisory Control and Data
Acquisition) system Movicon 11.6 installed in a Windows Server 2012 machine
with the following characteristics: Intel® Xeon® CPU E5-2620 v2 @2.10 GHz
with a RAM of 16 GB.
The SCADA includes the HMI which shows the real time status of the system
in terms of water level in tanks, if the valves are open or closed and if pumps
are in action, as shown in Figure 4.
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Figure 3: WDT testbed

The communication protocol between PLCs and SCADA is Modbus TCP/IP
which uses port 502 [33].

Figure 4: HMI interface

5.2 Network architecture

The network architecture consists of two network segments, as required by NIST
(National Institute of Standards and Technology) best practice [34]. The first,
on the left of the schema described in Figure 5, represents the most critical side,
the ICS, which is directly involved in the control of the water treatment plant.
On the other side, in the right portion, the SCADA with its HMI is connected
to the IT monitoring network segment. Network segregation and segmentation
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allow to minimize the unauthorized access to sensitive and critical information
ensuring that ICS can continue to operate effectively. This approach requires
the adoption of a rule-set which can control the network traffic between the two
segments. In our case, this function is provided by SNORT implemented as
IPS [35] which allows only legitimate traffic to flow from the less protected IT
segment to the most critical ICS. Thus, all the traffic exchanged between these
two segments goes through the SNORT machine which consequently can block
or let packets pass.

Figure 5: SCADA network

Hence, SNORT machine has two active network interfaces in promiscuous
mode in order to get all the packets regardless of what their MAC address is.
Moreover they have not an own IP address in order to be “transparent” for the
two network segments.
SNORT 2.19.16 is installed in a Windows Server 2012 machine with the follow-
ing characteristics: Intel® Xeon® CPU E5-2620 v2 @ 2.10 GHz with a RAM
of 16 GB.
The attacker is implemented in a Kali Linux machine v. 2019.4 with the fol-
lowing characteristics: Intel® Core™ i7-8750H CPU @ 2.20GHz with a RAM
of 2.4 GB. Assuming PLC1 is the victim, we define two attack scenarios:

• a SYN flood DoS attack performed with hping3 tool in order to saturate
PLC1’s network resources;

• an ARP poisoning-based MITM attack performed with ettercap tool. The
aim is to redirect to the attacker Modbus traffic sent to the HMI by PLC1
in order to change tanks water level values in packets payload.

In order to detect and block DoS attack against PLC1 in this specific network
architecture, we developed a custom rule starting from the general one described
in Section 2.3.

reject tcp $HOME_NET any -> $IP_PLC1 502

(msg :" TCP flood "; sid:1000003; rev :1;
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detection_filter : track by_dst,

count 5000, seconds 3;)

The rule recognizes SYN flood attacks against PLC1, with the IP address
$IP PLC1, and starting from any host in the network $HOME NET.

In order to detect ARP poisoning against PLC1, SNORT arpspoof prepro-
cessor has been activated in snort.conf file as described in Section 2.5. The
corresponding rules were already defined in preprocessor.rules file.

6 Results

We demonstrate the practical effectiveness of the batch script by analyzing net-
work traffic circulating in the ICS and IT network segments during the two
attack scenarios described in Section 5.1. Specifically, we show the effects of
such attacks before and after SNORT impairment.
Wireshark software is used to measure packets circulation rate and to analyze
Modbus packets payload.

6.1 First attack scenario: SYN flood DoS attack

Figure 6 shows network traffic circulating within ICS and IT network segments
when SNORT is not compromised. We observe that packet circulation rate
remains in the vicinity of 450 packets/s during the first 6 seconds in the IT
segment whereas in the ICS segment it assumes values between 200 and 280
packets/s. After 6 seconds, the attacker starts a SYN flood DoS attack against
PLC1. As a result, packet circulation rate in the IT segment grows to 100000
packets/s value; but, no effects are induced in the ICS segment because these
packets are recognized and effectively blocked by SNORT machine.

On the contrary, Figure 7 shows network traffic circulating within the two
network segments when SNORT is compromised by our batch script. In this
case, we observe that the attack successfully reaches the ICS network segment at
time t=6s causing PLC1 network resources saturation. Indeed, Figure 8 shows
the arrival rate of packets received by PLC1 normalized respect to its maximum
throughput. We observe that, when the attack is launched, the PLC1 bandwidth
is totally saturated causing its disconnection from the network.

6.2 Second attack scenario: MITM attack

Figure 9 shows the water level values of tank number 2 sent to the HMI by
PLC1 over time. Specifically, we show the difference between values read from
Modbus packets as they are sent by PLC1 and as they are received by the
HMI. In this way, we can observe if the attacker has successfully launched an
ARP poisoning-based MITM attack and if he has changed water level values in
packets payload.
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(a)

(b)

Figure 6: Network traffic in SCADA network when SNORT is not compromised.
Red line represents the time when the SYN flood attack is launched. (a) Packets
per second in the ICS network segment. (b) Packets per second in the IT network
segment.

In this case SNORT machine has not been compromised; thus, even if the
attacker attempts to poison PLC1 ARP table, spoofed packets do not reach
the destination as they are effectively recognized and blocked by SNORT. As
a consequence, the attacker is not able to redirect to itself network traffic sent
by PLC1 to the HMI; therefore it cannot modify Modbus packets payload. The
right water tank value is received by the HMI as two graphs show the same
trend and the same values over time.

On the contrary, Figure 10 shows a significant difference between water level
values as sent by PLC1 and as received by the HMI. In this case, SNORT is
compromised by our batch script; thus it is not able to detect and block ARP
spoofed packets. As a consequence they are received by PLC1 whose ARP table
is successfully altered by the attacker. Therefore, the attacker can effectively
modify payload of Modbus packets, before they are sent to the HMI, in order to
simulate an emptying process of the tank. The effect is that the HMI will show
water level values which are different to those actually present in the second
tank.
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(a)

(b)

Figure 7: Network traffic in SCADA network when SNORT is compromised.
Red line represents the time when the SYN flood attack is launched. (a) Packets
per second in the ICS network segment. (b) Packets per second in the IT network
segment.

Figure 8: Packets per second received by PLC1 normalized respect to its maxi-
mum throughput.
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(a)

(b)

Figure 9: Tank-2 water level values in Modbus packets as sent by PLC1 (a) and
as received by HMI (b) when SNORT is not compromised. Red line represents
the time when the MITM attack is launched.

6.3 Possible countermeasures

In order to prevent an attacker to compromise an ICS network by tampering
the SNORT functioning, the human operator has to consider specific security
measures during SNORT installation. Specifically, the operator has to solve the
main configuration vulnerability described in Section 3: the presence of readable
and writable plain-text parameters files.
Configuration files of SNORT have to be encrypted in order to prevent any
unauthorized attempt to modify the correct operation of the IPS. Thus, it is
really important to manage the Administrator permissions as defined in the
Guide to Industrial Control Systems (ICS) Security [34]: super-user accounts
must be disabled or, at least, limited to a specific person; they have not be
used for daily activities and each operation has to be password-protected in
order to prevent any unauthorized attempt to tamper the OS. Moreover, any
system modification has to be automatically logged and sent remotely in order
to be aware of the state of the system security. Finally, internal cyber-security
policies have to be defined and shared with the employees in order to increase
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(a)

(b)

Figure 10: Tank-2 water level value in Modbus packets as sent by PLC1 (a) and
as received by HMI (b) when SNORT is compromised. Red line represents the
time when the MITM attack is launched.

the cyber-security awareness according to a process of continuous update and
improvement.

7 Conclusions

In this work, we described how to exploit configuration vulnerabilities of SNORT,
one of the most adopted IPSs, for Windows Operating Systems. We developed
a new batch script in order to retrieve and modify the plain-text rules files of
SNORT with the aim to disable its ability to detect and block DoS and ARP
poisoning-based MITM attacks against a PLC in an ICS network. We assume
that the script is accidentally run by the user with Administrator privileges as
it was for Stuxnet and Blackenergy3. It works in a stealth manner without
compromising the proper functioning of Windows OS or enabling host remote
control. The sole purpose is to compromise Snort ability to detect specific at-
tacks making the system vulnerable to these kind of threats. We experimentally
evaluated its effectiveness by considering a real scenario consisting of the WDT
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testbed whose physical process is controlled by two PLCs. These ones commu-
nicate with the SCADA thanks to SNORT implemented as an IPS. It ensures
communication between two network segments: the ICS one in which there are
two PLCs and the IT one where the SCADA is implemented and where the
attacker gains access. We analyzed the effects of two attack scenarios by in-
specting network traffic in both segments before and after SNORT impairment.
Results showed that, if the IPS is not compromised, SNORT is able to detect
and block malicious packets which cannot reach the ICS network segment. On
the contrary, if the batch script is running on SNORT machine, all the mali-
cious packets gain access to the ICS network causing the disconnection of the
PLC, in case of a DoS attack, and the modification of its ARP table, in case
of ARP poisoning. Moreover, we showed that, as a consequence of an ARP
poisoning technique, the attacker is able to stealthily modify Modbus packets
payload changing tanks water level values. In this way, the human operator
will see altered values of water levels which do not correspond to those actually
present in tanks. Thus, he will take corrective actions, such as closing or open-
ing valves, which could lead the plant to unexpected and potentially dangerous
physical states. In conclusion, we demonstrated that the neglect and the avoid-
ance of security choices in the initial configuration phase of an IPS can lead to
significant consequences in terms of possible attacks against ICS networks.

Future works will provide a comparative analysis of configuration vulnera-
bilities for different types of IPSs such as Suricata and Zeek.
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