D. Ferraris, C. Fernandez-Gago, and J. Lopez, “Verification and Validation Methods for a Trust-by-Design Framework for the IoT”, 86th Annual
IFIP WG 11.83 Conference on Data and Applications Security and Privacy (DBSec’22) vol. 13383, pp. 183-194, 2022.
http://doi.org/https://doi.org/10.1007/978-3-031-10684-2_11

NICS Lab. Publications: https://wuw.nics.uma.es/publications

Verification and Validation Methods for a
Trust-by-Design Framework for the IoT

Davide Ferraris Carmen Fernandez-Gago Javier Lopez

July 28, 2022

Abstract

The development of an Internet of Things (IoT) entity is a difficult
process that can be performed following a System Development Life Cy-
cle (SDLC). Two important phases of a SDLC process are verification and
validation (V&V). Moreover, if we want to guarantee that trust is consid-
ered through the SDLC we have to implement it since the first phases and
verify and validate its implementation during V&V. Verification usually
is defined as “the system has been built right”, on the other hand valida-
tion refers to the fact that “the right system has been built”. Concerning
trust, following our methodologies we can state that we can verify that
“the trusted IoT entity has been built” and validate that “the right trusted
IoT entity has been built”. In this paper, we propose a methodology to
verify and validate requirements related to a trusted IoT entity. Follow-
ing the methodology, it is possible to check if the requirements elicited in
the early phases of the SDLC have been implemented in the developed
functionalities. These final phases will be fundamental in order to achieve
trust in the developed IoT entity.

Keywords. Trust, SysML, UML, Internet of Things (IoT), System Develop-
ment Life Cycle (SDLC).

1 Introduction

The Internet of Things (IoT) allows humans and smart entities to cooperate
among them anyhow and anywhere [23]. The IoT entities are growing each year
and “there are expected to be more than 64B IoT devices worldwide by 2025”
L. This prediction states that that the IoT paradigm will define how the world
will be connected. For this reason, even if there will be more opportunities
to be connected, also many issues will arise. We believe that security and
trust can help to solve these issues implementing them in the IoT during the
System Development Life Cycle (SDLC) [12]. Usually, the SDLC is composed of
different phases. In the earliest ones, the requirements are elicited. This phase

Thttps://techjury.net/blog/internet-of-things-statistics/

will lead to the development of the entity, but in order to conclude the process
it is fundamental to verify and validate the requirements. In fact, through
verification is possible to say that the entity has been built in the right way that
means that the functionalities are working as expected. On the other hand,
validation means that the right entity has been built. In this case, we can say
that the IoT entity has been developed as it was intended for the originated
need. Moreover, in the SDLC of an IoT entity, the developers must tackle other
challenging tasks. One is how to consider the dynamic environment where the
IoT device will interact with other devices. We believe that trust can help
overcome this issue, because a trusted device will ensure that the interaction
can be performed in a secure way. Moreover, considering trust during the whole
SDLC will prevent later issues and as demonstrate by [15], when a task is
conducted early in the SDLC, it will save money for the whole project instead
of consider it later [19]. However, trust is hard to define because it is strongly
dependent on the topic in which is considered [9]. Moreover, trust is connected
to the context, in fact it “means many things to many people” [7]. Nevertheless,
usually at least two actors must be involved in a trust relationship: the trustor
and the trustee. The trustor is the one that needs the trustee in order to fulfill
an action or a service. For example, in an IoT environment the trustor can be
the user and the trustee can be the IoT device. In this paper, we will propose
a method that help developers in verifying and validating requirements related
to a trusted IoT entity.

The structure of the paper is as follows. In Section 2, we explain the previous
work connected to this paper. Then, in Section 3, we describe the related
work about verification and validation. Then, the core of this paper concerning
requirements verification and validation phases are presented in Section 4 and 5.
The implementation of these phases are explained in Section 6 and 7. Finally,
in Section 8, we conclude and discuss the future work.

2 Background

IoT allows smart entities to be connected through the Internet. This configu-
ration brings many possibilities (i.e., to connect entities even if they are far).
On the other hand, the connection among them can trust or security issues.
Another difficulty that is strongly dependent on the IoT paradigm is that the
smart entities are usually produced by different vendors and they cover different
topics [20]. This variety increase the issues but also the potentialities of the IoT
[5].

In our previous works, we have developed a framework that considers trust
holistically during the whole SDLC of a smart IoT entity[12]. The framework is
composed of a K-Model shown in Figure 1 and several transversal activities (i.e.,
Traceability, Risk Analysis). Moreover, it is fundamental to take the context
into consideration during each phase of the SDLC. This aspect is very important
for IoT due to the dynamicity and heterogeneity of this paradigm. The context
can depend on several aspects such as the environment or the functionalities of

Need Utilization

NN 7

SN o
SN T

Development
¥

Context

Figure 1: K-Model: with the Transversal Activities it compounds the framework
[12]

an entity.

In the K-Model, we can see different phases covering all the SDLC of the IoT
entity under development: from cradle to grave. The first phase is related to
the needs phase, where it is proposed the purpose of the new IoT product. All
the stakeholders related to the entity have a key role on it. The second phase
considers the requirements elicitation process. In this phase, the developers must
elicit the requirements according to the needs considered in the previous phase.
About this part, we proposed TrUStAPIS [11]. This methodology consider
trust according to other domains such as security, usability, privacy, availability,
safety, identity. We believe that considering other domains according to trust
is necessary to guarantee it in a virtuous circle that enhance the protection of
the IoT entity under development. To state this assumption, we have followed
and expanded Hoffman and Pavlidis’ works [16, 21].

The output of the requirements elicitation process must be taken into consid-
eration when developers will perform verification and validation in latter phases
of the K-Model. In the middle, there is the third phase which considers the
model definition [22]. In fact, it is fundamental to refine the requirements turn-
ing them into models useful for the developers in order to realize the IoT entity
in the following and central phase of the K-Model that is the development phase.
Thus, before the entity is delivered two important phases, the core of this paper,
must be performed: verification and validation. Verification phase is connected
to Requirements and Model phase as shown in Figure 1. On the other hand,
Validation is connected to Requirements and Need phase. This difference is very
important in order to perform these activities. For both the phases, we will use
JSON code developed in the second phase (i.e., Requirements) of the K-Model,
in order to help the developers to perform both the verification and validation
process.

JSON has been chosen because “it is easily readable by humans and ma-
chines” and as stated in [2] this aspect allows developers to share it among

either stakeholders and applications. JSON is also useful to connect the re-
quirements and the needs in the validation phase as we will show in Section 5.
However, Verification and Validation has been considered during the years. In
the next section, we will briefly introduce them.

3 Related Work

Verification and, later in the SDLC, validation are two phases performed to
prove that the entity has been properly developed. If validation is related to
the final product, on the other hand, verification can be performed in any phase
in order to find errors or modify the original plan. Anyhow, it is important
to consider verification also as a separate phase, in order to check completely
that the functionalities of the IoT entity work as planned. A definition of veri-
fication appears in the Project Management Body of Knowledge (PMBOK) [6]
where verification is considered as “the evaluation of whether or not a product,
service, or system complies with a regulation, requirement, specification, or im-
posed condition. It is often an internal process. Contrast with validation”. This
phase is fundamental in order to verify that the entity has been built in the right
way. This means that all the specifications have been followed in a correct way.
In the verification phase the functionalities of the entity are tested as well as its
correct implementation. However, tests are performed both in verification and
validation. In fact, Linhares et al. [18] stated that “test is realized on the imple-
mented system”. It involves a set of possible inputs executing the functionalities
in order to check if something wrong occurs. Another element that is used dur-
ing verification processes are the inspections. Fagan et al. [8] described for the
first time the inspection processes which were lately considered by Ackerman
et al. [1] that described the inspection processes as fundamental for the verifi-
cation phase. However, it is possible that the developed entity has passed the
verification phase, but it fails when validated. This situation can happen when
the entity has been built for the specifications, but the specifications themselves
fail to address the user’s needs. Validation is defined by the PMBOK [6] as “the
assurance that a product, service, or system meets the needs of the customer
and other identified stakeholders. It often involves acceptance and suitability
with external customers. Contrast with verification”. By validation we state
that the right entity has been built [15]. This means that the desired entity has
been developed as the users and vendors wanted to be. In addition, this phase
checks that the entity works properly in a real system’s environment. In or-
der to understand the problem, there can be different categories of validations.
Process validation has been analyzed in [17]. This guidance promotes a “life-
cycle” approach. Then, retrospective validation is executed for a product that
is already distributed or sold to the customers [14]. Next, partial validation is
often used for research purposes or prototypal studies if the time before the uti-
lization phase is constrained. Finally, a powerful tool that can be used is called
Independent Verification and Validation (IV&V), as stated by Arthur et al. [4].
This is a tool that can be exploited in order to mitigate the growing complexity

related to the expansion of modeling and simulation problems. Moreover, in
a later work [3], the author showed an important issue with IV&V according
to agile development. One of them was related to traceability and documen-
tation. However, with our work, we have implemented traceability that allows
developers to solve the aforementioned issues.

4 Verification

In this paper, we expand and explore the fifth and sixth phases of the K-Model
[12] where we have only proposed them without any further explanation. Thus,
the verification process is keen to analyze the requirements according to the
models and to test the functionalities in order to prove that the requirements
are well formed and the “system has been built right”. At the end of this phase
we can state that “the trusted IoT entity has been built right”. The verification
process is the following. The steps are shown in Figure 2.

Model
Documentation

Elicited

Requirement Step 0

\
|

Functionality
Step

|
[

Requirements &
Functionality Step 2
comparisons

Verification Step 3
Response

Figure 2: Verification Process: step-by-step methodology

The output of each step is the input for the following steps.

1. The step zero is related to the comparison of the originating model doc-
umentation (collected during the third phase of the K-Model) and the
elicited requirements. In fact, we need to compare the requirements and
the models in order to verify the functionalities of the developed IoT entity
as they have been modeled and planned.

2. The first step is performed in order to execute tests on the functionalities.

3. In order to check that the requirements have been respected, the function-
alities tested in the previous step must be connected to the originating
requirements to certify that they have been designed in a correct way.

4.

5

The response of the comparison performed in step 2 is the output of the
final step. If the functionality follows the requirements, then, the veri-
fication test is successful, otherwise the functionality must be modified
according to the elicited requirements. This feedback is represented in the
K-Model and it is necessary in order to develop the correct IoT entity.

Validation

The validation process is based on the fact that “the right system has been
built”. In order to clarify this, we need to check that the IoT entity and its
functionalities match the initial stakeholder’s need. Each need is delineated by
a statement and it is represented by one or more stakeholders. The stakeholders
are the “persons” which have an interest in the system. These needs must be
collected by the developers in the first phase of the K-Model. Then, in the
requirements phase, the needs are analyzed and transformed in requirements.
We resumed these two phases because they are considered also in the validation
phase to check if the IoT entity represents the original needs. At the end of
this phase, we can state that “the right trusted IoT entity has been built”. The
validation process is the following. The steps are shown in Figure 3.

Need
Documentation

Elicited

Requirement Step 0

[
Functionality
S‘EP !

|
v

Needs &
Functionality Step 2
comparisons

Validation Step 3
Response

Figure 3: Validation process: step-by-step methodology

The output of each step is important in the following steps.

1.

The step zero is related to the comparison of the originating needs and
the elicited requirements. In this phase, the needs and the connected
requirements are compared, this step is helpful to discover if there are
some missing or wrong requirements.

The first step is performed in order to execute tests related to the function-
alities developed following the elicited requirements satisfying the needs.

3. The comparisons between needs and requirements is performed in the
second step, where the output of the test is compared to the originating
need.

4. The response of the comparison performed in the previous step is consid-
ered in the last step of the methodology. If the functionality satisfies the
need, the validation test is successful, otherwise the functionality must be
modified. This means that the developers must go back in the K-Model to
the previous phases in order to perform the correct modifications. Anyway,
all the previous phases, if correctly performed, reduce this possibility.

6 Verification Scenario: Smart Cake Machine

In this section, we will present how to verify the requirements presented in
[11] concerning a use case scenario regarding a Smart Cake Machine (SCM)
previously introduced in [12]. We briefly describe here the scenario for the
readers. Let us assume that, after a market analysis, the stakeholders have had
the idea to produce a SCM. It should tell the users which ingredients are needed
for a particular cake where the recipes can be downloadable from a website or
inserted by the users. Moreover, it is supposed that this device can communicate
with other IoT entities. In this case, let us assume that the SCM can check the
Smart Fridge (SF) for an ingredient or it can send a request to the trusted
nearest supermarket (SM) in order to buy missing ingredients. This operation
must be performed through a Smart Hub (SH) in order to preserve the SCM from
possible external attacks [10]. According to the users, the SCM must check the
trusted users allowed to interact with. From these needs and considering the
context, the requirements are elicited following TrUStAPIS methodology [11]
and the models following [13], Then, the functionalities have been developed in
the central phase of the K-Model. Now, there are verification and validation
phases to be performed. In this section, we present the verification.

Step 0. The elicited requirements related to [11] are shown in Table 1.
Then, in the third column, we can see the model connected to the requirement.
These models have been presented in [13]|. In this step, we compare the model
documentation and the elicited requirements.

17- "IoT_requirement_USABO1" : {

18- "Context"

19- "Domain" : [{

20- "Usability" : {

21 "Characteristic" : ["Simplicity, Understandability"] } }],
22 "Environment" : "Smart Home",

23 "Scope" "User Interface" } ,

24~ "Actor" {

25 "Role" : "User",

26 "Type" : ["Human User"] },

Zij= "Action" : {

28 “Type" : ["Fulfill"] ,

29 "Measure" : [" "]},

30 "Goal" : "Let the user insert new recipes"

31

Figure 4: JSON code for USABO1

Table 1: Requirements and model connections.

Domain | Requirement Model
Usability | USABO1 - The user shall be | State Machine Diagram 1
able to insert new recipes (SMD1): Upload a recipe into
the SCM
Privacy | PRIVO03 - User data shall be | Activity Diagram 1 (AD1):
kept private Securing user data
Security | SEC02 - The SCM shall dele- | Sequence Diagram 1 (SD1):
gate the Smart Hub to order the | User, SCM, SF, SH and SM in-
missing ingredients teraction
Identity | IDNTO2 - The user shall pro- | Use Case Diagram 1
vide his/her data in order to be | (UCD1): User data
registered
Trust TRSTO1 - The SCM shall trust | Class Diagram 1 (CD1):
a Smart Supermarket with a | SCM and SM service classes
trust level above 0.5

In this example, we will show only how to verify requirement USABO1 ac-
cording to SMD1 diagram. Thus, in Figure 4, we show the JSON related to
USABO1. In fact, it is useful to speed up the verification process by checking if
the goal and the characteristics are met.

Step 1. After the collection of the requirements and the models performed
in the previous steps, the developers must perform the functionality tests. In
this case, it is necessary to verify different aspects. In first instance, that only
a trusted user can access the SCM. In fact, only after this important step, it
is possible to insert a new recipe. Then, if the first control is positive, the
functionality tests must check if the recipes are correctly uploaded. SMD1 was
designed in the following way. Firstly, for any new recipe, it was mandatory to
insert a new title. Secondly, the items and their quantity. The recipe upload
ends when all the items have been inserted. Thus, the test must check if all the
items are correctly inserted. If not, the test fails, and the code must be checked
in order to find the error. Otherwise, the functionality test passes, and it is
possible to proceed to the following step.

Step 2. This step is a second check that guarantees that the requirements
are met, and the functionalities have been correctly implemented. Traceability
guarantees this aspect as we have seen in Table 1. In the case the previous
step has ended correctly, it is possible to confirm that the requirement USABO1
and its derived functionalities have been corrected implemented. On the other
hand, it will be raised an issue that will be checked in order to adjust the
wrong functionality. After all the functionalities have been checked positively
or negatively, it is possible to proceed to the final step of the verification process.

Step 3. The verification response is positive if all the previous steps have
been correctly performed. Thus, a document certifying which tests have been
positively or negatively performed will be the output of this phase. In the case

some tests have been negatively performed, there will be a modification of the
functionalities, and a new verification process will be performed after the needed
modifications.

7 Validation Scenario: Smart Cake Machine

In this section, we will present how to validate the SCM. In the validation phase,
the tests are performed in the environment, in order to check if the needs are
met and the cooperation with other IoT entities is fulfilled. In Figure 5, it is
possible to see the connections among the SCM and other IoT entities.

P L i =

S hegt

Smart
‘ i Supermarket

I Smart o

ﬁl Fridge -
Smart Cake

\
—~@B” Machine

Figure 5: Smart Cake Machine and its relationships with the other IoT entities

Step 0. In this step, it is performed the comparison of the Need docu-
mentation and elicited requirements. According to [11], we have identified the
following subset of originating needs:

1. Need 1: The temperature of the SCM must be checked and it could not
overcome 250°C.

2. Need 2: The recipes must be downloadable from the vendor website or
inserted by authenticated users. Authentication must be performed by
code.

3. Need 3: The SCM could interact with a SF to check if a particular
ingredient is present. If not, the SCM can interact with a trusted SM
through the home SH and order the missing ingredient.

4. Need 4: The communication among the smart home entities must be
guaranteed and encrypted.

In the third column of Table 2, we can see the need connected to require-
ments. Needs X are not strictly connected to the requirements, but to the
context.

For the validation test, we consider requirement TRSTO01 and Need 3.

Step 1. As we will present in the following and final phase of the K-
Model, an algorithm is needed to introduce the new IoT entity in a smart home

Table 2: Requirements elicited using TrUStAPIS from [11]

Requirement Statement of the Requirement Need
Trust Req. TRSTO1 - The SCM shall trust a Smart Supermar- | Need 3
ket with a trust level above 0.5
Usability Req. USABO1 - The user shall be able to insert new | Need 2
recipes
Security Req. SECO01 - The user shall be authenticated Need 2
Security Req. SECO02 - The SCM shall delegate the Smart Hub to | Need X
order the missing ingredients
Availability Req. | AVBTO1 - The SCM shall be able to connect to the | Need X
Smart Hub
Privacy Req. PRIVO1 - The SCM shall perform an encrypted | Need 4
communication with the Smart Fridge
Identity Req. IDNTO1 - The user shall be authenticated Need 2
Identity Req. IDNTO01.2 - The user shall be authenticated by code | Need 2
Safety Req. SFTO01 - The SCM shall be able to check its tem- | Need 1
perature level
Safety Req. SFT01.1 - The SCM temperature level shall be | Need 1

lower than 250°C

context. Anyhow, in this case, we need to focus only on the functionalities that
must be validated. In this case, it is related to the interaction between the
SCM and a trusted SM. The trust value is provided by the SH or from the user
(i.e., because the user has a direct past relationship with an SM). The value
can be computed after considering multiple parameters (i.e., cost, distance,
quality), and the service is satisfied if any interaction among SCM and the SM
is performed if and only if the computed trust value is more than 0.5. If the
interaction is performed at a lower level, the validation test fails. Otherwise, it
succeeds.

Step 2. This step is fundamental in order to certify that the tested function-
alities satisfy the requirements and fulfil the originating need. If the previous
step ends correctly, it confirms that the originating need is met. Otherwise, an
issue is raised, and the developers will need to check and correct it. After all
the functionalities have been checked in their environment and compared with
the needs, it is possible to continue to the final step of the validation process.

Step 3. The validation response is positive if all the previous steps have
been positively performed. Thus, documentation is produced to certify that
stakeholders’ needs have been met and it is possible to proceed to K-Model’s
final phase: Utilization. However, if validation tests have failed, it will be
produced documentation about the failed functionalities to discuss and fix the
raised issues.

10

8 Conclusion and Future Work

Trust is important in the IoT environment. In order to guarantee trust in the
IoT, we believe that it is useful to consider it during the whole SDLC. In this
paper, we focused on two phases of the SDLC: verification and validation. In
the verification phase, developers analyze the previously elicited requirements.
Then, the functionalities are tested to prove that the entity has been built in the
right way. Finally, during the validation process, the developers must check that
the complete IoT entity matches its originating needs. Thus, if the validation
process is correctly performed, it is possible to assert that the right IoT entity
has been built. As a future work, we will perform the tests in a complex scenario.

Acknowledgement

This work has been supported by the Spanish Ministry of Science and Innovation
Project SecureEDGE (PID2019-110565RB-100) and by the EU H2020-SU-ICT-
03-2018 Project No. 830929 CyberSec4Europe (cybersecdeurope.eu). Moreover,
we thank Huawei Technology for their support. This work reflects only the
authors view and the Research Executive Agency is not responsible for any use
that may be made of the information it contains.

References

[1] Ackerman, A.F., Buchwald, L.S., Lewski, F.H.: Software inspections: an
effective verification process. IEEE software 6(3), 31-36 (1989)

[2] Alonso-Nogueira, A., Estévez-Fernandez, H., Garcia, I.: Jrem: an ap-
proach for formalising models in the requirements phase with json and
nosql databases. International Journal of Computer and Information Engi-
neering 11(3), 353-358 (2017)

[3] Arthur, J.D., Dabney, J.B.: Applying standard independent verification
and validation (iv&v) techniques within an agile framework: Is there a
compatibility issue? In: 2017 Annual IEEE International Systems Confer-
ence (SysCon). pp. 1-5. IEEE (2017)

[4] Arthur, J.D., Nance, R.E.: Independent verification and validation: a miss-
ing link in simulation methodology? In: Proceedings Winter Simulation
Conference. pp. 230-236. IEEE (1996)

[5] Colakovié, A., HadZiali¢, M.: Internet of things (iot): A review of enabling
technologies, challenges, and open research issues. Computer Networks 144,
17-39 (2018)

[6] Edition, F.: Teee guide-adoption of the project management institute
(pmi®)) standard a guide to the project management body of knowledge
(pmbok®) guide) (2011)

11

[7] Erickson, J.: Trust metrics. In: Collaborative Technologies and Systems,
2009. CTS’09. International Symposium on. pp. 93-97. IEEE (2009)

[8] Fagan, M.: Design and code inspections to reduce errors in program devel-
opment. In: Software pioneers, pp. 575-607. Springer (2002)

[9] Fernandez-Gago, C., Moyano, F., Lopez, J.: Modelling trust dynamics in
the internet of things. Information Sciences 396, 72-82 (2017)

[10] Ferraris, D., Daniel, J., Fernandez-Gago, C., Lopez, J.: A segregated archi-
tecture for a trust-based network of internet of things. In: 2019 16th IEEE
Annual Consumer Communications & Networking Conference (CCNC)
(CCNC 2019). Las Vegas, USA (Jan 2019)

[11] Ferraris, D., Fernandez-Gago, C.: Trustapis: a trust requirements elicita-
tion method for iot. International Journal of Information Security pp. 1-17
(2019)

[12] Ferraris, D., Fernandez-Gago, C., Lopez, J.: A trust by design framework
for the internet of things. In: NTMS’2018 - Security Track (NTMS 2018
Security Track). Paris, France (Feb 2018)

[13] Ferraris, D., Fernandez-Gago, C., Lopez, J.: A model-driven approach to
ensure trust in the iot. Human-centric Computing and Information Sciences
10(1), 1-33 (2020)

[14] Food, U., Administration, D., et al.: Guideline on general principles of
process validation. US FDA: Rockville, MD (1987)

[15] Haskins, C., Forsberg, K., Krueger, M., Walden, D., Hamelin, D.: Systems
engineering handbook. In: INCOSE, (2006)

[16] Hoffman, L.J., Lawson-Jenkins, K., Blum, J.: Trust beyond security: an
expanded trust model. Communications of the ACM 49(7), 94-101 (2006)

[17] Katz, P., Campbell, C.: Fda 2011 process validation guidance: Process
validation revisited. Journal of GXP Compliance 16(4), 18 (2012)

[18] Linhares, M.V., de Oliveira, R.S., Farines, J.M., Vernadat, F.: Introducing
the modeling and verification process in sysml. In: 2007 IEEE Conference
on Emerging Technologies and Factory Automation (EFTA 2007). pp. 344
351. IEEE (2007)

[19] Marche, C., Nitti, M.: Can we trust trust management systems? IoT 3(2),
262-272 (2022)

[20] Nkuba, C.K., Kim, S., Dietrich, S., Lee, H.: Riding the iot wave with
vfuzz: Discovering security flaws in smart homes. IEEE Access 10, 1775
1789 (2021)

12

[21] Pavlidis, M.: Designing for trust. In: CAiSE (Doctoral Consortium). pp.
3-14 (2011)

[22] Ponsard, C., Ramon, V.: Survey of automation practices in model-driven
development and operations. Tech. rep., EasyChair (2022)

[23] Roman, R., Najera, P., Lopez, J.: Securing the internet of things. Computer
44(9), 51-58 (2011)

13

