
A Model Specification Implementation for Trust
Negotiation

Martin Kolar1, Carmen Fernandez Gago2, Javier Lopez1

{kolar,mcgago,jlm}@lcc.uma.es

1 Department of Computer Science
2 Department of Applied Mathematics

University of Malaga, 29071 Malaga, Spain

Abstract. Trust negotiation represents a suitable approach for building
trust in online environments, where the interacting entities are anony-
mous. It covers important criteria on security and privacy. In this work,
we propose a method for implementing our model specification that han-
dles trust negotiation. We define the structure of the trust negotiation
module that is a standalone unit capable of negotiating on its own. It
may be included to any software by its defined interfaces. We realise our
method with a ride-sharing scenario and four trust negotiation strategies
that we apply in order to validate our design and implementation. We
propose a solution that is fully customisable based on different require-
ments. The proposal provides guidelines for developers in the process of
including trust negotiation into their software.

1 Introduction

The present world offers many opportunities and challenges. People need
to exchange resources, such as information, services and products. They
require trust for cooperation, which may be handled by trust negotia-
tion (TN). This is a suitable approach for online environments, where
unknown entities interact together. Trust is built by a mutual exchange
of credentials. In this work, we propose a method for implementing TN.
Since the Software Development Life Cycle (SDLC) does not include trust
by default, we provide it for all of its phases. We analyse our TN model
specification [15] from the implementation-specific point of view and inte-
grate it into a software product. We follow the Object-oriented program-
ming (OOP) and propose a trust negotiation module (TNM) that is an
autonomous unit capable of TN on its own. It connects to other modules
by defined interfaces and its logical separation makes the implementation
more secure. Developers will be guided through the whole process, which
may spare their time and costs when developing their own TN model.

The rest of this paper is organised as follows. Section 2 deals with
the previous work on TN and the SDLC. Section 3 presents the proposal

M. Kolar, C. Fernandez-Gago, and J. Lopez, “A Model Specification Implementation for Trust Negotiation”, The 14th International Conference
on Network and System Security (NSS 2020) vol. 12570, pp. 327-341, 2020.
NICS Lab. Publications: https://www.nics.uma.es/publications



of the TNM structure, whereas its implementation is done in Section 4.
Section 5 defines a TN ride-sharing scenario that is applied in Section 6
and that validates the TNM. Finally, Section 7 concludes this paper and
outlines the future work.

2 Related Work

Trust is important for Computer Science. Gambetta [1] defines it as a
probability, by which an entity expects another one to perform an action,
on which its welfare depends. Jøsang [2] defines two categories: the reli-
ability trust is based on the reliability of an entity, whereas the decision
trust is based on a decision to be dependent. Winsborough [3] recognises
two approaches for authentication: identity-based and capability-based.
Another approach is suitable for online environments: trust is built by
TN, i. e., a sequential exchange of credentials [4]. TN requires a set of
criteria [5], a protocol and a strategy [6]. The dynamics of trust is man-
aged by trust models. Moyano [7] classifies them into the decision and
evaluation ones. The former include TN models and TrustBuilder [8] was
the first one. Some TN models implement security agents that build trust
on behalf of entities [9,3]. Hess et al. [10] propose a model that provides
a run-time privacy protection. This approach is suitable for dynamically-
generated contents. Guo and Jiang [11] propose a TN framework with
an adaptive negotiation strategy that ensures a balance between building
trust and privacy protection. Seamons et al. [12] examine privacy issues
in online TN and propose methods for their elimination or minimisation.
Our goal is to create a general TN framework for developers. Develop-
ment issues were analysed in approaches, such as the SDLC that divides
the development into phases. Ruparelia [13] summarises SDLC models,
such as waterfall, spiral and incremental. Driver et al. [14] include digital
trust into the SDLC and integrate third-party components. Kolar et al.
[15] present a model specification that guides developers in the process
of including TN into software. We follow up this work for the implemen-
tation phase of the SDLC. Bresciani et al. [16] present a development of
agent-oriented software systems. Casey and Richardson [17] deal with the
effective globally distributed software development. Ilieva et al. [18] deal
with agile methodologies that are suitable for variable requirements. We
will follow the implementation phase of the SDLC and extend it by the
TN capabilities. To the best of our knowledge, there is no other work fol-
lowing this approach. We will follow the OOP in order to make a scalable
implementation. Our framework is unique since it guides developers in
the process of including TN into their software.



3 Specification of the Trust Negotiation Module

In this section, we present an implementation of the general TN function-
ality. Our approach is to develop the TNM that covers all aspects of TN
[15]. We provide a general methodology of its design and internal com-
position. The TNM is a self-contained unit capable of performing TN on
behalf of entities. It is connected to the other modules that participate in
the initial set up of TN. We will analyse its structure and functionality:

• The TNM is generally designed in order to support any topology of
software modules. They are connected by four interfaces.

• A database is required for accessing user data, such as credentials and
policies. This data is accessed during trust negotiation on the fly.

• Two modes of operation are possible: either a complete control over
TN, for which each step is supervised, or an automated process, when
the TNM is initially configured and then performs TN on its own.

• A trusted authority is supported in order to validate credentials.

The TNM is depicted in Figure 1. Its interfaces are as follows:

1) This interface connects to another TNM, with whom will be carried
out TN. Both must use the same interface and negotiation protocol.

2) The control interface connects to the control module that manages
the TN operations. It transfers all requests and returns responses.

3) This interface connects to a database. The compliance checker uses it
for requesting credentials and policies based on the actual needs.

4) The last one optionally connects to a trusted authority. The compli-
ance checker may need to verify and validate the incoming credentials.

The following sub-modules ensure the functionality of the TNM:

• Negotiator represents the entity that wants to build trust.
• Compliance Checker performs disclosure decisions for the negotiator
and enforces preserving its privacy.

• Trust represents the currently established trust used by the negotiator.
• Exposure represents the current privacy exposure level.
• Strategy and Protocol represent the chosen negotiation strategy and

the communication protocol used by the negotiators, respectively.

We proposed the TNM and its main components in compliance with our
defined requirements for TN [5]. The next section introduces a deeper
analysis and aims to the implementation in a programming language.



Fig. 1: The Inner Structure of the Trust Negotiation Module

4 Implementation of the Trust Negotiation Module

In this section, we decompose the TNM into the particular classes. We
define attributes and methods in order to specify their features and be-
haviour. Figure 2 depicts the class diagram that is the core of our imple-
mentation. It depicts the design and topology of all classes.

4.1 The Core of Trust Negotiation

The Negotiator class is principal since it represents its owning entity that
wants to build trust with another one. The negotiator carries out TN
on behalf of the entity. When it is demanded for disclosing a credential,
the compliance checker validates the request. Two negotiators have to use
the same protocol (protocol attribute) that defines the exact content and
order of the exchanged messages. The following methods are implemented
for handling the incoming and outgoing credentials:

• Provide discloses the specified credential to the other negotiator if the
compliance checker approves it.

• Demand requests the specified credential from the other negotiator.
• Is_negotiating returns the willingness of the negotiator to continue
with TN. For example, false is returned in case of privacy violation.

The TrustRelationship class represents the trust relationship between two
negotiators (negotiator1, negotiator2 attribute). Their common goal (goal
attribute) defines the purpose for building trust. The trust attribute spec-
ifies the actual trust level that has been built and is measured on a 7-
degree scale. During TN, this level increases and once it is equal or higher



Fig. 2: The Class Diagram of the Trust Negotiation Module

than the required one (req_trust attribute), the negotiator is satisfied.
When this happens for both negotiators, TN is successfully terminated.
The TrustRelationship class implements the following methods:

• Associate links two negotiators into a relationship.
• Define_goal defines the common goal for the intended relationship.
• Define_required_trust defines the required level of trust in order
to establish a successful trust relationship.

• Is_satisfied returns the satisfaction state of the negotiator that is
determined by reaching its required level of trust.

• Is_established checks whether the relationship was established. It is
determined by reaching the required level of trust by both negotiators.

• Negotiate starts TN and the process of exchanging credentials.



4.2 Processing Trust Negotiation

Each negotiator must specify its own negotiation strategy. The interface
Strategy defines the methods used by the classes implementing a specific
strategy. We propose the S_Optimistic, S_Pessimistic and S_Balanced
classes that represent an optimistic, pessimistic and balanced strategy,
respectively. An instantiated class represents the active strategy. Each
class determines the credentials to be disclosed, by which order and also
reacts to the incoming ones. The following methods are defined:
• To_demand determines the credential to be requested, if any.
• Received is called by the negotiator and informs the strategy class
about the incoming credentials. It is used for planning next disclosures.

• Sent is a similar method that informs about the disclosed credentials.
• Is_done returns the information, whether all the required credentials
have been obtained or there are more to be requested.

The ComplianceChecker class monitors all credentials flow. The current
privacy exposure level (exposure attribute) is calculated based on the
sensitivity of the disclosed credentials. Then, it is matched against the
privacy policies and the exposure limit (exp_limit attribute) for privacy
protection. The limit prevents further disclosures when reached. Just like
trust, the exposure is measured on a 7-degree scale. The num_received
and num_provided attributes count the obtained and disclosed creden-
tials, respectively. A feedback that confirms the use of the obtained cre-
dentials may be provided to the other negotiator. The compliance checker
implements the following methods:
• Set_exposure_limit defines the maximum privacy exposure that is
tolerated during TN.

• Can_provide informs whether a credential can be disclosed. If it is
locked or the current exposure is too high, the disclosure will be denied.

• Received informs the compliance checker that a credential has been
received. This method is similar to the one of the interface Strategy.

• Sent informs that a credential has been disclosed. These two methods
are important for calculating the current privacy exposure level.

• Give_feedback provides a feedback of how the obtained credentials
were used in TN. It may help the negotiators to revise their policies.

• Is_exposed informs whether the exposure limit has been reached.

4.3 External Dependencies

The Policy class provides the interface for managing policies in the database.
It implements the following methods:



• Create defines a new policy and then adds it to the database.
• Delete erases the specified policy from the database.
• Modify updates a policy, e. g., based on the received feedback.
• Provide reads a policy and delivers it to the compliance checker.

The Credential class provides the interface for accessing credentials in
the database. The type of a credential (type attribute) is either CRE-
DENTIAL or DECLARATION. The former is signed, whereas the latter
is not. The weight and sensitivity attributes specify its importance for
building trust and its confidentiality level, respectively. They are mea-
sured on a 4-degree scale. The content attribute is the actual information
of the credential. The following methods are implemented:

• Create adds a new unsigned credential of type DECLARATION.
• Sign serves for signing a credential, but requires a trusted authority.
Its type is changed from DECLARATION to CREDENTIAL.

• Delete erases a credential. It is used for the no longer valid ones.
• Provide ensures the access to the credentials during TN.
• Is_signed informs whether a credential is signed.

The TrustedAuthority class represents the optional interface for connect-
ing to a trusted authority. Its purpose is to issue and verify credentials, so
that they may be more valuable for TN. These methods are implemented:

• Issue issues a new credential of type CREDENTIAL by default.
• Sign inputs an existing credential of type DECLARATION and signs
it. In case of success, its type will change to CREDENTIAL.

• Verify inputs a signed credential by this authority and verifies its
authenticity. This is intended for unknown or untrusted credentials.

• Is_connected informs whether the authority is connected.

5 Trust Negotiation Ride-sharing Scenario

In this section, we propose a TN ride-sharing scenario implemented by
using the TNM. Later, we will use it for validating the TNM. This demon-
strative scenario is easy to follow: the web portal is a popular service that
enables its users to share a ride. The drivers offer rides to the passengers
that pay for it. Two of them want to travel to the same destination, which
is their common goal. They have to establish a trust relationship and es-
pecially the passenger has to be confident that the driver is experienced
and responsible. Their TN is as follows:

1. The passenger sends a message to the driver by the web portal. He
requests a contact information.



2. The driver replies by providing his e-mail address and telephone num-
ber. Then, he asks for a contact information in return.

3. The passenger only discloses his telephone number as other informa-
tion is too sensitive. He requests the driving experience and price.

4. The driver discloses the history of his rides and his price list.
5. Now, the passenger is more confident in the driving experience of the

driver. He also demands a detailed information about the latest ride.
6. The driver discloses the exact route information and his usual speed.

Then, he asks the passenger for the luggage he wants to carry.
7. The passenger is satisfied and acquires a sufficient confidence. He re-

sponds that the luggage is large and asks whether it is a problem.
8. The driver responds that he has a space. The passenger agrees with

the offered price and decides to book the ride.

Fig. 3: The Ride-sharing Scenario Implementation

We implement this scenario by following our proposal and using the OOP
paradigm. We specify modules that are depicted in Figure 3. The TNM
is the core unit that is connected to the following entities:

1. The other TNM. Two such modules are connected by a communication
channel. They act on behalf of the driver and the passenger.

2. The control module managing TN and processing its results.
3. The data storage unit containing credentials and policies.
4. The web portal providing the online service for ride-sharing.

Both users have their own instances of the TNM, the control module, the
service one and the data storage unit. They perform the following actions:



• The service module manages data for its user, such as updating the
credentials and policies in the data storage unit. The module has full
access. Then, it configures system variables, e. g., encryption keys.

• The control module manages the TNM. It initiates TN, supervises
the exchange process and obtains its result. The module is acknowl-
edged from the service one when all data is configured for TN.

• The trust negotiation module carries out TN. Both users request
the TNM to build trust for them. Their credentials are exchanged based
on the defined policies and the chosen negotiation strategy. Finally, TN
is evaluated and the users are informed about its result.

This ride-sharing scenario has shown the method for implementing TN
using the proposed specification. It has explained the purpose of the spe-
cific modules and their cooperation in the process of building trust.

6 Validation of the Trust Negotiation Module

In this section, we validate our proposal. We create four variations based
on the scenario while each implements a different negotiation strategy.
We compare their attributes for building trust. We assemble three equal
devices with different roles: two negotiators and a trusted authority. They
are made of the following components:

• Arduino Nano is a single-board electronics platform using the 8-bit
ATmega328 microcontroller with 32 KB flash memory and 2 KB RAM.
It performs the deployed TN scenario and drives the other components.

• ESP8266 is a Wi-Fi microcontroller with the full TCP/IP stack abil-
ity. We use it for interconnecting the devices by a wireless network.

• ST7735 is a small colour TFT display. It is not required for TN,
however, we use it for outputting messages of its progress to the user.

We defined a general TN algorithm (Negotiate function) that is shown
in Algorithm 1. TN is performed until both negotiators are willing to
do so: the negotiator (1) checks his actual trust level and if it is lower
than required, he demands a credential from the negotiator (2). Then, (2)
checks whether he may disclose it. This depends on his privacy exposure
level that, increased by the sensitivity of the credential, must be lower
than his exposure limit. If it was disclosed, (1) increases his trust level by
his defined weight of the credential and (2) increases his exposure level
by the defined sensitivity. Otherwise, (1) demands another credential.
The negotiators change their roles after each step so that trust is built
evenly. TN continues until both establish the required trust and while



their privacy is preserved. TN fails if the policies are improperly specified,
the available credentials are not sufficient or privacy would be violated.

Algorithm 1 Trust negotiation
1: function Negotiate(negotiator1, negotiator2)
2: while negotiator1 is negotiating and negotiator2 is negotiating do
3: if negotiator1.current_trust < negotiator1.required_trust then
4: negotiator1 demands credential from negotiator2
5: if negotiator2 discloses credential then
6: increase negotiator1.current_trust about credential.weight
7: increase negotiator2.current_exposure about credential.sensitivity
8: if negotiator2.current_trust < negotiator2.required_trust then
9: negotiator2 demands credential from negotiator1
10: if negotiator1 discloses credential then
11: increase negotiator2.current_trust about credential.weight
12: increase negotiator1.current_exposure about credential.sensitivity
13: if negotiator1.current_exposure > negotiator1.exposure_limit or

negotiator2.current_exposure > negotiator2.exposure_limit then
14: return failure
15: if negotiator1.current_trust >= negotiator1.required_trust and

negotiator2.current_trust >= negotiator2.required_trust then
16: return success
17: return failure

The algorithm is applied in four trust negotiation strategies. Each strategy
extends it by specific features. We have implemented the following ones:

• Optimistic strategy basically follows the algorithm. The negotiators
define their required trust and exposure limit. This strategy is marked
as optimistic since credentials may be freely exchanged. It is fast, effi-
cient for building trust and not demanding for computing resources.

• Pessimistic strategy is more restrictive. The unbalance level and
limit are implemented: the former is a difference between the current
exposure and established trust. The latter defines its maximum value
that changes as trust increases. Then, credentials use a locking mech-
anism. These features ensure a balance in exchanging credentials. The
strategy preserves privacy well, however, is less efficient.

• Balanced strategy measures trust by the couple (t, c), for which t is
the trust value and c is the confidence value [19]. This metrics provides a
certainty to the established trust in TN. A trusted authority is used and
the signed credentials are assigned high confidence levels. The strategy
represents a good compromise in efficiency, so we mark it as balanced.



• Improved balanced strategy uses trust intervals (TI) [7], where the
trust value lies on < ta, tb >. TI is a more intuitive alternative for (t, c)
and the confidence value is hidden from the negotiator. Credentials
are assigned the confidence levels as previously and the resulting trust
value is computed as the arithmetic mean of TI.

All strategies successfully established trust for both negotiators. The TN
process is depicted in appendices. Our approach provides a suitable pro-
cedure for implementing TN that a developer may utilise for his own TN
scenario. It may significantly save his time and costs.

7 Conclusion

In this work, we have proposed a method for implementing our TN model
specification. We have specified the TNM that is capable of automated
TN. The TNM isolates the TN functionality, which increases security.
Other software modules are connected by controlled interfaces. This ver-
satile concept facilitates adding and removing modules based on require-
ments. We have provided a detailed TNM implementation by specify-
ing its classes and their topology. Then, we have defined a ride-sharing
scenario that is a practical use-case for TN. We have specified a gen-
eral algorithm for TN that cares about privacy and that is used in four
TN strategies. We have deployed the scenario for validating the TNM.
We demonstrated how to implement a given TN scenario using the pro-
posed TNM, connect it to the other entities and finally create a functional
model.

In the future work, the proposed model specification will become a
part of a TN framework and will be fully integrated into all phases of
the SDLC. It will form a complete guide for the developers that want to
include TN into their systems from the early phases of development to
the successful end.

Acknowledgements
This research has been partially supported by the Spanish Ministry of Sci-
ence and Innovation through the project SecurEdge (PID2019-110565RB-
I00) and by the European Commission through the project EU H2020-SU-
ICT-03-2018 Project No. 830929 CyberSec4Europe (cybersec4europe.eu).

References
1. D. Gambetta, Can We Trust Trust?, D. Gambetta (Ed.), Trust: Making and Break-

ing Cooperative Relations, B. Blackwell, Oxford, pp. 213-238, 1990.



2. A. Jøsang, R. Ismail and C. Boyd, A Survey of Trust and Reputation Systems for
Online Service Provision, Decision Support Systems, vol. 43, pp. 618-644, 2007.

3. W. H. Winsborough, K. E. Seamons and V. E. Jones, Automated Trust Negotia-
tion, DARPA Information Survivability Conference and Exposition, DISCEX ’00
Proceedings, vol. 1, pp. 88-102, 2000.

4. W. H. Winsborough and N. Li, Towards Practical Automated Trust Negotiation,
Proceedings of the 3rd International Workshop on Policies for Distributed Systems
and Networks, pp. 92-103, 2002.

5. M. Kolar, C. Fernandez-Gago and J. Lopez, Policy Languages and their Suitability
for Trust Negotiation, 32nd Annual IFIP WG 11.3 Conference on Data and Ap-
plications Security and Privacy XXXII, vol. 10980, Springer, Cham, 69-84, 2018.

6. T. Yu, M. Winslett and K. E. Seamons, Interoperable Strategies in Automated
Trust Negotiation, Proceedings of the 8th ACM Conference on Computer and
Communications Security, 2001.

7. F. Moyano, Trust Engineering Framework for Software Services, PhD thesis,
Lenguajes y Ciencias de la Computación, Universidad de Málaga, 2015.

8. M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith and
L. Yu, Negotiating Trust in the Web, IEEE Internet Computing, vol. 6, no. 6, pp.
30-37, 2002.

9. P. A. Bonatti, J. L. De Coi, D. Olmedilla and L. Sauro, A Rule-Based Trust
Negotiation System, IEEE Transactions on Knowledge and Data Engineering, vol.
22, no. 11, 2010.

10. A. Hess, J. Holt, J. Jacobson and K. E. Seamons, Content-Triggered Trust Negoti-
ation, ACM Transactions on Information and System Security, 7(3), pp. 428-456,
2004.

11. S. Guo and W. Jiang, An Adaptive Automated Trust Negotiation Model and Algo-
rithm, International Conference on Communications and Intelligence Information
Security, Nanning, 2010, pp. 130-134, 2010.

12. K. E. Seamons, M. Winslett, T. Yu, L. Yu and R. Jarvis, Protecting Privacy Dur-
ing On-line Trust Negotiation, In International Workshop on Privacy Enhancing
Technologies, pp. 129-143, Springer, 2002.

13. N. B. Ruparelia, Software Development Lifecycle Models, ACM SIGSOFT Software
Engineering Notes, 35(3), pp. 8-13, 2010.

14. M. Driver, F. Gaehtgens and M. O’Neill, Managing Digital Trust in the Software
Development Life Cycle, ID G00326944, Gartner, 26 May 2017.

15. M. Kolar, C. Fernandez-Gago and J. Lopez, A Model Specification for the Design
of Trust Negotiations, Computers & Security, vol. 84, Elsevier, pp. 288-300, 2019.

16. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos, TROPOS:
An Agent-Oriented Software Development Methodology, Autonomous Agents and
Multi-Agent Systems, 8(3), pp. 203-236, 2004.

17. V. Casey and I. Richardson, Implementation of Global Software Development:
A Structured Approach, Software Process: Improvement and Practice, 14(5), pp.
247-262., 2009.

18. S. Ilieva, P. Ivanov, E. Stefanova, Analyses of an Agile Methodology Implementa-
tion, In Proceedings of the 30th Euromicro Conference, pp. 326-333, IEEE, 2004.

19. G. Theodorakopoulos and J. S. Baras, Trust Evaluation in Ad-Hoc Networks, In
Proceedings of the 3rd ACM Workshop on Wireless Security (WiSe ’04), ACM,
New York, NY, USA, pp. 1-10., 2004.



Appendix A Optimistic Strategy

Driver Trust Negotiation Passenger

Required trust: 6 Required trust: 12
Exposure limit: 10 Exposure limit: 8

Step Trust Exposure Trust Exposure

1. 0 0 ←− request: phone number ←− 0 0

2. 0 1 −→ disclosure: phone number −→ 3 0

3. 0 1 −→ request: phone number −→ 3 0

4. 2 1 ←− disclosure: phone number ←− 3 3

5. 2 1 ←− request: price list ←− 3 3

6. 2 2 −→ disclosure: price list −→ 5 3

7. 2 2 −→ request: address −→ 5 3

8. 5 2 ←− disclosure: address ←− 5 6

9. 5 2 ←− request: driving history ←− 5 6

10. 5 6 −→ disclosure: driving history −→ 8 6

11. 5 6 −→ request: luggage info −→ 8 6

12. 6 6 ←− disclosure: luggage info ←− 8 7

13. 6 6 ←− request: space info ←− 8 7

14. 6 7 −→ disclosure: space info −→ 10 7

15. 6 7 ←− request: address ←− 10 7

16. 6 7 −→ disclosure denied −→ 10 7

17. 6 7 ←− request: latest ride ←− 10 7

18. 6 8 −→ disclosure: latest ride −→ 12 7

19. 6 8 ←− successful termination −→ 12 7



Appendix B Pessimistic Strategy

Driver Trust Negotiation Passenger
Required trust: 6 Required trust: 12
Exposure limit: 10 Exposure limit: 9

Step Trust Exp. Unb.Level
Unb.
Limit Trust Exp. Unb.Level

Unb.
Limit

1. 0 0 0 2 ←− request: phone number ←− 0 0 0 0
2. 0 1 1 2 −→ disclosure: phone number −→ 2 0 -2 0
3. 0 1 1 2 −→ request: phone number −→ 2 0 -2 0
4. 0 1 1 2 ←− disclosure denied ←− 2 0 -2 0
5. 0 1 1 2 −→ request: e-mail −→ 2 0 -2 0
6. 1 1 0 2 ←− disclosure: e-mail ←− 2 2 0 0
7. 1 1 0 2 ←− request: price list ←− 2 2 0 0
8. 1 2 1 2 −→ disclosure: price list −→ 4 2 -2 2
9. 1 2 1 2 −→ request: address −→ 4 2 -2 2
10. 1 2 1 2 ←− disclosure denied ←− 4 2 -2 2
11. 1 2 1 2 −→ request: phone number −→ 4 2 -2 2
12. 3 2 -1 2 ←− disclosure: phone number ←− 4 5 1 2
13. 3 2 -1 2 ←− request: driving history ←− 4 5 1 2
14. 3 2 -1 2 −→ disclosure denied −→ 4 5 1 2
15. 3 2 -1 2 ←− request: space info ←− 4 5 1 2
16. 3 3 0 2 −→ disclosure: space info −→ 6 5 -1 2
17. 3 3 0 2 −→ request: address −→ 6 5 -1 2
18. 3 3 0 2 ←− disclosure denied ←− 6 5 -1 2
19. 3 3 0 2 −→ request: luggage info −→ 6 5 -1 2
20. 4 3 -1 4 ←− disclosure: luggage info ←− 6 6 0 2
21. 4 3 -1 4 ←− request: latest ride ←− 6 6 0 2
22. 4 4 0 4 −→ disclosure: latest ride −→ 8 6 -2 4
23. 4 4 0 4 −→ request: address −→ 8 6 -2 4
24. 7 4 -3 5 ←− disclosure: address ←− 8 9 1 4
25. 7 4 -3 5 ←− request: driving history ←− 8 9 1 4
26. 7 8 1 5 −→ disclosure: driving history −→ 11 9 -2 4
27. 7 8 1 5 ←− request: address ←− 11 9 -2 4
28. 7 10 3 5 −→ disclosure: address −→ 13 9 -4 4
29. 7 10 3 5 ←− successful termination −→ 13 9 -4 4



Appendix C Balanced Strategy

Driver Trust Negotiation Passenger

Required trust: 6 Required trust: 12
Exposure limit: 10 Exposure limit: 8
Required conf.: 0.8 Required conf.: 0.6

Step Trust Exp. Conf. Trust Exp. Conf.

1. 0 0 0 ←− request: phone number ←− 0 0 0

2. 0 1 0 −→ disclosure: phone number −→ 3 0 0.6

3. 0 1 0 −→ request: phone number −→ 3 0 0.6

4. 2 1 0.7 ←− disclosure: phone number ←− 3 3 0.6

5. 2 1 0.7 ←− request: price list ←− 3 3 0.6

6. 2 2 0.7 −→ disclosure: price list −→ 5 3 0.6

7. 2 2 0.7 −→ request: address −→ 5 3 0.6

8. 5 2 0.88 ←− disclosure: address ←− 5 6 0.6

9. 5 2 0.88 ←→ authority: confirmed 5 6 0.6

10. 5 2 0.88 ←− request: driving history ←− 5 6 0.6

11. 5 6 0.88 −→ disclosure: driving history −→ 8 6 0.75

12. 5 6 0.88 authority: confirmed ←→ 8 6 0.75

13. 5 6 0.88 −→ request: luggage info −→ 8 6 0.75

14. 6 6 0.85 ←− disclosure: luggage info ←− 8 7 0.75

15. 6 6 0.85 ←− request: space info ←− 8 7 0.75

16. 6 7 0.85 −→ disclosure: space info −→ 10 7 0.72

17. 6 7 0.85 ←− request: address ←− 10 7 0.72

18. 6 9 0.85 −→ disclosure: address −→ 12 7 0.77

19. 6 9 0.85 authority: confirmed ←→ 12 7 0.77

20. 6 9 0.85 ←− successful termination −→ 12 7 0.77



Appendix D Improved Balanced Strategy

Driver Trust Negotiation Passenger

Required trust: 0.6 Required trust: 0.75
Exposure limit: 0.8 Exposure limit: 0.55

St. Trust Exp. Conf. TI Trust Exp. Conf. TI

1. 0 0 0 <0, 1> ←− req: phone number ←− 0 0 0 <0, 1>

2. 0 0.05 0 <0, 1> −→ dis: phone number −→ 0.15 0 0.6 <0.09, 0.49>

3. 0 0.05 0 <0, 1> −→ req: phone number −→ 0.15 0 0.6 <0.09, 0.49>

4. 0.20 0.05 0.7 <0.14, 0.44> ←− dis: phone number ←− 0.15 0.15 0.6 <0.09, 0.49>

5. 0.20 0.05 0.7 <0.14, 0.44> ←− req: price list ←− 0.15 0.15 0.6 <0.09, 0.49>

6. 0.20 0.15 0.7 <0.14, 0.44> −→ dis: price list −→ 0.30 0.15 0.6 <0.18, 0.58>

7. 0.20 0.15 0.7 <0.14, 0.44> −→ req: address −→ 0.30 0.15 0.6 <0.18, 0.58>

8. 0.50 0.15 0.88 <0.44, 0.56> ←− dis: address ←− 0.30 0.30 0.6 <0.18, 0.58>

9. 0.50 0.15 0.88 <0.44, 0.56> ←→ auth: confirmed 0.30 0.30 0.6 <0.18, 0.58>

10. 0.50 0.15 0.88 <0.44, 0.56> ←− req: driving history ←− 0.30 0.30 0.6 <0.18, 0.58>

11. 0.50 0.35 0.88 <0.44, 0.56> −→ dis: driving history −→ 0.55 0.30 0.78 <0.43, 0.65>

12. 0.50 0.35 0.88 <0.44, 0.56> auth: confirmed ←→ 0.55 0.30 0.78 <0.43, 0.65>

13. 0.50 0.35 0.88 <0.44, 0.56> −→ req: luggage info −→ 0.55 0.30 0.78 <0.43, 0.65>

14. 0.60 0.35 0.85 <0.51, 0.66> ←− dis: luggage info ←− 0.55 0.35 0.78 <0.43, 0.65>

15. 0.60 0.35 0.85 <0.51, 0.66> ←− req: space info ←− 0.55 0.35 0.78 <0.43, 0.65>

16. 0.60 0.45 0.85 <0.51, 0.66> −→ dis: space info −→ 0.65 0.35 0.75 <0.49, 0.74>

17. 0.60 0.45 0.85 <0.51, 0.66> −→ req: e-mail −→ 0.65 0.35 0.75 <0.49, 0.74>

18. 0.70 0.45 0.83 <0.58, 0.75> ←− dis: e-mail ←− 0.65 0.45 0.75 <0.49, 0.74>

19. 0.70 0.45 0.83 <0.58, 0.75> ←− req: address ←− 0.65 0.45 0.75 <0.49, 0.74>

20. 0.70 0.65 0.83 <0.58, 0.75> −→ dis: address −→ 0.85 0.45 0.81 <0.69, 0.88>

21. 0.70 0.65 0.83 <0.58, 0.75> auth: confirmed ←→ 0.85 0.45 0.81 <0.69, 0.88>

22. 0.70 0.65 0.83 <0.58, 0.75> ←− success −→ 0.85 0.45 0.81 <0.69, 0.88>


