
Analyzing Cross-platform Attacks: towards a
Three-actor Approach

Antonio Acien, Ana Nieto and Javier Lopez

Network, Information and Computer Security (NICS) Lab
Lenguajes y Ciencias de la Computación

Universidad de Málaga, Spain
Email:{acien,nieto,jlm}@lcc.uma.es

Abstract—In the current telecommunications landscape, differ-
ent devices, systems and platforms are constantly communicating
with each other. This heterogeneous environment creates the
perfect situation for attacks to pass from one platform to another.
This is a particularly worrying scenario, because of the new
technologies being used (such as network slicing in 5G), the
increasing importance of connected devices in our lives (IoT), and
the unpredictable consequences that an attack of this type could
have. The current approaches in attack analysis do not take into
account these sitations, and the attacker/victim paradigm usually
followed may fall short when dealing with these attacks. Thus,
in this paper, an architecture for the analysis of cross-platform
attacks will be presented, aiming to help understand better this
kind of threats and offering solutions to mitigate and track them.

Index Terms—Cross-platform, architecture, attack, security.

I. INTRODUCTION

Cross-platform attacks (those which affect several platforms
and services) are hard to detect and track, since the vast
majority of security measures are limited to the security of
one platform. In this paper, we will be focusing on cross-
platform attacks in which the operation of the intermediary
transmissors is not directly affected, making the attacks harder
to detect before they reach their target. In an environment
where different platforms, technologies and protocols are more
and more interconnected between themselves, these kind of
attacks pose a serious risk.

Throughout this paper, it will be explained how a certain
platform can be compromised from a really different one,
using intermediary elements in the communication. Since, to
our understanding, there is no other architecture for analyzing
these threats that allows to understand their progression in real
time, one is proposed in this paper. The proposed architecture
aims to help with the detection, prevention and mitigation of
such attacks.

It must be noted that intercommunication between different
platforms, or layers of the same platform (such as network
slices in 5G), is becoming a common scenario in modern
communications. It is not strange to have an smartphone
connecting to a computer, which in turn connects to several
other devices (routers, USB gadgets, or other smartphones), or
even to a car which has a connection to a wireless network.
A similar landscape is also found in virtualized environments
(where the guest connects to the host) or in systems composed

of several embedded systems which communicate with each
other. The idea of an attack infecting one of these platforms,
and spreading to the ones communicated with it is a reality
that has not been just seen in theoretical proofs of concept
or controlled environments, but in running systems in the
real world and regular user devices (section II). With the
surfacing of new technologies promoting these interactions
(5G, mmWave, SDN...), it is necessary to establish tools that
make possible an analysis in order to understand this context.

The paper is structured as follows. In section II, an study
on the state of the art regarding cross-platform attacks is
presented, and after that, the proposed architecture, called BTV
(Bearer, Transmitter Victim) will be shown in section III. It
will be formalized in section IV. The section V describes how
the BTV architecture would be applied in a simplified use
case. Last, a discussion on the results and some conclussions
drawn from the work are carried out in sections VI and VII,
respectively.

II. STATE OF THE ART ANALYSIS

The definition of cross-platform attacks is relatively wide,
and it can refer to several meanings. Ranging from attacks that,
with the same code, can affect different platforms (for exam-
ple, taking advantage of the multi-platform feature of Java[1]),
to those that modify their code depending on the system they
are targeting (metamorphic attacks) [2]. Moreover, some works
on the cross-platform concept opt for focusing on permissions
and policies for specific scenarios, or procedures, methods and
libraries that have counterparts in different operating systems
or architectures [3].

Most of the contributions in this area are related to networks
in general: packet transmission, authentication and acccess
control, among other topics [4]. Also, the networks taken into
account have been specific technologies, such as 3G [5][6].
In addition, some specific cases of vehicular networks are
studied, where cars are platforms which, in turn, integrate
other platforms. For example, in [7], a CD is used to cause
disruption in other parts of the car system, such as the engine
or the steering, and in [8], a paired Bluetooth device sends
messages to other parts of the vehicle, such as multimedia
nodes, or the parts which manage external communications.

A. Acien, A. Nieto, and J. Lopez, “Analyzing cross-platform attacks: towards a three-actor approach”, The 16th IEEE International Conference on
Dependable, Autonomic and Secure Computing (DASC 2018), pp. 536-543, 2018.
http://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00102
NICS Lab. Publications: https://www.nics.uma.es/publications

Access technology
(β)

System

Access technology
(δ)

Network (ρ)

Normal flow Optional flow
Flow choices System

Bearer (α)

Transmitter (γ)

CnC Server

1. Message delivery
to the system

(malicious payload)

4. Data delivery to
the CnC server or

command reception

Victim (σ)

2. Message
delivery to the

target

3. Transmission through the network

External
attacker Agent Access

technology Environment

Fig. 1. BTV architecture diagram

There have been also cases in virtualization environments,
where the host machine was supposed to be a platform isolated
from the virtualized one. Nontheless, it is known that there
are attacks designed to break out from this envirmoment,
surpassing the guest-host barrier, and allowing to write in
memory positions restricted to the host machine from the guest
one. These attacks go further than just proofs of concept [9],
since there are exploits commercially available to carry out
the attack in a real environment [10].

The Internet of Things (IoT) is not an exception either. For
example, the Windows version of Mirai attacks to computers
with this operating system, but once they are reached, it scans
the local network searching for vulnerable IoT devices, which
can be turned into part of a botnet, in order to carry out
distributed denial of service (DDoS) attacks towards other
infrastructures [11].

Furthermore, some attacks which are transmitted from an
smartphone to a computer and vice versa have been docu-
mented. In the former, normally they are transmitted when
the mobile device is connected throguh USB, turning the
computer microphone into a wiretapping device and sending
the recorded audio to an external server, spying conversa-
tions [12]. Following the opposite flow, some attacks spread
from a computer to an Android device, deleting some installed
apps and replacing them with identical versions which send
the identification data entered to a rogue server [13]. This is
specially delicate when these apps have sensible info (such
as mobile banking apps). Also worth discussing, there is
XcodeGhost, which is a modified version of the integrated
development environment (IDE) for iOS which infects the
applications programmed with it, and spreads this malware
to the devices where they are installed [14].

It must be pointed out that, despite the fact that cross-
platform attacks have become more worrying and common in
recent times (mainly motivated by advanced persistent threats),
they are nothing new, although the terminology and approach

given in this work are. The spread of attacks through multiple
platforms is something that has been happening since several
communication generations back, and it has been seen that
although improvements are made in security, if there are no
solutions fitting the context changes, it will be very hard to
stop the spread of attacks in bearer elements. Any security
model should consider this type of attacks and face them from
a global perspective. With the development of new platforms
and technologies, there is also a rise of malware targeted
specifically to them [15], which lays bare the need to face
this problem. Therefore, defining a strategy and measures for
these attacks is prioritary.

This paper will provide a general approach to this problem,
with the goal of offering solutions that allow to answer to the
attacks, regardless of the platform.

III. ARCHITECTURE FOR CROSS-PLATFORM ATTACKS
ANALYSIS

In this section, the BTV architecture (Bearer, Transmitter,
Victim) is presented. It aims to cover the different scenarios
where cross-platform attacks take place in a simple and general
fashion, with enough flexibility to adapt to each of the different
situations and attack flows. The main idea behind the concept
of BTV is proposing a simple schema which consists of an
agent which holds the attack, known as bearer. This attack is
targeted to a victim, which is not infected directly. Instead,
the attack is passed through another agent, called transmitter,
which holds the attack, but has no alteration in its operation
(or at least, not obvious enough to make the attack detectable
to the end-user). Last, the transmitter will unconsciously
send the attack to the victim, who suffers the consequences
of the attack. After explaining this idea in a graphic and
detailed manner (section III-A), it will be explained how the
architecture would be used to identify cross-platform attacks
(section III-B).

Fig. 2. Implementation of a threat detection system based on the BTV architecture

A. Architectural components
The classic approach taken when analyzing attacks (section

II) is a simplified scenario with two actors. In such situation,
both attacker and victim are well-defined agents: the attacker
makes an effort to spread the infection to the victim, who is
compromised and harmed. However, this standpoint may fall
short in cross-platform attacks, which involve more systems
with different roles. Systems are prepared to detect malware
targeted towards themselves, but not to others. When a sit-
uation where a device is infected but its operation does not
change arises, detecting the attack is not easy at all. The role of
this unconscious transmitter is essential in many cases, since
it allows attacks to affect devices that could not be accessed
otherwise.

The BTV architecture (Fig. 1) allows to study the possibility
of an attack originated in a platform spreading to different
ones, applying from new scenarios, such as 5G and SDN, or
vehicles with data connection, to daily situations such as USB
or Bluetooth connections between smartphones and computers.

In the schema there are three main actors, which are now
described:

1) Bearer: this participant in the architecture is the one who
starts the propagation of the attack. It can be a malicious
attacker with the goal of causing harm, or an unconscious
user who believes to be operating normally.

2) Transmitter: the agent who recieves the attack, but is
not directly affected by it.

3) Victim: the target system of the attack. Usually, it com-
municates with a CnC (Command and Control) server to
receive instructions or send data, although it is not always
the case, since it could be the victim of an attack without
need of external communication.

As it can be seen in Fig. 1, there are more parts involved.
One of them is the access technology, which, depending on
the type of attack, will vary. If the compromised agent is an
internet server with malware, it could access the transmitter
simply through an average router, whereas if it is a vehicle, this
access will be through a gateway for external communications
or an ECU (Electronic Control unit).

Also there is a network expressing the connection between
the transmitter and the affected agent. This can be via WiFi,

USB, Bluetooth, CAN, or any other protocol. Messages can
be sent through it to each of the agents, or directly through
the access technology.

It must be pointed out that, while in some scenarios agents
are independent devices with momentary connections (such
as a smartphone and a computer), in others, they are part of
a complete indivisible system, where they share resources or
messages, such as the parts of an automobile, or a virtual ma-
chine and its host. In addition to those systems, environments
can be defined, which represent scenarios where usually these
agents interact.

B. Implementation

Having the possibility of analyzing the attacks in a system-
atic way through this architecture, makes way for the develop-
ment of applications using it, that through its implementation,
help preventing, detecting and mitigating these threats.

Once the known cross-platform are analyzed (those in
bibliography, or those detected in production environments),
their spreading patterns can be used as previous knowledge. If
they are included in a database, comparing their participants
or structure with the detected threats can help predict their
evolution and prevent their propagation, or taking the right
measures to mitigate them.

The comparison with known attacks can be carried out
in several ways. The attacks can be compared through their
structure, thus, checking if the involved agents follow a certain
pattern, and predicting if the attack will spread to another
platform. It can also be checked if the involved agents match
those of some known case, identifying previously known
attacks, or variations of them.

When these checks are made, trying to match the informa-
tion about attacks in the database, a criteria for similarity must
be established. This will help deciding which measures should
be taken, because if the similtarity to a certain threat is high,
it can be used as a reference to deal with the detected one.

This similarity rule can be based on different variables. One
of the comparisons to be made is a structural one: if the attacks
follows the same structure as a known one (although through
different agents), it can be predicted if it is going to spread and
how. However, if the structure is different but the agents match,

it can be predicted which agents could be affected if the attack
keeps spreading with such structure. Of course, both criteria
can be met, matching a known attack in all of its variables.
These cases are illustrated in Fig. 2. It must be emphasized
that the arrows indicating the connection between the detected
attacks and the observed ones in the database, would change
as data about the threat is gathered. This is expressed through
the time bar tn.

As noted, one of the biggest difficulties to overcome in
cross-platform attacks is their detection, because the platforms
are usually prepared to detect and mitigate attacks targeted
specifically towards them. This task is hindered if the attack
is harmless for them, and they just collaborate in its spreading.
Through this previous knowledge, expressed through the ar-
chitecture, this problem could be faced, since when an attack
is detected and compared with the data, the possibilities of it
spreading are analyzed and taken into account.

IV. FORMALIZATION

With the aim of helping define the architecture, it has been
decided to formalize its structure with a simple but versatile
language, in a way that it can be instantiated in any case
necessary. Having a way to express different scenarios in an
unified manner makes possible for machines to understand it,
helping its automatic processing and thus, having a more direct
application. This will be helpful when carrying out the detec-
tion detailed in section IV, as the commented comparisons can
be made systematically, comparing variables or expressions.

A. Attack vector

The general expression which summarizes the architecture
is the following one:

Va = f x δtN , x = (α, β, γ, ρ, σ) (1)

Through this language, which makes use of different vari-
ables, every scenario considered by the BTV architecture can
be expressed. This expression will describe the attack vectors
(Va) of the architecture. Next, the sets, variables and functions
which give meaning to this formula are thoroughly described.
The table I sums up all the formalization.

B. Sets

Two sets are defined: A and T , expressing the possible
agents and technologies, respectively. These are sets consisting
of character strings. Since it is not possible to include all the
possibilities in these sets, they will be instantiated in each use
case, including the necessary members.

Example:

A = {Server, Smartphone,CANNode...} (2)
T = {USB,WiFi,Bluetooth, ZigBee, CAN...} (3)

C. BTV architecture variables

Several variables are used, which can be seen graphically
in Fig. 1. In order to symbolize the bearer, alpha is used. As
seen in exprs. (4), it can be in turn another attack vector,
providing recursion. The access technologies are expressed
through beta, gamma is used for the transmitter, rho stands
for the network, and sigma for the victim. The time instant in
which the attack takes place is symbolized through epsilon,
which can vary as more information is known. Last, delta
represents the technology used to communicate with the CnC
server, if there is any, thus being optional.

α ∈ {Va, A} (4)
β, ρ, δ ∈ T (5)
γ, σ ∈ A (6)
ε ∈ tN (7)

D. Flow functions

In order to represent the flow of the attack in the vector,
each one of the parts through which the attacks passes by can
be indicated sequentially. However, this would make attack
vectors heterogeneous, with a different amount of members
each time, depending on the situation, and some of them could
be repeated. To avoid these issues, flow functions represent
the way the attack takes through the agents it affects. The
function is expressed generally as f , but will be instantiated
as specific flow functions which describe detailed situations
(seen in Fig. 3): a, b, c or d.

f x =


a x siα→ β → γ → ρ→ σ

b x siα→ β → ρ→ γ → ρ→ σ

c x siα→ β → γ → ρ→ σ → ρ

d x siα→ β → ρ→ γ → ρ→ σ → ρ

(8)

It must be noted that functions a and c are very similar,
and the only distinction present is that in case of an attack
spreading (to another environment, or CnC server), the passing
is made through the network. Therefore, having an attack
mutate from a function to another in its operation is possible.
A similar situation arises between functions b and d.

E. Delimiters

Aside from previously presented variables, the symbols
[] and { } are also included. These are used to demarcate
the extension of a system and an environment, respectively.
Having agents comprised between the limits of a system means
that they are indivisible and they have a joint functioning. En-
vironments represent sets of devices which normally interact
between them in order to carry out certain functions, but they
can work independently. There are certain rules to follow when
using these symbols:

1) Both an environment and a system can exist one with-
out the other. Nonetheless, an environment cannot be

TABLE I
BTV ARCHITECTURE FORMALIZATION

Sets Delimiters
A: Set of possible agents taking part in the scenarios represented by the
architecture

[]: System delimiters
{}: Environment delimiters

T : Set of the possible technologies taking part in the scenarios represented
by the architecture

Example:
f(α, {β, [γ, ρ]}, σ)

Attack vector BTV Components
Va = f x δtN α ∈ {Va, A}

Flow function β, ρ, δ ∈ T

f x =


a x siα→ β → γ → ρ→ σ

b x siα→ β → ρ → γ → ρ→ σ

c x siα→ β → γ → ρ→ σ → ρ

d x siα→ β → ρ → γ → ρ→ σ → ρ

γ, σ ∈ A
ε ∈ tN
α: Attack bearer
β: Transmitter access technology
ρ: Network communicating the transmitter with the victim
σ: Attack victim
δ: Access technology between the victim and the CnC server (if any)
tN: Time instant

comprised inside of a system. A system can indeed be
comprised inside an environment.

2) In the case of a system which starts inside an environ-
ment, it must also end inside of it.

3) Both system and environment delimiters act on variables
α, β, γ, ρ y ε, and cannot be applied to others.

For example, if there is an enviroment containing the
access technology, the transmitter and the network, and a
system spanning these last two, it will be expressed as
f(α, {β, [γ, ρ]}, σ).

Once the context to be analyzed is defined using this
formalization, implementing a mitiagtion system based on
the BTV architecture is easier, since all the attacks can be
expressed through formulas with a common syntax.

V. USE CASE

In this section, a use case making use of several technologies
will be studied. This way, it will be observed how the BTV
architecture can be applied to different scenarios and protocols,
showing its utility in real practical situations. Although in the
use case, specific technologies and devices will be mentioned,
it must be pointed out that there would be infinite variations.
Likewise, the use case will be formalized using the functions
and variables seen in the previous section.

In the first phase of the attack, an internet server hosting
malware infects a computer through an exploit, taking advan-
tage of a vulnerability in the web browser, in order to install
an executable file with malicious code (steps 1 and 2). The
computer user is unaware of the malware being installed on
the machine, because it does not affect its regular operation,
but it is in the background, monitoring the USB connections
until it finds an Android device (step 3). When this happens,
the malware will look for an app which connects to a vehicle
via Bluetooth, uninstalling it (step 4), and replacing it with a
rogue version (identical to the eyes of the user) that connects
with the CnC server of the attacker (step 5) and has malicious
purposes. There have been cases of malware following this
operation patter with other types of applications, such as
banking apps [13].

Thus, the bearer in this phase would be the external server,
while the computer and the Android device would have the
roles of transmitter and victim, respectively. In turn, the
smartphone could be a bearer if the attack keeps spreading.

In order to express this part of the use case through the for-
malization presented in section IV, the following abbreviations
will be used for the sake of brevity in the formulas. These have
been chosen in a completely arbitrary manner, and they can
be extended as much as wanted, but there must be coherency,
using always the same ones inside of an implementation if one
is carried out.

The application of the formula which formalizes the attack
is quite straightforward, given that it is only needed to replace
the variables and functions with the ones used. In order to
keep it simple, the abbreviations in table II will be used. In
this case, the result would be the following:

Va = f(α1, β1, γ1, ρ1, σ1)
δ
ε (9)

VaCU = a(SRV,NV G,PC,USB,AND)DATt1 (10)

TABLE II
TABLE OF ABBREVIATIONS FOR THE USE CASE

Acronym Meaning
SRV Server
PC Computer

AND Android device
BT Bluetooth

OBC On-board computer
GW Gateway

GW-BT Gateway (Bluetooth connection)
LC Light control

NVG Browser
DAT Data connection

NODE Node
ENG Engine

Since there is no CnC server in this scenario, it is not
included in the previous expression. It can be seen that, since
this scenario is analyzed statically, and not through time, the
time instant is not included as a subindex.

Once the smartphone has been infected as seen, the installed
app can monitor Bluetooth connections with vehicles. This

Access Technology

3 4

1

Access Technology

Internal
network2

Bearer

Transmitter

C&C Server

6

Victim

5

Access Technology

5

1

Access Technology

Internal
network2

Bearer

Transmitter

C&C Server

7

Victim

6

Access Technology

4

1

Access Technology

Internal
network

2

Bearer

Transmitter

C&C Server

7

Victim

6

Internal
network

3

5

5

Access Technology

C&C Server

8

Victim

7

6

Access Technology

4

1

2

Bearer

Transmitter
3

4

3

a

b

c

d

Fig. 3. Possible attack flows which the different functions represent

means that when pairing with a vehicle, the app can try to
compromise its operation. The connections inside cars follow
the CAN protocol (Controller Area Netowrk), which regulates
the communications through a bus which the different nodes
are connected to. These nodes can be as diverse as lights
control or even the engine. Due to the design of this protocol,
it is very easy to carry out denial of service attack from any
of the nodes, sending a massive amount of messages, thus
flooding the bus.

There is another kind of more sophisticated attacks, which
can be targeted to some of the nodes comprising the internal
network of the automobile, originating from any of them.
These attacks, however, require a deep understanding of the
firmware in the nodes, which depends on the exact model of
the vehicle, and they are overall more complicated.

Both in simpler and more complicated attacks, the scenario
would consist of an Android smartphone connecting to an
automobile system through Bluetooth. In modern vehicles,
these communications are usually made through a gateway
meant for external connections. Once the device is paired, it
could start sending a massive amount of messages through said
gateway (step 6), blocking the communications through the bus
for other nodes, making a denial of service. Although some
modern vehicles define different levels of communications,
and implement a bus for each of them, separating critical
communications from more secondary ones through firewalls,
there have been attacks where these security mechanisms have
been bypassed [8][16]. Another kind of attack could have
the smartphone sending a message to the on-board computer
to have it redirected to another node, which would be the
victim (step 7). This message would contain a malicious
payload affecting the victim, but not the transmitter, due to its
encoding. This node could be any of the network (windows,
speedometer, fuel indicator...), but for the sake of simplicity,
it will be instantiated to the light control in this case (step 8).

As previously seen, the Android device is no longer the
victim of the attack, but the bearer, since it can spread to other
platforms. In this case, the transmitter would be the external
communication gateway, which is accessed through Bluetooth,
the access technology. Once the transmitter is infected, it will
continue operating as usual (handling the messages of the
devices connected to it), but the rest of the nodes of the vehicle,
which are the victims accessed through the CAN bus, will not
be able to function properly, since the smartphone will have
flooded the bus with packets, causing a denial of service.

Considering that the smartphone, which is a bearer, was in
turn a victim, this scenario can be described as a recursion.
Moreover, since the messages are sent through the CAN bus
from the access technology to the on-board computer, the
function changes in this recursion. The resulting expression
is the following one:

Va = f(f(α1, β1, γ1, ρ1, σ1)
δ, β2, γ2, ρ2, σ2)ε (11)

VaCU = b(a(SRV,NV G,PC,USB,AND)DAT ,

GW −BT,OBC,CAN,LC))t2
(12)

This attack takes advantage of the simplicity that the CAN
protocol offers, since it has been designed to work on micro-
controllers with very little processing power, and it is focused
on real-time communications rather than security [17]. Thus,
the mechanisms to avoid packet injection or denial of service
attack would worsen the response time of the system, given
that they require complex operations.

Now that the formalization of the attack observed in the use
case has been made, it can be compared to the implementation
detailed in section III-B with registered attacks. These attacks
are both real threats registered in malware databases[13] and
academic proofs of concept [18].

It is seen how the attack is similar to the trojan
TROJ˙DROIDPAK.A [13], since they share the same agents
(a personal computer infected from an external connection,

4. Message delivery
to the system

(malicious payload)

Web browser

3. Message delivery through
network

1. Message delivery
to the system

(malicious payload)

USB

5. CnC server
receives data

2. Malware
installation on
the computer

External gateway (Bluetooth, data connections...)

7. Message delivery through the bus
Vehicle

CAN Bus
8. Malicious message

for bus flooding

Server

Computer Android device

On-board computer Lights control

Domestic environment

Normal flow System

Attacker Agent

Access
technology Environment

6. Message delivery to
the victim through the

transmitter

Data connection

CnC Server

Fig. 4. Application of the BTV architecture in a use case

Fig. 5. Comparison of the use case with known attacks, using the proposed formalization

transmitting to a smartphone connected via USB) and with
the automobile attack described by Miller and Valasek [18],
because the structure is quite similar (packets are sent through
an external connection in order to harm the operation of
a vehicle node). Thanks to these similarities, measures can
be taking to stop propagation, or mitigating the effects of
the attack, since these are detailed in the papers and the
malware databases [19], such as modifying Windows registers
of closing the external connections to vehicles.

As it has been shown, the BTV architecture is extendible
to several situations, different platforms and protocols, and
versatile enough to adapt to more complex attacks.

VI. DISCUSSION

There are several details worth commenting regarding cross-
platform attacks and the approach taken when developing the
BTV architecture. On the one hand, it would be interesting
to consider how feasible it is to carry an attack with the
importance of those commented in the paper on a real system.

For example, for more sophisticated attacks, developing a
rogue firmware for a vehicle is not a trivial task by any
means. Even though in some proofs of concept, changing a
few lines of code has changed the behavior of the car in
a crucial manner [8], an attacker would need access to the
original firmware, which is not easy to obtain, since reverse
engineering is an ardous and long task. Nonetheless, the worry
about this is growing, as recent news and studies show [20].
Moreover, regarding the attacks in virtualization platforms,
it must not be forgotten that certain settings or versions are
needed for them to work, and these are not easily found in
real systems.

On the other hand, even taking into account the peculiarities
of these situations and how specific the scenarios needed for
carrying out the attacks can be some times, it does not mean
that they are not feasible. Each part of the use cases shown is
based on a real attack, thus there is a real risk of them growing
bigger and having fatal consequences for potential victims.
The BTV architecture aims covering both these scenarios as

well as the new ones arising. In order to make this possible,
a comparison rule is needed, both variable and structure-wise.
A similarity parameter to each of the known attacks can be
established based on these operations, helping know which
attack matches the most, in order to follow the necessary
security measures.

The method to follow in order to search for cross-platform
attacks in attack databases or bibliography is also an issue
to take into account, since it is crucial to develop a strong
database of previous knowledge.

The presence of new telecommunication landscapes also
brings new security challenges. For example, with network
slicing in 5G, devices are grouped in isolated slices, which
are adapted to their needs (speed, priority...). If an attack orig-
inating in one slice, could compromise the slice manager and
spread to another one, a critical infrastructure could be infected
from a simple user-end terminal. The BTV architecture can
also be used to analyze newer scenarios, such as this one.

Last, this approach would be very beneficial for the fifth
generation of cellular networks (5G) for a couple of reasons.
First, the great synergy of software technologies cooperating
to offer service, using a myriad of different platforms and
integrating the final user (and the devices used) more than
ever before as part of the ecosystem. Second, for operational
and deploying reasons. This architecture and its implemen-
tation require a great resource capacity in order to function
correctly. The processing of attack vectors in real time needs
advanced handling and classifying a huge amount of data in
an efficient manner. These service could be provided by the
5G infrastructure from the core.

VII. CONCLUSSIONS AND FUTURE WORK

Cross-platform attacks are a reality spreading more and
more, and as the communication infrastructures improve, the
propagation possibilities do so too. In this paper, an architec-
ture able to express the variations of cross-platform attacks
is defined and formalized, providing a specialized approach
to each case, but sharing a common language to convey the
attack vectors and making their comparison easier. The goal is
to help the prevention and mitigation of these threats, allowing
the intermediate components to predict if something happening
could potentially affect other systems it communicates with.

Regarding future work and improvements, the direct and
practical application of this work could be tested using the
BTV architecture to solve threats in simulated environments
through tools such as ns3 or OMNET++, offering solutions
to attacks such as denials of service, on how to stop their
spreading, and obtaining data to help the systems implement
security measures in highly complex environments, like 5G.

ACKNOWLEDGMENT

This work has been financed by the Ministerio de Economı́a
y Competitividad through the projects IoTest (TIN2015-
72634-EXP) and SMOG (TIN2016-79095-C2-1-R). The sec-
ond author has been financed by INCIBE through the program
of aids for the excellence in advanced cybersecurity research
teams.

REFERENCES

[1] M. Lindorfer, M. Neumayr, J. Caballero, and C. Platzer, “Poster: Cross-
platform malware: write once, infect everywhere,” in Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 1425–1428.

[2] Eugene, “Architecture spanning shellcode,” 2000.
[3] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,

Y. Zhang, and W. Zou, “Following devil’s footprints: Cross-platform
analysis of potentially harmful libraries on android and ios,” in Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 357–376.

[4] C. R. Reeves Jr, “Cross platform network authentication and authoriza-
tion model,” Feb. 13 2007, uS Patent 7,178,163.

[5] W. Jia, D. Bin, and L. Liao, “Architecture of secure cross-platform
and network communications,” in Proceedings of the 2nd international
conference on Ubiquitous information management and communication.
ACM, 2008, pp. 321–328.

[6] K. Kotapati, P. Liu, Y. Sun, and T. LaPorta, “A taxonomy of cyber attacks
on 3g networks,” Intelligence and Security Informatics, pp. 129–138,
2005.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium. San Francisco, 2011.

[8] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 447–462.

[9] N. Elhage, “Virtunoid: Breaking out of kvm,” Black Hat USA, 2011.
[10] K. Kortchinsky, “Cloudburst: A vmware guest to host escape story,”

Black Hat USA, 2009.
[11] M. Mimoso, “Windows botnet spreading mirai variant,” 2017.
[12] “Android.ciaco,” 2013.
[13] R. Certeza, “Cross-platform mobile threats: A multi-pronged attack,”

2014.
[14] X. Gui, J. Liu, M. Chi, C. Li, and Z. Lei, “Analysis of malware

application based on massive network traffic,” China Communications,
vol. 13, no. 8, pp. 209–221, 2016.

[15] M. Sargent, “Malware trends: The rise of cross-platform malware,” 2012.
[16] L. Mearian, “Firewalls can’t protect today’s connected cars,” 2015.
[17] R. Bosch et al., “Can specification version 2.0,” Rober Bousch GmbH,

Postfach, vol. 300240, p. 72, 1991.
[18] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger

vehicle,” Black Hat USA, vol. 2015, 2015.
[19] G. R. Joi, “Troj˙droidpak.a,” 2014.
[20] F. Maggi, “The crisis of connected cars: When vulnerabilites affect the

can standard,” 2017.

