
A comprehensive methodology for

deploying IoT honeypots

Antonio Acien, Ana Nieto, Gerardo Fernandez, and Javier Lopez

Network, Information and Computer Security (NICS) Lab
Lenguajes y Ciencias de la Computación

Universidad de Málaga, Spain
{acien,nieto,gerardo,jlm}@lcc.uma.es

Abstract. Recent news have raised concern regarding the security on
the IoT field. Vulnerabilities in devices are arising and honeypots are an
excellent way to cope with this problem. In this work, current solutions
for honeypots in the IoT context, and other solutions adaptable to it
are analyzed in order to set the basis for a methodology that allows
deployment of IoT honeypot.

Keywords: IoT, honeypot, security, methodology

1 Introduction

The Internet of Things (IoT) has initiated a technological revolution that a↵ects
both the public and private sector. One major concern is that users are delegating
in their personal objects an important part of their daily routine without being
really protected against malicious attacks.

In fact, the number of connected devices is expected to exceed twenty billion
in 2020 (being prudent) [1]. This is a problem due the obvious density of devices
sharing the same spectrum, but it also means that there will be even more plat-
forms and services deployed independently and within a too short time interval.
Security solutions need time to be deployed prior this deployment of networks
and devices and it will be materially impossible to do that. Furthermore, even
considering that security mechanisms and services are deployed in some way,
nowadays it is impossible to accurately predict the e↵ect that a targeted attack
can have on the current infrastructure network.

In particular, IoT devices are a succulent call for attackers intended to cause
the major damage possible, precisely given i) the user’s dependence on their
devices, and ii) the power of decision that we give to these devices (e.g. relying
on an automatic vehicle to drive for us).

It would be unrealistic to think that attacks will not occur, so we must
promote measures to detect threats as early as possible, understand them and
analyze them in a safe environment, prepared to receive them. In other words, it
is necessary to attract attacks against trap nodes or networks in order to obtain
malicious code that can be analyzed safely. These attractive hooks for cyberat-
tackers are known as honeypots and honeynets. The simulation and emulation

A. Acien, A. Nieto, G. Fernandez, and J. Lopez, “A comprehensive methodology for deploying IoT honeypots”, 15th International Conference on
Trust, Privacy and Security in Digital Business (TrustBus 2018) vol. LNCS 11033, pp. 229243, 2018.
http://doi.org/https://doi.org/10.1007/978-3-319-98385-1_16
NICS Lab. Publications: https://www.nics.uma.es/publications



2 Antonio Acien, Ana Nieto, Gerardo Fernandez, and Javier Lopez

of these services would also allow the deployment of trap services dynamically
as the analysis platform requires. Moreover, these honeypots are useful when it
comes to monitoring and logging attacks that usually erase their traces, and are
a↵ordable both economically and on processing power, since they allow to use
simulated systems instead of real devices.

Although the security on IoT devices was considered back as far as 2011
due to attacks on routers and other embedded devices [2], it was the amount of
botnets (networks of bots) that started appearing what raised serious concern.
After some botnet attacks (Tsunami, Gafgyt, BrickerBot), the one that caused
major disruption was Mirai in 2016, which taking advantage of vulnerabilities
in IoT devices, launched a distributed denial of service attack that took down
websites such as Amazon, Twitter or GitHub [3]. As the worry about these
attacks increases, the amount of malware targeted to IoT platforms does to, as
well as the budget destined to IoT security [4].

This article is focused on one of the major concerns in the deployment of IoT
honeypots. Specifically, we propose a methodology to deploy relevant honeypots
in IoT environments, considering aspects as the ranking popularity of the chosen
devices and the requirement for avoiding the detection of our trap nodes as
honeypots by some of the most popular IoT scanners. Although the methodology
proposed could be adapted to generic honeypots we focus on IoT honeypots due
to the concern they represent nowadays.

2 Related work

Although there have been revent and exhaustive surveys about honeypots which
include classifications, maintenance and focus [5], to the best of our knowl-
edge, there is no work regarding the deployment of IoT honeypots with a whole
methodology behind.

The existing surveys do not analyze the specific requirements that are needed
in order to deploy honeypots in IoT environments. This is the main focus of
this paper; to properly and clearly identify a set of steps and procedures to
successfully deploy honeypots in IoT environments avoiding to be detected by
web search engine tools and, at the same time, be attractive to the attackers.

There is some work done in the field of IoT honeypots, with some interesting
deployments and architecture, but due to the novelty of the field, the amount is
very limited. Some IoT honeypots deployment architectures, such as IoTPOT [6],
SIPHON [7] or IoTCandyJar [8] are quite interesting, since they have advantages
such as redirecting low-interaction honeypots to high-interaction ones (making
the whole system look more real to an attacker without a high cost), connecting
the honeypots to cloud servers to make them look distributed all around the
world, or using the responses of real IoT devices connected to the internet. Some
other works are improved implementations of these ones, such as [9], which is
an improved open-source version of IoTPOT.

There are also honeypots that are not focused on architecture, but worth
mentioning, such as Wificam or Honeypot Camera [5], which impersonate web-



A comprehensive methodology for deploying IoT honeypots 3

cams, MTPot [10] and ThingPot [11], which act as a IoT devices with certain
vulnerabilities (Mirai and TR-064 respectively), or others that focus on personal
area networks (PAN) [12]. Some honeypots specialize in industrial environments,
such as Conpot [13]. Both categories, honeypots architectures and standalone
ones, are detailed in Table 1.

Table 1. IoT honeypots

Honeypot
Characteristics Viability of emulation

Scope Type Protocol Architecture HW Downl. Maintenance

IoTPOT
Industrial,
home,

personal
High Telnet

MIPS,ARM,
PPC

No No
Article:

May 2015

SIPHON
Profesional,
personal

High
SSH,
HTTP

Cloud-based Yes No
Article:
Jan. 2017

Multi-purpose
IoT honeypot

Industrial,
home,

personal
High

HTTP,
SSH,

TR-064,
Telnet

MIPS,ARM,
PPC

No Yes
Article:

May 2017

Conpot Industrial Medium
Modbus
(TCP),
SNMP

ICS,
SCADA,
BACNet,
HVAC

No Yes
Article:

Sep. 2016 [13]

IoTCandyJar
Industrial,
home,

personal
Intelligent

HTTP, SSH,
Telnet, TR-064,
XMPP, MQTT,
UPnP, CoAP,
MS-RDP. . .

MIPS,ARM,
PPC

No No
Article:
July 2017

ThingPot Household Medium
HTTP,
XMPP

Philips Hue lights No No
Last commit:
Aug. 2017

HoneyThing Routers Low TR-064 - No Yes
Last commit:
Mar. 2016

ZigBee Honeypot Personal Medium ZigBee - No No
Last commit:
June 2017

Honeypot-camera
Profesional,
personal

Low HTTP - No Yes
Last commit:
June 2015

MTPot Mirai Low Telnet - No Yes
Last commit:
Nov. 2016

Wificam
Profesional,
personal

Low HTTP - No Yes
Last commit:
Apr. 2017

3 Methodology

Figure 1 shows the steps in the H-IoT methodology. We separate this methodol-
ogy in five main blocks: (1) IoT security search, (2) build honeypot, (3) training,



4 Antonio Acien, Ana Nieto, Gerardo Fernandez, and Javier Lopez

(4) public deployment and (5) visualization and evaluation. Note that this last
block can be executed in parallel to the training and the public deployment.

IoT Vulnerability 
Search

Honeypot Builder

IoT devices
<< popular >>

IoT devices 
<< vulnerable >>

Deployment in a 
Controlled 

Environment

Training

Infection

IoT searchers (e.g., 
SHODAN, CENSYS)

Vulnerability 
publishers (e.g., 

EXPLOITEE)

Honeypot Factory

Script 
HoneypotsScript 

HoneypotsScript 
Honeypots

- Request honey
- Update scripts

- Add/delete scripts
- Update scripts

Collecting Logs

Visualization

Vi
su

al
iza

tio
n 

& 
Ev

al
ua

tio
n

User

Evaluation / Post-
configuration

Feedback

IoT Search

Build honeypot

Deployment in the 
Internet as a thing 

or as a service

Monitoring and 
supervising the 

publishing in sites

Receive Attacks 
Known or new 

attacks

The 
Internet

1) Is our honeypot listed 
as a IoT device?
2) Is our honeypot
Identified as a honeypot?

IoT Popularity 
Search

Public Malware 
databases (e.g., 

VirusTotal)

IoT-Malware 
code Search

Public deployment

Attack-
vectors

<<modif>>

Orchestrator

Fig. 1. Methodology

3.1 IoT Search

The two first challenges to be faced are (i) making the honeypot attractive for
attackers and (ii) making the set of deployed honeypots representative of the
general IoT context. This last one is crucial, due to the wide variety of devices
which can be attacked. The usefulness of the results will depend on how rich the
selected sample is. The related works are too specific or can become obsolete too
soon if they don’t satisfy (i) and (ii).

The first phase of the analysis aims to face both challenges. In this phase, IoT
devices which can be used as honeypots are analyzed first. This, the searches are
performed keeping in mind two basic attributes: popularity and vulnerability.
These are not mutually exclusive, since popular devices may not be vulnerable
to attacks, and vulnerable devices could be not widely used.

Next, the particularities of each search criterion are described. Some devices,
such as those matching both criteria, or those in charge of a highly critical
infrastructure, can be considered as high risk. Therefore, there must be a balance



A comprehensive methodology for deploying IoT honeypots 5

between the relevance of these attributes, which will depend on the context of
the devices.

Popularity-based search In order to carry out a search by popultarity, search
engines specialized in IoT were consulted, searching for tags using manufacturers,
models and types of devices. The search engines where the results were obtained
from are the following:

– SHODAN: Search engine for IoT devices directly connected to the internet.
Features filtering, banners, location and several other details. Also features
HoneyScore, a parameter indicating the probability of a host being a hon-
eypot.

– Censys: Searches the IPv4 namespace with ZMap. It can filter by protocol
or words in the banner. Uses semantic search.

– Reposify: Thought with the goal of improving security, detecting bad set-
tings (default credentials, open ports, obsolete firmware...).

– Thingful: Geographical search engine which categorizes the di↵erent IoT
devices that it finds.

– Wigle: Searches networks by their SSID, which allows the user to find some
devices that set up networks with a default name.

Moreover, general and specialized sellers were also used. To this respect,
Table 2 shows a preliminar list of results of popular devices following both afore-
mentioned criteria.

Table 2: Popular IoT devices (data retrieved on 16/02/2018)

Device type Model Selling ranking Search engine ranking

Routers

TP-Link TL-WR841N 1 (Amazon Spain, category:
routers)

3 (Shodan, tags:router) –
47K results

TP-Link TL-WR740N 2 (Shodan, tags: router) –
78K results

TP-Link TL-WR741ND 5 (Shodan, tags: router) –
11K results

Linksys E2500 2 (Shodan, tags: linksys) –
3K results

Netgear WNR1000v3 3 (Shodan, tags: netgear) –
3K results

Linksys E1500 12 (Amazon USA, category:
routers)

T-Mobile/ASUS AC1900 1 (Amazon USA, category:
routers)

Netgear R6700 3 (Amazon USA, category:
routers)

TP-Link N540 5 (Amazon USA, category:
routers)

Linksys WRT54GL 2 (Amazon USA, category:
routers)



6 Antonio Acien, Ana Nieto, Gerardo Fernandez, and Javier Lopez

Linksys E2500 4 (Amazon USA, category:
routers)

2 (Shodan, tags: linksys)
–1.8K results

Linksys E4200 8 (Amazon USA, category:
routers)

4 (Shodan, tags: linksys) –
500 results

IP cameras

DLink DCS-932L 17 (Amazon Spain, cate-
gory: security cameras)

DLink DCS-5300 Censys, tags: “dcs-5300” –
73 results

Sony SNC-RZ25 Censys, tags: “snc-rz25” –
798 results

Axis M1054 Censys, tags: “axis m1054”
– 401 results

Axis 2100 Censys, tags: “axis 2100” –
350 results

DVRs and
NVRs

Sony NSR-500 5 (Network Webcams) Censys, tags: “nsr-500” – 3
resultados

Axis Companion Recorder 1 (Network Webcams) Censys, tags: “axis compan-
ion” – 10 results

Hikvision DS
7604/7608/7616

3 (Network Webcams)

UniFi NVR 2 (Shodan, tags: nvr – 357
results)

Zmodo NVR (ZMD-DT-
SCN8)

5 (Shodan, tags: dvr – 450
results)

Antennas Ubiquiti AirGrid M AG-HP-
5G27

4 (Shodan, tags: router –
13K results)

Smart TVs TiVo Series2 Firmware 2 (Shodan, tags: dvr – 3’6K
results)

Industrial
devices

Schneider Electric BMX P34
2020

1 (Shodan, tags: Schneider
electric – 608 results)

Schneider Electric BMX
NOE 0100

2 (Shodan, tags: Schneider
electric – 289 results)

Schneider Electric SAS
TSXETY4103

3 (Shodan, tags: Schneider
electric – 169 results)

Schneider Electric
TM221CE40T

4 (Shodan, tags: Schneider
electric – 117 results)

Schneider Electric
TM221CE40R

5 (Shodan, tags: Schneider
electric – 60 results)

Omron CJ2M

Censys, tags: “omron cj2m”
– 4256 results,
Shodan, tags: “omron cj2m”
– 521 results

Drones
and UAVs

DJI Phantom 3 9 (Amazon USA, category:
hobby RC)

UDI U818A 8 (Amazon USA, category:
hobby RC)

Holy Stone S160 1 (Amazon USA, category:
hobby RC)



A comprehensive methodology for deploying IoT honeypots 7

Vulnerability-based search The second criterion to select devices as honey-
pots is based on known vulnerabilities. Furthermore, it is very important to have
an updated database with the most relevant vulnerabilities classified by the type
of device and context, and the estimated impact of the vulnerability.

Websites specialized in device vulnerabilities were used for this research. The
most used are listed here, altough some papers and journals were also used. These
are cited when needed.

– Exploitee.rs: Website listing vulnerable devices and their exploits.
– CVE Details: Database containing all the CVE (Common Vulnerabilites

and Exposures) entries, detailing which brands, models, versions of firmware
are a↵ected, and links to the exploits if available.

– Exploit database (exploit.db): Website which contains usable exploits
and proofs of concepts about some vulnerabilites.

Table 3: Vulnerable IoT devices

Device type Model Known vulnerability

Routers

TP-Link TL-WR841N
Directory traversal
Cross-site scripting

TP-Link TL-WR740N
Denial of service
through httpd crash

TP-Link TL-WR741ND
Malicious code injection
in SSID field

Linksys E2500 Code injection in URLs

Netgear WNR1000v3
Password recovery
credential disclosure

Linksys E1500 Code injection in URLs
Zyxel AMG1302
and P-660HN

TR-064 vulnerability [14]

Sagecom Livebox
Denial of service filling
the IPv6 routing table

T-Mobile/ASUS AC1900 Remote code injection
Netgear R6700 Remote code injection

Linksys WRT54GL

Code injection
Denial of service
Bu↵er overflow
Authentication bypassing

Linksys E4200 Remote password stealing

IP cameras
DLink DCS-932L

Cross-site request forgery
Remote password stealing

DLink DCS-930L Cross-site request forgery
Sony SNC-RZ25 Heap-based bu↵er overflow

Industrial devices

Schneider Electric
BMX P34 2020

Stack-based bu↵er overflow

Schneider Electric
Modicon M340

Bu↵er overflow through
web server login

Schneider Electric
Homelynk (LSS100100)

Cross-site scripting



8 Antonio Acien, Ana Nieto, Gerardo Fernandez, and Javier Lopez

Schneider Electric
TSEXTG3000

Stack-based bu↵er overflow

Omron CJ2M Passwords transmitted in
clear [15]

Drones and UAVs
DJI Phantom 3

GPS spoofing
GPS jamming [16]

Parrot AR 2.0 GPS spoofing [17]

UDI U818A
Remote unauthenticated
controlling [18]

Home appliances

iKettle Password stored in clear [19]
Samsung RF28HMELBSR
Fridge

Man-in-the-middle attack
through SSL vulnerability [20]

FitBit Aria Scale Password stored in clear [21]
Miele PG 8528 Dishwasher Directory traversal vulnera-

bility

Philips Hue Lights
Vulnerability in firmware
verification [22]

Miscellanea CloudPets Unencrypted cloud
database [23]

3.2 Honyepot builder

This step in the methodology focuses in building honeypots considering both in-
puts from the previous phase, which are i) IoT devices with known vulnerabilities
and ii) popular IoT devices. Sometimes both aspects may coincide. During this
step, the viability to design and implement each honeypot is carefully analyzed
in order to establish implementation priorities.

Although the implementation of the honeypots can depend of many factors
(e.g., type of honeypot to be deployed, their dependency on hardware, etc.), in
order to improve the e�ciency of the system, it is very important to maintain a
repository of solutions previously implemented. This would allow the deployment
of honeypots which are similar to the already used ones in a fast and e�cient
manner, reusing some aspects such as parameters and settings. This is a likely
scenario, since the output of the later phases will be used as feedback for this
one, which will allow fine-tuning the deployed honeypots.

To classify and catalog these solutions based on the context, during this phase
it is recommended to use a Honeypot Factory. This additional component will
be used to control the access and modifications of a rich set of scripts, which
describe the configuration of honeypots for the di↵erent application domains.

In addition, the deployment of honeypots will be much more e�cient if these
can be generated on-demand. This may happen, for example, if during the attack
the honeypot gets corrupted, stuck, disabled or broken.

In the proof of concept presented in this paper, the infection of the virtual
machine is manual, so this phase does not have as much weight as it would in
a further developed deployment. However, future works are directed to develop
specific IoT honeypots following this methodology.



A comprehensive methodology for deploying IoT honeypots 9

3.3 Testing

During the training phase, the deployment of the honeypots is carried on in a
controlled environment in order to test it. In order to do that, the honeypot is
infected using, for example, known malware code downloaded from the Internet.
In some cases the infection of a device is not trivial at all. One of the purposes
of this step in the methodology is also to evaluate the viability of a honeypot for
being infected. Note that, in some cases, it will be desirable that the honeypot
will be the most vulnerable possible (e.g., to record lazy, opportunistic and auto-
mated attacks) but in other cases the honeypot should represent a challenge for
a persistent attacker that might suspect of the victim if it has not a minimum
security level.

3.4 Public deployment

The most useful feedback to the system implementing this methodology will
be obtained from the phase of public deployment. During this step the selected
honeypot is finally deployed with direct access to the Internet.

Paradoxically, although it is known that connecting IoT devices directly to
the Internet exposes them to several threats, this is precisely what motivates
the work. Due to the high density of devices, our honeypots can go unnoticed to
the attackers, or even works, be identified as honeypots (alerting other attackers
about it). The measures taken in the previous phases regarding the viability and
interest of the honeypots try to prevent this.

Moreover, some factors, such as marketing will be needed, in order to make
our devices listed by the relevant IoT search engines, and the places where the
attacker get their targets from. Second, websites where devices are identified
as honeypots must be checked to know if ours have been detected. Thus, a
continuous monitoring is mandatory.

Last but not least, the deployment of the honeypot must be realistic. The
technical complexity might depend for example on the dependencies of the so-
lution with other theoretically real components in a productive environment.
For example, PLCs in a SCADA system might require to interchange command
controls with a controller. To reproduce all this behavior is very complex, fur-
thermore considering that in some cases the protocols are proprietary.

3.5 Evaluation and validation

The phase of visualization and evaluation is parallel to both the training and
public deployment phases. However, the results achieved from both phases must
be clearly separated and classified. This will contribute to know if the expected
results prior the public deployment correspond with the real results obtained
after the deployment.

In particular, this phase is directed to make the solution usable to an ad-
ministrator or investigator, depending on the user profile of the resultant system
where the methodology is being implemented.



10 Antonio Acien, Ana Nieto, Gerardo Fernandez, and Javier Lopez

We must emphasize that logs can be collected in di↵erent formats and thus
may represent a problem during the visualization step. Some tools for the inter-
pretation of logs expect to receive the logs in a specific format. Therefore how
to translate these logs to extract useful information must be considered during
the implementation.

This methodology also considers the feedback provided by the user to im-
prove/configure the platform of honeypots. This is a feature that is needed in
order to allow the improvement of the solution and enlarge its maintenance as
far as possible.

Kippo

Log

Attacker

Filebeat Logstash

Grok

Elasticsearch

Kibana

Honeypot admin

Requests Responses

Index Index Index

Raw data

Raw data 

Formatted 
 data 

Indexed 
data 

Graphs 

Other honeypots ELK
stack

InetsimApateDNS

Browser Log

Windows 7 INetSim

Fig. 2. Relationships between infected machines and ELK

4 Preliminary results

In October of 2016, a malware specifically targeted to IoT devices called Mirai,
caused a denial of service attack on the DNS provider Dyn. The magnitude of
this attack was unprecedented, taking down services such as Spotify, Twitter,
Netflix and Amazon. It was performed through thousands of vulnerable IoT
devices, which were made part of a botnet, sending requests to the target. Most
of these devices were simply left with the default credentials by the manufacturer,
which allowed an automated attack to log and modify their behavior.

Recently, the malware has jumped to Windows platform, behaving in a
slightly di↵erent way. Previously, only the IoT devices directly exposed to the



A comprehensive methodology for deploying IoT honeypots 11

Internet were vulnerable. Now, if a Windows computer is infected with its Mirai
version, it will scan the local network, searching for vulnerable devices to make
them part of the botnet. This makes devices in private networks or located be-
hind a firewall vulnerable [24].

Due to the novelty, repercussion, strength, and challenging aspects of this
particular attack, it has been used in the proof of concept presented in this
paper, which displays an infection with Mirai in a Windows computer inside of
a controlled testing environment. Some other honeypots have been deployed in
the very same environment, in order to run some tests that are beyond of the
scope of this paper (environment preparation and checking, for example).

The malware samples have been downloaded from VirusTotal and Malwr, and
the infection procedure has been carried out as detailed in a Securelist guide.

4.1 Environment

The environment where the proof of concept is run is vCloud, which allows vir-
tualization, network definition, and snapshot restoration, which are useful tools.
Moreover, it also provides isolation, in order to prevent the deployed attacks
from spreading outside of the environment.

Windows 7 

- ApateDNS 

- procmon 

t-pot 

(Ubuntu
Server
16.04) 

- Cowrie 

- Dionaea 

- Honeytrap 

- Conpot 

Ubuntu

Server

16.04 

- QEMU 

HoneyDrive 

(Xubuntu
12.04) 

- Kippo 

- Dionaea 

- ELK 

- QEMU 

REMNUX 

(Ubuntu
Server
14.04) 

- QEMU 

ELK 4.0 

(Ubuntu
Server
14.04) 

- ELK 

Ubuntu

Server

14.04 

- Conpot

(Docker) 

- Inetsim 

vApp vApp

DHCP
Internal 

vCloud 

network 

DHCP

Static IP: 

192.168.1.5 

DHCP DHCP DHCP DHCP
Static IP: 

192.168.43.66 

Static IP: 

192.168.1.6

Static IP: 

192.168.1.2

Static IP: 

192.168.1.3

Static IP: 

192.168.1.7

Static IP: 

192.168.1.8

Proxy

Internet

Fig. 3. Deployment in a Controlled Environment

The honeypots deployed and their connections are shown in Fig. 3. It can be
seen how they are connected to an internal network which does not have access
to the Internet. In this configuration, a machine is dedicated to centralizing the
logs for the evaluation and validation phase. This part of the methodology was
implemented using the ELK stack. This stack is a solution which combines three
services: ElasticSearch, Logstash and Kibana. The reasons why these technolo-
gies were chosen are their comprehensibility and the wide amount of plugins
available, which simplify many tasks. The interactions between the are pretty
simple: Logstash imports the logs from other machines, ElasticSearch indexes



12 Antonio Acien, Ana Nieto, Gerardo Fernandez, and Javier Lopez

them, and Kibana retrieves the results from the indexes, showing them in sim-
ple and easy to understand graphs. Some of the plugins used are Filebeat, to
send the logs from the honeypots to the stack, and Grok, to parse them into
intelligible fields for the users.

Once the honeypots are correctly connected to the ELK stack, in order to
save the logs and obtain useful information from them, and the environment is
properly set to prevent the infection from spreading, the infection can be carried
out.

4.2 Infection

Since the first step of the infection is to download a malicious executable file,
and the machines do not have an Internet connection, a fake HTTP server has
been set up inside the Windows machine with INetSim. The files needed for the
infection are put there, and the requests to the URLs where Mirai is stored are
redirected to the fake server through ApateDNS. Thus, the Windows machine
downloads the files as if it were connected to the Internet.

Fake HTTP

server

(Inetsim)

Web browser

Filesystem

ups.rar

cab.exe

update.txt

ApateDNS

http://down.mykings[.]pw:8888/ups.rar 192.168.1.4

ups.rar

Renaming

http://down.mykings[.]pw:8888/update.txt 
http://down.mykings[.]pw:8888/ver.txt 

192.168.1.4

Windows 7 HoneyDrive

Fig. 4. Mirai infection process

Once the first file is obtained, it is renamed an executed, just as the in-
fection guide details. If this execution is made with administrator privileges, it
changes the DNS addresses of the machine (and does nothing, otherwise) to
114.114.114.114 and 8.8.8.8.

The process tries then to connect again to URLs from the same domain
where the executable was located, in order to download ver.txt and update.txt.
The first is available, but the second is not to be found on the malware sample
databases that were accessible, so the console output is DNS set ok. ver di↵erent

web:1.0.0.7 local:, needs update.. Since the update.txt file is missing, the execution
aborts.

If the executable tries to download the files without ApateDNS running and
without Internet connection, the message shown is get file list failed, exit, just
before it aborts as well.



A comprehensive methodology for deploying IoT honeypots 13

Fig. 5. Visualization of results in Kibana

In order for the executions to be logged, the events were sent to the ELK
stack. The messages were parsed with the Grok plugin, split into understandable
fields and indexed, used and then visualized. The messages were separated from
the rest of honeypots set with Kibana indexes, in order to di↵erentiate Mirai
from other attacks.

Also, the tra�c generated in the request and response of files by the Mirai
executable was captured and analyzed with Wireshark, where the IP redirection
and the delivery of the files can be seen.

5 Discussion and future work

The defined methodology covers more cases than those shown in the proof of
concept. A fundamental step would be the definition of specific honeypots for
IoT following the criterion discussed in this work. The decision on deploying a
honeypot for Mirai was based on its recent impact, but defining a set of IoT
honeypots in order to capture unknown attacks is a goal to be achieved in fu-
ture work. Although this is already being worked on, these details cannot be
shared until obtaining substantial results from attacks, since the results could
be compromised if specific details of the implementation are known.

The training phase is essential before considering the deployment of honey-
pots, which is why it has been the focus of this work. Nonetheless, some other
points not considered in the present paper are very interesting, such as the fol-
lowing.

– Infection from a Mirai botnet: Instead of manually downloading the
firmware and performing the spread, it would be interesting to cause the
machine to be copromised from an already existing botnet. This approack
would allow seeing how the honyepot would be indexed by the monitorizing
mechanisms of the Mirai-infected devices. This is not easy, since it would
mean to expose the honeypot directly to attacks, and maybe participating
in its spread.

– Infection to IoT devices in a network through Windows: Creating
a honeynet for this specifica scenario, in which the Windows machine is



14 Antonio Acien, Ana Nieto, Gerardo Fernandez, and Javier Lopez

connected to IoT devices in the same local network, and see how they are
infected and how they act.

– Connection with ELK to make an intelligent system: This consists on
detecting events in the logs received at the ELK stack as signs of a potential
infection happening based on their parameters (messages, timing, requests...)
and taking the appropriate security measures.

– Hajime infection: Hajime is an anti-Mirai botnet, which is based on the
same principle [25]. It logs on to vulnerable devices with default credentials,
but blocks the access to the ports that Mirai usually checks.

6 Conclusions

Throughout the paper, it has been detailed how the IoT landscape is new, chal-
lenging and real. The average Internet daily user has one or several IoT devices,
and will interact with more of them in a single day, often even without being
aware of it. These devices have not been designed with enough security measures,
and they are performing important and sensible roles in our lifes, regarding our
privacy and security. The resulting scenario is one with vulnerable devices car-
rying out sensible tasks.

The di�culty of getting malware samples of IoT attacks, the possibility of
simulating and emulating platforms without having real devices, the isolation
layer honeypots provide, their logging of events (since IoT attacks usually erase
their traces) and other particularities of IoT attacks, make honeypots the perfect
tool for this work.

A methodology for this deployment is needed, because although the tools
are available, it must be studied which honeypots should be deployed, how they
can attract attackers, and how they can be improved based on the information
obtained. This is where the proposed methodology comes into play. Every phase
is thoroughly detailed, and has justified relevance in all the process. This is
demonstrated by carrying out a proof of concept where one of the most worrying
IoT attacks is deployed in a controlled environment, and the data obtained from
this test is shown, detailing how it was carried out following the steps of the
methodology.

7 Acknowledgement

This work has been financed by Ministerio de Economı́a y Competitividad
through the projects IoTest (TIN2015-72634-EXP) and SMOG (TIN2016-79095-
C2-1-R). The second author has been financed by INCIBE through the grant
program for excellency in advanced cybersecurity research teams.

References

1. T. Danova, “Morgan stanley: 75 billion devices will be connected to the internet
of things by 2020,” Business Insider, vol. 2, 2013.



A comprehensive methodology for deploying IoT honeypots 15

2. R. Roman, P. Najera, and J. Lopez, “Securing the internet of things,” Computer,
vol. 44, no. 9, pp. 51–58, 2011.

3. G. Kambourakis, C. Kolias, and A. Stavrou, “The mirai botnet and the iot zombie
armies,” in Military Communications Conference (MILCOM), MILCOM 2017-
2017 IEEE. IEEE, 2017, pp. 267–272.

4. B. Insider, “This one chart explains why cybersecurity is so important,” Retrieved
August, vol. 16, p. 2016, 2016.

5. M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, and J. Schönfelder, “A survey
on honeypot software and data analysis,” arXiv preprint arXiv:1608.06249, 2016.

6. Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow,
“Iotpot: analysing the rise of iot compromises,” EMU, vol. 9, p. 1, 2015.

7. J. D. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. O. Tippenhauer, A. Shabtai,
and Y. Elovici, “Siphon: Towards scalable high-interaction physical honeypots,” in
Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security. ACM,
2017, pp. 57–68.

8. T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang, “Iotcandyjar: Towards an intelligent-
interaction honeypot for iot devices,” Black Hat, 2017.

9. P. Krishnaprasad, “Capturing attacks on iot devices with a multi-purpose iot hon-
eypot,” Ph.D. dissertation, PhD thesis, INDIAN INSTITUTE OF TECHNOL-
OGY KANPUR, 2017.

10. A. Radice, “Playing with a mirai honeypot: Mtpot,” 2017.
11. M. Wang, J. Santillan, and F. Kuipers, “Thingpot: an interactive internet-of-things

honeypot,” 2017.
12. S. Dowling, M. Schukat, and H. Melvin, “A zigbee honeypot to assess iot cyber-

attack behaviour,” in Signals and Systems Conference (ISSC), 2017 28th Irish.
IEEE, 2017, pp. 1–6.

13. A. Jicha, M. Patton, and H. Chen, “Scada honeypots: An in-depth analysis of
conpot,” in Intelligence and Security Informatics (ISI), 2016 IEEE Conference
on. IEEE, 2016, pp. 196–198.

14. J. P. Singh and A. Chauhan, “Detection and prevention of non-pc botnets.”
15. H. Wardak, S. Zhioua, and A. Almulhem, “Plc access control: a security analy-

sis,” in Industrial Control Systems Security (WCICSS), 2016 World Congress on.
IEEE, 2016, pp. 1–6.

16. G. B. R. R. F. Trujano, B. Chan, G. Beams, and R. Rivera, “Security analysis of
dji phantom 3 standard,” Massachusetts Institute of Technology, May, 2016.

17. M. Szabo, “Drone hacking,” 2017.
18. T. Fox-Brewster, “Watch a very vulnerable usd140 quadcopter drone get hacked

out of the sky,” 2017.
19. M. Hughes, “Why the ikettle hack should worry you (even if you don’t own one,”

2015.
20. PenTestPartners, “Hacking defcon 23’s iot village samsung fridge,” 2015.
21. K. Munro, “Extracting your wpa psk from bathroom scales,” 2015.
22. E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes nuclear: Creat-

ing a zigbee chain reaction,” in Security and Privacy (SP), 2017 IEEE Symposium
on. IEEE, 2017, pp. 195–212.

23. A. Hern, “Cloudpets stu↵ed toys leak details of half a million users,” 2017.
24. K. Lab, “A windows-based spreader for mirai malware has been discovered,” 2017.
25. S. Edwards and I. Profetis, “Hajime: Analysis of a decentralized internet worm for

iot devices,” Rapidity Networks, vol. 16, 2016.


