
Modeling Malware-driven Honeypots

Gerardo Fernandez, Ana Nieto and Javier Lopez

Network, Information and Computer Security (NICS) Lab
Department of Computer Science

University of Malaga, Spain
{gerardo,nieto,jlm}@lcc.uma.es

http://www.nics.uma.es

Abstract. In this paper we propose the Hogney architecture for the de-
ployment of malware-driven honeypots. This new concept refers to honey-
pots that have been dynamically configured according to the environment
expected by malware. The adaptation mechanism designed here is built
on services that offer up-to-date and relevant intelligence information on
current threats. Thus, the Hogney architecture takes advantage of re-
cent Indicators Of Compromise (IOC) and information about suspicious
activity currently being studied by analysts. The information gathered
from these services is then used to adapt honeypots to fulfill malware
requirements, inviting them to unleash their full strength.

Keywords: Honeypot, malware, adaptive, dynamic, intelligence, IOC.

1 Introduction

According to the report issued by Symantec last year, there was an increase of
36% in the collection of unique malware samples compared to the previous year
[1]. In 2016, ransomware grew considerably, affecting almost half of businesses
worldwide [2]. Infections via e-mail, phishing and botnet nodes remain the most
commonly used methods to compromise computers in the business environment.
As a consequence, one of the biggest concerns today is how to respond effectively
to malware dissemination campaigns.

Honeypot systems are designed to capture attacks by simulating real services
and/or applications. They employ deception techniques that try to satisfy the
attacker’s demands, providing him/her with valid responses to service requests
and apparently accepting modifications they want to make on the system. There
are two main scenarios commonly used for deploying honeypots that differ de-
pending on the objective pursued:

– Replicate live services of the production environment : showing a footprint
similar to that of the services offered in the production network.

– Research environments: showing a configuration of honeypots that enables
attacks to be captured, to later analyze new techniques used.

G. Fernandez, A. Nieto, and J. Lopez, “Modeling Malware-driven Honeypots”, 14th International Conference On Trust, Privacy & Security In
Digital Business (TrustBus 2017) vol. 10442, pp. 130-144, 2017.
http://doi.org/https://doi.org/10.1007/978-3-319-64483-7_9
NICS Lab. Publications: https://www.nics.uma.es/publications



2 G. Fernandez et al.

This paper focuses on the second scenario, specifically on the design of a
capture system that can respond to attacks performed automatically. The main
issue when designing this type of solution is the lack of information prior to the
attack. Currently, there are principally two approaches to the problem; studying
only specific scenarios (web servers, SSH/Telnet protocols, etc.), or implementing
specialized trap systems for a reduced set of malware families (eg. Mirai) [3].
However, new malware attacking these honeypots will not necessarily activate
all stages of the attack, due to an unfulfilled requirement.

The main contribution of this paper is the design of the Hogney architec-
ture to capture evidence and acquire knowledge about new malware activities
by using malware intelligence services. These services are designed to distribute
knowledge about compromised IP addresses (for filtering systems), or serve as a
platform for the exchange of information about characteristics and operation of
malware. One of Hogney’s goals is to integrate this type of service into the dy-
namic adaptation process of honeypots, designed according to the requirements
of the malware.

This article is structured as follows. Section 2 details related work. A brief
introduction to malware intelligence services is described in Section 3. Section
4 describes the components of the proposed architecture, whose interaction is
analyzed in Section 5 using a specific attack example. Section 6 discusses the
feasibility of implementing and deploying the proposed solution. Finally, the
conclusions and future work are presented.

2 Related Work

There have been previous works for adapting services offered in honeypots to
attackers’ requests [4]. Honeytrap implements a connection interception service
that dynamically selects which services to offer as stated by a pre-set configura-
tion file. Honeyweb is able to emulate Apache, Microsoft IIS and even Netscape
servers. The decision of which one to serve is taken after analyzing the URL
requested and then the HTTP headers are configured according to the needs of
the attacker.

Moreover, there are honeypots for the TELNET protocol that can simulate
that they are running under up to 8 processor architectures [5]. The decision of
which architecture to use depends on the type of command sent by the attacker.
Similar work has been done with SSH [6, 7] whose adaptability mechanism fo-
cuses on the interaction with the attacker through an established SSH session.
SIPHON [8] focuses on the construction of honeypots using physical devices
interconnected through wormholes that redirect attacks towards a set of trap
devices.

With a broader scope of application, the work in [9] shows a dynamic mana-
gement system of high and low interaction honeypots, deployed in a virtualized
way according to the honeybrid decision engine. Decision making in this case is
focused on detecting interesting traffic using pre-established rules triggered by
intrusion detection engines such as Snort.



Modeling Malware-driven Honeypots 3

However, these approaches do not take into account specific aspects of mal-
ware behavior. In some cases it is because the scope is not intended for automatic
propagation malware, but rather for manual attacks. In other cases the area of
study is focused on specific replication of devices, protocols or services based on
prior knowledge of attack vectors.

The Hogney architecture is intended to highlight the benefits of incorporating
existing live information about current malware campaigns, recent indicators of
compromise (IOCs), or/and intelligence information available through projects
such as Malware Information Sharing Platform (MISP) [10] or Virus Total In-
telligence (VTI) [11], in order to build an environment as close as possible to
malware needs, in such a way that its whole load is unleashed and can be ana-
lyzed.

3 Malware Intelligence

We use the term malware intelligence [12] to refer to malware behavior and threat
information. Sometimes the terms threat intelligence and cyber threat intelligence
are also used when there is a need to describe how malware spreads, which nodes
are been used and who is behind that code. Nevertheless, we think the term
malware intelligence better represents the kind of information we need for the
architecture described in Section 4.

Depending on the information requested, different types of malware intelli-
gence services can be used. We classify them in three levels (L1-L3, Table 1):

L1. Services that offer lists of compromised IP addresses belonging to botnets or
that are part of any current malware deployment campaign.

L2. Services that allow information about malware files or malicious URLs to be
obtained, discovering the malware family, architecture and target operating
system, and in many cases information related to the implementation: linked
libraries, anti-analysis or anti-virus techniques, processes to which it injects
code, etc.

L3. Malware information sharing services. These services will provide the most
up-to-date information regarding the dissemination activities of malware.
They allow access to published IOCs and to information about incidents
currently under investigation, so none of the information collected has been
published.

Regarding L1 services, there is a wide range of projects that list IP addresses,
URLs or domains used by malware. For instance, a search for the domain
wrcwdxjh.org produces an output similar to the following:

wrcwdxjh.org Intel::DOMAIN

from malwaredomains.com,locky

via intel.criticalstack.com F



4 G. Fernandez et al.

This reveals that the domain is related to Locky ransomware.

L2 services provide detailed information about files and URLs linked to mal-
ware. By submitting a file to these services we get an overview of what kind of
malicious activities it performs, what processes are launched, what services are
used and what traces it leaves behind.

Table 1. Common information obtained from malware intelligence services

Level Domain Information provided

L1 IP/Domains/URL ip-src, ip-dst, port, url, malware name

L2 File
processor, architecture, mail, PE/ELF/MACH-O

executables, document specific, traffic
generated by sample, ...

L3 Threat Intelligence
private/public info about current threats, IOCs,

correlation of incidents, ...

A common query is to search the hash of a suspicious file in order to obtain
a report that contains, between other things, information about the architecture
and operating system needed to run the file, communications with a domain
or IP, files read or modified, libraries and methods used, file format and anti-
analysis techniques implemented. If the search request does not provide result,
the file is sent for a complete analysis that will generate the information needed.

L3 services are useful when there has been no information collected by L1
and L2 services or this information is inconclusive. L3 services provide access
to intelligence information, shared by incident response teams or malware ana-
lysts, among different organizations. Sometimes this type of service gives access
to information about active campaigns of malware not yet published, because
they are currently being studied by analysts and are therefore only labelled as
suspicious activities.

For instance, searching the hash value 64973870ed358afec07b0ebb1b70dd40 of
a file produces a response in which that hash is related to a current propagation
campaign of Locky ransomware. The code below shows part of the response
obtained when searching that hash. In addition to the information related to
that file, several IPs belonging to Locky command and control nodes are also
present.

<Attribute>

<id>3367</id><org_id>2</org_id>

<info>Malspam (2016-03-16)</info>

<value>http://188.127.231.116/main.php</value>

</Attribute>

<Attribute>

<id>366617</id><type>md5</type>

<category>Payload delivery</category>

<to_ids>1</to_ids>

<uuid>56e6c1a6-3b5c-457e-9443-473402de0b81</uuid>



Modeling Malware-driven Honeypots 5

<event_id>3354</event_id>

<distribution>5</distribution>

<timestamp>1457963430</timestamp>

<comment>- Xchecked via VT</comment>

<sharing_group_id>0</sharing_group_id>

<deleted>0</deleted>

<value>64973870ed358afec07b0ebb1b70dd40</value>

<ShadowAttribute/>

<RelatedAttribute>

<Attribute><id>3355</id><org_id>2</org_id>

<info>Malspam (2016-03-14)</info>

<value>64973870ed358afec07b0ebb1b70dd40</value>

</Attribute>

</RelatedAttribute>

</Attribute>

4 The Hogney architecture

The purpose of the Hogney platform is to create trap environments to capture
activity performed by malware, adapting them progressively as new evidence
is generated to determine which action will be triggered next. Therefore, it is
necessary to design an architecture that allows analysis according to the three
stages of malware: (1) exploration, (2) infection and (3) execution of the payload.

During the exploration phase the attacker tries to discover which services
are running, checking them for vulnerabilities. An attacker succeeds if he finds a
vulnerable service for which he has an exploitation mechanism. Hogney tries to
deduce the type of service that the attacker is looking for, offering a honeypot
that meets his needs.

In the case the exploration is successful, the attacker moves on to the second
stage, infection, where the infection code is launched against a vulnerable service
for a wide range of reasons. At this point it is important to analyze the infection
vector to discern what kind of action the attacker wishes to unleash on the
honeypot: inject code, upload a file, leave code, manipulate files, send an email,
login to the system, etc. As far as possible it should be made clear to the attacker
that such action has been successfully carried out.

Thus, we reach the third stage: execution of the payload. This is where, de-
pending on the type of activity, the execution of the code is simulated, the
downloaded file is executed in a controlled environment, or the e-mail is sent.
However it is important to note that all the modifications executed in the vic-
tim’s environment have to be logged.

These three phases are managed by the control components shown in Fig. 1:
the interception module (IM), dynamic configuration module (DCM) and moni-
toring of the generated evidence (EM). These three modules are fed with infor-
mation that allows the next step that malicious code intends to carry out to be
predicted.



6 G. Fernandez et al.

A key element of the Hogney architecture is the use of malware intelligence
services. There are a multitude of services that can be used to obtain information
about malware activity, either through searching IP addresses belonging to mal-
ware campaigns, querying known infection vectors, signatures or search patterns,
or by the explicit execution of malware samples and observation of the actions
and changes made. Hogney orchestrates this information, adapting honeypots to
the three aforementioned stages. To this end, there are two different trap envi-
ronments: (i) honeypots specializing in certain protocols and/or services, and (ii)
highly interactive environments in which to execute files generated by malware.

The relationship between the components is detailed in the following subsec-
tions.

Dynamic 
Configuration Module

(DCM)

Evidence 
Container

(EC)

Honeypots

Conf. templates

Interception Module
(IM)

Evidence Monitoring
(EM)

Malware 
Intelligence

Services

Fig. 1. Architecture diagram

4.1 Interception of connections

A typical honeypot is configured to listen to a series of predefined ports. When
a connection is established with one of them, it responds as described in its
configuration. Some low-interaction honeypots only receive requests and store
them (e.g. honeyd) while medium interaction honeypots (Inetsim [13]) are able
to operate at the service level, responding to sender requests in accordance with
the behaviour configured by the operator.

The component for the interception of connections (IM) will (i) listen to all
ports studied, (ii) receive and accept connections and (iii) send service requests
to the DCM component for the configuration of honeypots (Fig. 1). Such requests
should include all the information that may have been collected at the time of
establishing the connection (IP, destination/source ports, protocol headers, etc.)
so that the DCM can more accurately estimate the honeypot with the highest
probability of success for this connection.



Modeling Malware-driven Honeypots 7

4.2 Configuring trap services

This service is called the Dynamic Configuration Module (DCM) and is able to
dynamically discern which honeypot is the most suitable for the type of malware
involved. To achieve this objetive it is be necessary to have a repository of pre-
configured honeypots, set up in such a way that it is easy to switch from one to
another depending on the malware’s requirements, or to modify its configuration.

For instance, the SMTP protocol is frequently used by malware to send e-
mails with attachments containing some kind of malicious code. If a request is
received at port 25 it will be redirected to a honeypot capable of handling the
reception of the e-mail. However a request to the HTTP/HTTPS port can have
very different objectives: it could be an attack on the Apache web server (Win-
dows, Linux, ...), on IIS, etc. It could additionally be an attack on a particular
version of WordPress, Joomla, etc. This diversity complicates the provisioning
of a honeypot that will successfully fit the attack.

Get connection 
information

Get hash from file
(md5, sha1, 
imphash, …)

Interception 
Module

Evidence
Monitoring

Evaluation
Deploy honeypot

Honeypot

Custom 
configuration

Run in 
Execution 

Environment
Evaluation

Environment 
selected

Malware 
Intelligence

Services

Fig. 2. Two different execution flows of the DCM module

Consequently, this component must process the connection requests in order
to choose a honeypot, to initiate or adapt, for the malware in question. This
decision is based on the data gathered about the characteristics of the connection:

– Source IP: check whether this IP address belongs to a malware campaign
currently in progress. In this case, information must be retrieved about the
malware family and what services and applications it affects.

– Destination IP: if a file has been executed and it is trying to establish an
external connection, firewall rules must be adapted to allow this traffic. At
the same time, all traffic generated must be recorded for further analysis.

– Protocol headers: first packets of many service level protocols contain
information about the type of service expected. This must be monitored in



8 G. Fernandez et al.

order to decide which honeypot, offering that service, could be set up and
run.

– Service information: destination IP addresses, file and folders, running
processes, DNS entries, etc. This information facilitates the configuration of
suitable honeypots.

– Related files: downloaded files contain useful information about the target
operating system, required libraries, resources needed, etc., which can later
be used to select a suitable execution environment.

To illustrate, Fig. 2 shows a graph of the execution flow of this component in
two specific cases: (i) a service request is received from the interception module,
and (ii) the request is received from the evidence monitoring component upon
detection of a file created in the evidence container.

In the first case, the information about the received connection (source/des-
tination IP address, protocol, service data, destination files/folders, etc) must be
analyzed. This information will then be used to try to find out which malware
is behind that connection. Hence, queries to external intelligence services are
launched to look for any evidence of malware based on the information collec-
ted. As a result, the information obtained from these services is used to adapt a
honeypot, already pre-configured, so that it is as close as possible to the scenario
that the attacker expects to find. The inquiry process is shown in Fig. 3, where
the diagram shows the process which determines whether the IP is linked to
malware activities. L1 services are used to determine whether or not the IP is
part of any current malware campaign. If there are not results, a query to L2
and L3 services is launched.

The second case reflected in Fig. 2 corresponds to a scenario in which the
attacker has managed to download some type of file, either within a honeypot or
when running in an execution environment configured by DCM. The monitoring
process (EM) will detect the existence of any new evidence, in the form of a
new file stored in EC, and will ask DCM to deploy an execution environment
for it. Again, this will initiate another request to malware intelligence services
to obtain information about that file, in order to gather information about how
to build a suitable environment for it. This process is reflected in Fig. 4.

4.3 Evidence monitoring

The architecture designed includes a container of evidence to store any type of
content generated during the attack, regardless of whether it is an executable,
interpreted code, binary code, images, documents, etc. The objective of this
container is twofold: to gather as much information as possible about the actions
carried out by malware, as well as to facilitate the continuity of the attack
process, by activating the different stages implemented in the malware.

The evidence monitoring (EM) component is continuously monitoring the
creation of new evidence. When a new piece is detected, a request is sent to the
DCM containing the characteristics of the evidence (file type, operating system,
etc.). Then, a new execution environment is set up to analyze this evidence.



Modeling Malware-driven Honeypots 9

Belongs to 
active 

campaign ?

IP/domain/port

Identify 
malware family

Get service data
(url, user/pass, 

file, etc.)

Yes

No

Belongs to known 
recent malware 

activity ?

Query recent 
hashes

Yes

No

MI 
Report

Example:

Mirai C2 node

Attack via TELNET
Download malware 

Expect: File (ARM ELF)

Default honeypot 
behaviour

No MI report

Query service data gathered

Fig. 3. Requesting information about an IP address

4.4 Provisioning of Honeypots

Thus far, each element of the architecture described corresponds to a controlling
or monitoring process. Hogney also needs a set of preconfigured honeypots for
common scenarios susceptible to attack. Fortunately, there are a multitude of
honeypots specialized in certain environments [4] (Cowrie for ssh, glastopf for
HTTP, conpot for PLCs, jackpot for SMTP, elastichoney for elasticsearch, etc.)
and others of more general scope (inetsim). Hogney includes them as the basis
for our current set of preconfigured honeypots.

However, for a honeypot to be used by DCM, it needs to fulfill some require-
ments:

– Easily configurable by modifying text files.
– Provide options for configuring banners, service folders, responses to protocol

commands, etc.
– Allow configuration of the listening network interface.
– Include capabilities for recording activities performed by attackers.

Compliance with these requirements will allow DCM to modify the configu-
ration files according to the parameters received in a request for service (which



10 G. Fernandez et al.

Document

Specific tags for: 
PDF, DOC, Flash…

Consult 
hashes

Exist ?

File

Identify format
(file_type)

Submit file
No

Yes

Executable

Identify OS file headers

Identify Arq x86, ARM, 
32/64bits, …

Execution 
reqs

Mysql, smtp, ftp, 
powershell, office, 
C2 connection, …

Anti-
analysis

Virtualization, 
Dissassembly, 

Debugging, 
Obfuscation

MI 
Report

Windows x86 64bits
No anti-vm
Anti-debug
Powershell

Telnet connections
Known C2 IPs

…

Fig. 4. Requesting information about a downloaded file

folders should be available, which applications, which protocol banners are ex-
pected to be found, etc.).

In addition to specific honeypots of low, medium or high interaction it is
necessary to have execution environments where the evidence obtained can be
processed. These environments, also considered as high-interaction honeypots,
comprise both virtualized and physical machines managed by an orchestrator
process. Cuckoo Sandbox [14] has been selected for the deployment of the exe-
cution environments, largely because it covers our main needs:

– It provides an API that can be used to send files to preconfigured analysis
environments.

– It issues an activity report after the execution of files, which is easy to process
automatically.

– Good escalation capabilities, offering different mechanisms of adaptation
where an increasing number of analysis environments is needed.



Modeling Malware-driven Honeypots 11

– The analysis performed is good enough for the automation needed in our
platform.

– Freely available.

5 Hogney behavior under the Mirai attack

This section details the relationship between the components of the Hogney
architecture and its behavior when exposed to a well known malware propagation
attack. We have chosen Mirai because it produces a rich relationship between
the different components of the architecture. However, we want to remark that
we have designed Hogney independently of any malware family, and for the sake
of brevity we decided to only present the Mirai case.

Mirai is a botnet that principally attacks typical embedded devices in IoT.
In 2016 it became famous for causing a DDoS attack on a DNS service provider
named DYN that led to the disconnection of services like GitHub, Twitter, Red-
dit, Netflix, Airbnb among many others. It mainly attacked TELNET services
through dictionary attacks, to turn compromised devices into new botnet nodes
to be used in subsequent DDoS attacks [15].

Under this scenario (Fig. 5), the IM receives a request for connection to
port 23. Next, it consults intelligence services regarding the source IP of the
connection to determine whether the telnet honeypot needs to be adapted in
some way. The information obtained reveals that the originating node belongs
to a Mirai botnet.

Mirai makes telnet connections for two reasons: i) from a bot to detect that
this service accepts known credentials and ii) from a loader to cause the download
of a malware file. Since Mirai has malware versions for different architectures,
the default configuration of the honeypot can be modified by the DCM to show
one of the architectures determined by the intelligence service (ARM in this
case).

In the use case modeled in Fig. 5 we depicted the second case, where Hogney is
receiving a connection from a Mirai loader. Here, the honeypot deployed records
the commands to be executed and even the files that the loader has specified to be
installed. There are several honeypot implementations of the telnet services (such
as Cowrie) that are able to correctly interpret regular file download commands
like curl or wget. The files downloaded are stored in the evidence container.

Once the creation of the downloaded file has been detected, the monitoring
process sends a request to the DCM to prepare a honeypot for it. It uses the
intelligence obtained from the analysis of the file (e.g. malware for ARM 32-bit
architectures in the Linux environment), to create an emulation environment to
execute the file (like QEMU [16]).

After executing the file in an environment deployed by the DCM, a connection
is made to an external IP address that, after contrasting it with the intelligence
available, could reveal a new C2 node of Mirai, or confirm that this is already
known. Keeping a honeypot acting as a bot node of Mirai allows access to the
information about how the C2 node operates, such as the execution of DDoS
attacks (and the IP addresses affected).



12 G. Fernandez et al.

Attacker IM DCM Malware 
Intelligence EM

Connect to 
port 23

Connection established

Service Request

Commands

Deploy 
TELNET Honeypot

Create execution 
environment for 
ARM (QEMU) Execute evidence

Monitored execution
of the evidence
(ELF ARM file)

Traffic established 
with the attacker

Query (IP, PORT)

Report (arq, reqs, …)

Evidence created New file detected

Execution Request

Query (Mirai, HASH, …)

Evaluation (arq, reqs, …)

Fig. 5. Hogney components interaction under the Mirai attack

6 Implementation Discussion

The proposed architecture will eventually employ a multitude of available honey-
pots, some for generic use and others focused on certain protocols, all together
offering a wide range of solutions for the capturing of evidence. However, the
construction of a malware capture and analysis platform, like the one designed
in this paper, involves overcoming a number of obstacles, some related to design
criteria and others regarding implementation. In this section, the implementa-
tion of the main components (IM, DCM and EM) of the Hogney architecture
will be discussed.

With respect to the interception module (IM) there are currently applications,
such as honeytrap, which work in a similar way as that described for IM in
Hogney. Honeytrap is a process that remains listening on all ports, waiting for
a connection to be requested. When this happens the connection is redirected
to the predetermined honeypot to attend the request. It also has the ability to
apply reverse proxy and mirroring techniques to address incoming connections.
The only drawback of this application is that the honeypot that is served is



Modeling Malware-driven Honeypots 13

defined according to the port accessed by the attacker. However, it could serve
as a basis for building the IM component that the architecture needs.

The evidence monitoring (EM) component must correlate the different events
generated, so that each piece of evidence obtained must be linked to the initial
connection that triggered its creation. Consequently, it is necessary to register
the execution of the three stages of the attack under the same case in a way that
facilitates correlation and generation of reports a posteriori.

So far, we have detected three different engines in Hogney that generate
evidence:

– The IM component, recording connections that are established with honey-
pots.

– Honeypots of low and medium interaction, which generate files and/or com-
mands.

– High-interaction honeypots, which create files and connections as a result of
running malware on them.

In this sense, the selection of Cuckoo Sandbox [14] for the management of
high interaction honeypots will benefit the organization of the evidence executed
in virtualized and physical machines. This is because Cuckoo creates a different
structure of folders and files for each file launched on an analysis machine. This
structure contains all the collected evidence provoked by the execution of the
file.

The logic behind the choice of which trap environment to launch is one
fundamental aspect to be developed for the DCM component. It must decide,
depending on the information gathered, which is the most appropriate environ-
ment to serve to the attacker. For this purpose, it will use information available
through malware information services, grouped into the three levels described in
the Section 3.

With regard to L1 services, there is a wide range of projects that offer specific
malware information: indicators of compromise (IOCs), types of devices affected,
sources of IP used, etc. Perhaps the most convenient way to maximize results
when searching, is to use platforms that allow the user to launch queries using
several combined sources. For instance, to date the Critical Stack Intel [17]
includes 118 feeds and offers an application to query them externally.

There are several alternatives for L2 services, although we have selected two
solutions that, a priori, can cover our the needs with respect to file/URL analysis:

– Virus Total Intelligence (VTI) [11]: this service allows searches with a multi-
tude of parameters. In addition to the hash of a file, it is possible to consult
IPs or URLs linked to malware, as well as search for characteristics of the
file/URL itself (operating system, architecture, resources contained in the
file, system resources used, etc.). Although Virus Total offers free access to
its core service for antivirus evaluation, VTI is a paid service.

– Hybrid Analysis de PAYLOAD Security [18]: similar to VTI but with fewer
options for searching and a smaller base sample base. Nevertheless, the ana-
lysis performed on the files adds some interesting features not provided by



14 G. Fernandez et al.

VTI, such as the anti-analysis techniques implemented. This service, unlike
the previous one, offers free access to its intelligence database by limiting
the number of queries a user can make.

Hogney will use the MISP platform [10] to access malware intelligence informa-
tion (L3 services). MISP offers different ways of sharing information, providing
an API for querying and obtaining events in different formats (MISP XML, MISP
JSON, STIX, STIX JSON, CSV, etc.). Hogney will use a custom installation of
MISP connected to an external community for accessing shared data. We will
add some custom attributes to our own community created in MISP to improve
the interoperability between Hogney and MISP for configuring honeypots.

7 Conclusions and Future Works

The ability of malware intelligence services to provide early recognition of mal-
ware traces is noteworthy. It is no surprise therefore, that this is why they are
widely used in many defense systems such as IDS and firewalls. Even services
like proxies and DNS use the information they provide to avoid leading the user
to malicious sites.

Until now, these services have not been used for the dynamic deployment
of honeypots. The Hogney architecture, proposed in this paper, shows the ver-
satility that they can provide to configure honeypots in the initial stages of
an attack. This functional architecture provides a set of components for the
automatic deployment of honeypots according to the intelligence information
obtained.

The next steps will be taken towards analyzing the convenience of adopting
machine learning techniques for the core of the DCM component. There has been
some progress made in creating a machine learning dataset [19] implementing
the MIST representation [20] of malware behavior. As stated by MIST’s authors,
“the representation is not restricted to a particular monitoring tool and thus can
also be used as a meta language to unify behavior reports of different sources”.
We could integrate the information gathered from malware intelligence services
to quickly create an up-to-date dataset for the DCM component.

Acknowledgments

This work has been funded by Junta de Andalucia through the project FISICCO
(TIC-07223), and by the Spanish Ministry of Economy and Competitiveness
through the project IoTest (TIN2015-72634-EXP /AEI).



Modeling Malware-driven Honeypots 15

References

1. “Internet security threat report, volume 21, april 2016,” Symantec, Tech. Rep.,
2016.

2. SentinelOne. (2017) Sentinelone ransomware research data summary. [On-
line]. Available: https://go.sentinelone.com/rs/327-MNM-087/images/Data%
20Summary%20-%20English.pdf

3. Cymmetria. (2016) Mirai open source iot hon-
eypot. [Online]. Available: http://blog.cymmetria.com/
mirai-open-source-iot-honeypot-new-cymmetria-research-release

4. M. Nawrocki, M. Wählisch, and T. C. Schmidt, “A Survey on Honeypot Software
and Data Analysis,” arXiv.org, no. 10, pp. 63–75, 2016.

5. Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow,
“IoTPOT - A Novel Honeypot for Revealing Current IoT Threats.” JIP, vol. 24,
no. 3, pp. 522–533, 2016.

6. A. Pauna and V. V. Patriciu, “CASSHH – Case Adaptive SSH Honeypot,” in
Recent Trends in Computer Networks and Distributed Systems Security. Springer,
Berlin, Heidelberg, Mar. 2014, pp. 322–333.

7. G. Wagener, R. State, and T. Engel, “Adaptive and self-configurable honeypots,”
. . . Management (IM), 2011.

8. J. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. O. Tippenhauer, A. Shabtai,
and Y. Elovici, “SIPHON - Towards Scalable High-Interaction Physical Honey-
pots.” CoRR, vol. cs.CR, 2017.

9. W. Fan, D. Fernández, and Z. Du, “Adaptive and Flexible Virtual Honeynet,”
in Mobile, Secure, and Programmable Networking. Cham: Springer, Cham, Jun.
2015, pp. 1–17.

10. C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody, “Misp: The design and imple-
mentation of a collaborative threat intelligence sharing platform,” in Proceedings
of the 2016 ACM on Workshop on Information Sharing and Collaborative Security.
ACM, 2016, pp. 49–56.

11. G. Inc. (2017) Virus total intelligence. [Online]. Available: https://www.virustotal.
com

12. J. Porcello, “Navigating and Visualizing the Malware Intelligence Space,” pp. 1–7,
Nov. 2012.

13. T. Hungenberg and M. Eckert. (2014) Inetsim: Internet services simulation suite.
[Online]. Available: http://www.inetsim.org

14. C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser. (2012) The cuckoo sandbox.
15. K. Angrishi, “Turning internet of things(iot) into internet of vulnerabilities (iov) :

Iot botnets,” Feb. 2017.
16. F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX Annual

Technical Conference, FREENIX Track, 2005, pp. 41–46.
17. C. S. Inc. (2017) Critical stack intel // feed. [Online]. Available: https:

//intel.criticalstack.com
18. P. Security. (2017) Free automated malware analysis service. [Online]. Available:

https://www.hybrid-analysis.com
19. M. Ramilli. (2016) Malware training sets: A machine learning dataset

for everyone. [Online]. Available: http://marcoramilli.blogspot.com.es/2016/12/
malware-training-sets-machine-learning.html

20. P. Trinius, C. Willems, T. Holz, and K. Rieck, “A Malware Instruction Set for
Behavior-Based Analysis.” Sicherheit, 2010.


