NTRUReEncrypt
An Efficient Proxy Re-Encryption Scheme based on NTRU

David Nuñez, Isaac Agudo, and Javier Lopez

Network, Information and Computer Security Laboratory (NICS Lab)
Universidad de Málaga, Spain
Email: dnunez@lcc.uma.es

ACM AsiaCCS 2015 – Singapore
1. Proxy Re-Encryption
2. NTRU
3. NTRUReEncrypt
4. PS-NTRUReEncrypt
5. Experimental results
6. Conclusions
A Proxy Re-Encryption scheme is a public-key encryption scheme that permits a proxy to transform ciphertexts under Alice’s public key into ciphertexts under Bob’s public key. The proxy needs a re-encryption key $r_{A\rightarrow B}$ to make this transformation possible, generated by the delegating entity. Proxy Re-Encryption enables delegation of decryption rights.
Syntax of Bidirectional Proxy Re-Encryption

Definition. A bidirectional proxy re-encryption scheme is a tuple of algorithms (Setup, KeyGen, ReKeyGen, Enc, ReEnc, Dec):

- **KeyGen() → (pk_A, sk_A)**
- **ReKeyGen(sk_A, sk_B) → rk_A→B**
- **Enc(pk_A, M) → C_A**
- **ReEnc(rk_A→B, C_A) → C_B**
- **Dec(sk_A, C_A) → M**
Correctness

Definition: Multihop Correctness. A bidirectional PRE scheme (Setup, KeyGen, ReKeyGen, Enc, ReEnc, Dec) is multihop correct with respect to plaintext space \mathcal{M} if:

- *(Encrypted Ciphertexts)* For all (pk_A, sk_A) output by KeyGen and all messages $M \in \mathcal{M}$, it holds that:

 $$\text{Dec}(sk_A, \text{Enc}(pk_A, M)) = M$$

- *(Re-Encrypted Ciphertexts)* For any sequence of pairs (pk_i, sk_i) output by KeyGen, with $0 \leq i \leq N$, all re-encryption keys $rk_{j \rightarrow j+1}$ output by ReKeyGen(sk_j, sk_{j+1}), with $j < N$, all messages $M \in \mathcal{M}$, and all ciphertexts C_1 output by Enc(pk_1, M), it holds that:

 $$\text{Dec}(sk_N, \text{ReEnc}(rk_{N-1 \rightarrow N}, \ldots \text{ReEnc}(rk_{1 \rightarrow 2}, C_1))) = M$$
Bidirectional CPA-security game

Let us assume:

- k is the security parameter
- \mathcal{A} is a polynomial-time adversary
- \mathcal{H}, \mathcal{C} are the sets of indices of honest and corrupt users

The IND-CPA game consists of an execution of \mathcal{A} with the following oracles, which can be invoked multiple times in any order, subject to the constraints below:
Bidirectional CPA-security game

Phase 0:
- The challenger obtains global parameters \(\text{params} \leftarrow \text{Setup}(1^k) \) and initializes sets \(\mathcal{H}, \mathcal{C} \) to \(\emptyset \).
- The challenger generates the public key \(pk^* \) of target user \(i^* \), adds \(i^* \) to \(\mathcal{H} \), and sends \(pk^* \) to the adversary.

Phase 1:
- Uncorrupted key generation \(O_{honest} \): On input an index \(i \), where \(i \not\in \mathcal{H} \cup \mathcal{C} \), the oracle obtains a new keypair \((pk_i, sk_i) \leftarrow \text{KeyGen}() \) and adds index \(i \) to \(\mathcal{H} \). The adversary receives \(pk_i \).
- Corrupted key generation \(O_{corrupt} \): On input an index \(i \), where \(i \not\in \mathcal{H} \cup \mathcal{C} \), the oracle obtains a new keypair \((pk_i, sk_i) \leftarrow \text{KeyGen}() \) and adds index \(i \) to \(\mathcal{C} \). The adversary receives \((pk_i, sk_i) \).
Bidirectional CPA-security game

Phase 2:

- Re-encryption key generation O_{rkgen}: On input (i, j), where $i \neq j$, and either $i, j \in \mathcal{H}$ or $i, j \in \mathcal{C}$, the oracle returns $rk_{i \rightarrow j} \leftarrow \text{ReKeyGen}(sk_i, sk_j)$.

- Challenge oracle $O_{challenge}$: This oracle can be queried only once. On input (M_0, M_1), the oracle chooses a bit $b \leftarrow \{0, 1\}$ and returns the challenge ciphertext $C^* \leftarrow \text{Enc}(pk^*, M_b)$, where pk^* corresponds to the public key of target user i^*.

Phase 3:

- Decision: A outputs guess $b' \in \{0, 1\}$. A wins the game if and only if $b' = b$.
Other remarks

- Static corruption model
- We only allow queries to O_{rkgen} where users are either both corrupt or both honest
- Otherwise, these queries would corrupt honest users
- Re-encryption oracle is not necessary in CPA
NTRUEncrypt: Overview

- Originally proposed by Hoffstein, Pipher and Silverman
- One of the first PKE schemes based on lattices
- NTRU Encryption is very efficient, orders of magnitude faster than other PKE schemes
- It is conjectured to be based on hard problems over lattices
- Post-quantum cryptography
- It lacks a formal proof in the form of a reduction to a hard problem (i.e. not provably-secure)
NTRUEncrypt: Basics

- Defined over the quotient ring $\mathcal{R}_{NTRU} = \mathbb{Z}[x]/(x^n - 1)$, where n is a prime parameter
- Other parameters of NTRU:
 - Integer q, which is a small power of 2 of the same order of magnitude than n
 - Small polynomial $p \in \mathcal{R}_{NTRU}$, which usually takes values $p = 3$ or $p = x + 2$
- In general, operations over polynomials will be performed in \mathcal{R}_{NTRU}/q or \mathcal{R}_{NTRU}/p
NTRUEncrypt: Key Generation

Private key: \(sk = f \in \mathcal{R}_{NTRU} \)

- \(f \) is chosen at random, with a determined number of coefficients equal to 0, -1, and 1
- \(f \) must be invertible in \(\mathcal{R}_{NTRU}/q \) and \(\mathcal{R}_{NTRU}/p \) \(\Rightarrow f^{-1}_q, f^{-1}_p \)
- For efficiency, \(f \) can be chosen to be \(1 \mod p \)

Public key: \(pk = h = p \cdot g \cdot f^{-1}_q \mod q \)

- \(g \in \mathcal{R}_{NTRU} \) is chosen at random
NTRUEncrypt: Encryption and Decryption

Encryption:
- plaintext M from message space \mathcal{R}_{NTRU}/p
- ciphertext $C = h \cdot s + M \mod q$
- noise term s is a small random polynomial in \mathcal{R}_{NTRU}

Decryption:
- Compute $C' = f \cdot C \mod q$
- Compute $m = f_p^{-1} \cdot C' \mod p$

Why does it work?
- $C' = f \cdot (p \cdot g \cdot f_q^{-1} \cdot s + M) \mod q = p \cdot g \cdot s + f \cdot M \mod q$
- This equation holds if $f \cdot C$ is “small enough”
- $f_p^{-1} \cdot (p \cdot g \cdot s + f \cdot M) \mod p = f_p^{-1} \cdot f \cdot M \mod p = M$
- If $f = 1 \mod p$, then the last step is simply $m = C' \mod p$
We extended NTRUEncrypt to support re-encryption ⇒ **NTRUReEncrypt**

- New requirement: secret polynomial $f = 1 \mod p$
- Not for efficiency reasons, but necessary to correctly decrypt re-encrypted ciphertexts
NTRUReEncrypt: Key Generation

Private key: \(sk_A = f_A \in \mathcal{R}_{NTRU} \)
- \(f_A \) is chosen at random, with a determined number of coefficients equal to 0, -1, and 1
- \(f_A \) must be invertible in \(\mathcal{R}_{NTRU}/q \Rightarrow f_A^{-1} \)
- Since \(f \) is chosen to be \(1 \mod p \), its inverse \(\mod p \) is not necessary

Public key: \(pk_A = h_A = p \cdot g_A \cdot f_A^{-1} \mod q \)
- \(g_A \in \mathcal{R}_{NTRU} \) is chosen at random
NTRUReEncrypt: Encryption and Decryption

Encryption:
- plaintext M from message space \mathcal{R}_{NTRU}/p
- ciphertext $C_A = h_A \cdot s + M \mod q$
- noise term s is a small random polynomial in \mathcal{R}_{NTRU}

Decryption:
- Compute $C'_A = f \cdot C_A \mod q$
- Compute $m = C'_A \mod p$
NTRUReEncrypt: Re-Encryption Key Generation

Re-Encryption Key Generation:

- **Input**: secret keys $sk_A = f_A$ and $sk_B = f_B$
- The re-encryption key between users A and B is

$$rk_{A \rightarrow B} = sk_A \cdot sk_B^{-1} = f_A \cdot f_B^{-1}$$

- Three-party protocol, so neither A, B nor the proxy learns any secret key.
 - A selects a random $r \in \mathcal{R}_{NTRU}/q$
 - A sends $r \cdot f_A \mod q$ to B and r to the proxy
 - B sends $r \cdot f_A \cdot f_B^{-1} \mod q$ to the proxy
 - The proxy computes $rk_{A \rightarrow B} = f_A \cdot f_B^{-1} \mod q$
NTRUReEncrypt: Re-Encryption

Re-Encryption

- Input: a re-encryption key \(r_{kA\rightarrow B} \) and a ciphertext \(C_A \)
- Samples a random polynomial \(e \in \mathcal{R}_{NTRU} \)
- Output re-encrypted ciphertext

\[
C_B = C_A \cdot r_{kA\rightarrow B} + pe
\]

- The noise \(e \) prevents \(B \) from extracting \(A \)'s private key
NTRUReEncrypt: Re-Encryption

Why does it work?

- Re-encrypted ciphertext:

\[C_B = C_A \cdot r k_{A \rightarrow B} + p \cdot e \mod q \]
\[= (p \cdot g \cdot f_A^{-1} \cdot s + M) \cdot f_A \cdot f_B^{-1} + p \cdot e \mod q \]
\[= p \cdot g \cdot f_B^{-1} \cdot s + f_A \cdot f_B^{-1} \cdot M + p \cdot e \mod q \]

- Decrypting a re-encrypted ciphertext:

\[f_B \cdot C_B \mod p = (p \cdot g \cdot s + p \cdot e) + f_A \cdot M \mod p \]
\[= f_A \cdot M \mod p \]
\[= M \]
NTRUReEncrypt: Re-Encryption

Limited Multihop:

- The scheme does not support unlimited re-encryptions
- The noise e added during the re-encryption accumulates on each hop, until eventually, decryption fails
- This depends heavily on the choice of parameters
NTRUReEncrypt: Analysis

Computational costs:

- The core operation in NTRU is the multiplication of polynomials.
- It can be done in $O(n \log n)$ time using the Fast Fourier Transform (FFT).
- Encryption, decryption and re-encryption only need a single multiplication.
NTRUReEncrypt: Analysis

Space costs:
- Keys and ciphertexts are polynomials of size $O(n \cdot \log_2 q)$ bits
- Ciphertext expansion is $O(\log_2 q)$
- Other lattice-based schemes have ciphertexts of size $O(n^2)$

Table: Comparison of space costs (in KB)

<table>
<thead>
<tr>
<th>Size</th>
<th>Aono et al.</th>
<th>NTRUReEncrypt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public keys</td>
<td>60.00</td>
<td>1.57</td>
</tr>
<tr>
<td>Secret key</td>
<td>60.00</td>
<td>1.57</td>
</tr>
<tr>
<td>Re-Encryption key</td>
<td>2520.00</td>
<td>1.57</td>
</tr>
<tr>
<td>Ciphertext</td>
<td>0.66</td>
<td>1.57</td>
</tr>
</tbody>
</table>
NTRUReEncrypt: Analysis

- Bidirectional: Given $rk_{A\rightarrow B} = f_A f_B^{-1}$, one can easily compute
 $$rk_{B\rightarrow A} = (rk_{A\rightarrow B})^{-1} = f_B f_A^{-1}$$

- Limited multihop
- Not collusion-safe: Secret keys can be extracted from the re-encryption key if the proxy colludes with a user involved
 $$f_A = rk_{B\rightarrow A} \cdot f_B$$

- This is common in interactive bidirectional PRE schemes
A second proxy re-encryption scheme, called **PS-NTRUReEncrypt**

- Provable secure under the **Ring-LWE** assumption
- Extends the NTRU variant proposed by Stehlé and Steinfeld [Eurocrypt’11], which is proven **IND-CPA secure**
Preliminaries

- $\Phi(x)$ is the cyclotomic polynomial $x^n + 1$, with n a power of 2
- q is a prime integer such that $q = 1 \mod 2n$
- \mathcal{R} is the ring $\mathbb{Z}[x]/\Phi(x)$
- $\mathcal{R}_q = \mathcal{R}/q = \mathbb{Z}_q[x]/\Phi(x)$
- \mathcal{R}_q^\times is the set of invertible elements of \mathcal{R}_q
The Ring-LWE problem

- The **Ring Learning With Errors** (Ring-LWE) problem is a hard decisional problem based on lattices.
- We use a variant of this problem proposed by Stehlé and Steinfeld.
- \(s \in \mathcal{R}_q \) and \(\psi \) a distribution over \(\mathcal{R}_q^\times \)
- \(A_{s,\psi}^\times \) is the distribution that samples pairs of the form \((a, b)\)
 - \(a \) is chosen uniformly from \(\mathcal{R}_q^\times \)
 - \(b = a \cdot s + e \), for some \(e \) sampled from \(\psi \)
- The Ring-LWE problem is to distinguish distribution \(A_{s,\psi}^\times \) from a uniform distribution over \(\mathcal{R}_q^\times \times \mathcal{R}_q \)
- The Ring-LWE assumption is that this problem is computationally infeasible
PS-NTRUReEncrypt: Setup and Key Generation

Setup:
- Global parameters: \((n, q, p, \alpha, \sigma)\)

Key Generation:
- \(D_{\mathbb{Z}_n, \sigma}\) is a Gaussian distribution over \(\mathbb{Z}_n\) with standard deviation \(\sigma\)
- The keys are computed as follows:
 1. Sample \(f'\) from \(D_{\mathbb{Z}_n, \sigma}\)
 - Let \(f_A = 1 + p \cdot f'\); if \((f_A \mod q) \notin \mathcal{R}_q^\times\), resample
 2. Sample \(g_A\) from \(D_{\mathbb{Z}_n, \sigma}\); if \((g_A \mod q) \notin \mathcal{R}_q^\times\), resample
 3. Compute \(h_A = p \cdot g_A \cdot f_A^{-1}\)
 4. Return secret key \(sk_A = f_A\) and \(pk_A = h_A\)
PS-NTRUReEncrypt: Encryption and Decryption

Encryption:
- Input: public key pk_A and message $M \in \mathcal{M}$
- Sample noise polynomials s, e from a distribution Ψ_α
- Output ciphertext:

$$C_A = h_A s + pe + M \in \mathcal{R}_q$$

Decryption:
- Input: secret key $sk_A = f_A$ and ciphertext C_A
- Compute $C'_A = C_A \cdot f_A$
- Output the message $M = (C'_A \mod p) \in \mathcal{M}$
PS-NTRUReEncrypt: Re-Encryption Key Generation and Re-Encryption

Re-Encryption Key Generation:
- Input: secret keys $sk_A = f_A$ and $sk_B = f_B$
- The re-encryption key between users A and B is
 \[rk_{A \rightarrow B} = sk_A \cdot sk_B^{-1} = f_A \cdot f_B^{-1} \]

Re-Encryption:
- Input: a re-encryption key $rk_{A \rightarrow B}$ and a ciphertext C_A
- Samples a random polynomial e' from a distribution Ψ_α
- Output re-encrypted ciphertext
 \[C_B = C_A \cdot rk_{A \rightarrow B} + pe' \]
Ciphertext re-encrypted N times:

$$C_N = pg_0f_N^{-1}s + pe_0f_0f_N^{-1} + pe_1f_1f_N^{-1} + ...$$

$$+ pe_{N-1}f_{N-1}f_N^{-1} + pe_N + M f_0f_N^{-1}$$

$$= pg_0f_N^{-1}s + \left[\sum_{i=0}^{N-1} pe_if_if_N^{-1} \right] + pe_N + M f_0f_N^{-1}$$

When decrypting C_N (assuming no decryption failures):

$$C'_N = C_N \cdot f_N = pg_0s + \left[\sum_{i=0}^{N} pe_if_i \right] + M f_0$$

Since, $f_0 = 1 \mod p$ and $pg_0s = pe_if_i = 0 \mod p$, then:

$$C'_N \mod p = M$$
Experimental setting

- Implementation of our proposals:
 - NTRUReEncrypt is implemented on top of an available open-source Java implementation of NTRU
 - PS-NTRUReEncrypt was coded from scratch, using the Java Lattice-Based Cryptography (jLBC) library
- Execution environment: Intel Core 2 Duo @ 2.66 GHz
Performance of NTRUReEncrypt

Table: Computation time (in ms) and number of hops of NTRUReEncrypt for different parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Enc.</th>
<th>Dec.</th>
<th>Re-Enc.</th>
<th># Hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>(439, no, 128)</td>
<td>0.64</td>
<td>0.30</td>
<td>0.24</td>
<td>5</td>
</tr>
<tr>
<td>(439, yes, 128)</td>
<td>0.16</td>
<td>0.30</td>
<td>0.23</td>
<td>5</td>
</tr>
<tr>
<td>(1087, no, 256)</td>
<td>1.39</td>
<td>1.25</td>
<td>1.05</td>
<td>21</td>
</tr>
<tr>
<td>(1087, yes, 256)</td>
<td>0.48</td>
<td>1.26</td>
<td>1.07</td>
<td>15</td>
</tr>
<tr>
<td>(1171, no, 256)</td>
<td>0.80</td>
<td>1.12</td>
<td>1.14</td>
<td>21</td>
</tr>
<tr>
<td>(1171, yes, 256)</td>
<td>0.43</td>
<td>1.22</td>
<td>1.15</td>
<td>14</td>
</tr>
<tr>
<td>(1499, no, 256)</td>
<td>0.74</td>
<td>1.78</td>
<td>1.73</td>
<td>50</td>
</tr>
<tr>
<td>(1499, yes, 256)</td>
<td>0.32</td>
<td>1.67</td>
<td>1.66</td>
<td>42</td>
</tr>
</tbody>
</table>
Comparison of NTRUReEncrypt to other schemes

<table>
<thead>
<tr>
<th></th>
<th>Encryption</th>
<th>Decryption</th>
<th>Re-Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRUReEncrypt</td>
<td>22.52</td>
<td>11.07</td>
<td>11.21</td>
</tr>
<tr>
<td>Aono et al.</td>
<td>0.43</td>
<td>1.22</td>
<td>11.89</td>
</tr>
<tr>
<td>BBS</td>
<td>1.17</td>
<td>0.47</td>
<td>11.48</td>
</tr>
<tr>
<td>Weng et al.</td>
<td>11.07</td>
<td>0.43</td>
<td>11.89</td>
</tr>
</tbody>
</table>
Comparison of NTRUReEncrypt to other schemes

Table: Computation time of several proxy re-encryption schemes (in ms)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRUReEncrypt</td>
<td>0.43</td>
<td>1.22</td>
<td>1.15</td>
</tr>
<tr>
<td>Aono et al</td>
<td>1.17</td>
<td>0.47</td>
<td>20.5</td>
</tr>
<tr>
<td>BBS</td>
<td>11.07</td>
<td>11.21</td>
<td>11.48</td>
</tr>
<tr>
<td>Weng et al</td>
<td>22.52</td>
<td>11.89</td>
<td>22.29</td>
</tr>
<tr>
<td>Ateniese et al</td>
<td>22.76</td>
<td>13.76</td>
<td>83.52</td>
</tr>
<tr>
<td>Libert and Vergnaud</td>
<td>155.27</td>
<td>443.87</td>
<td>386.93</td>
</tr>
</tbody>
</table>
Performance of PS-NTRUReEncrypt

Table: Computation time (in ms) and size (in KB) of PS-NTRUReEncrypt for different parameters

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\log_2 q)</th>
<th>Enc.</th>
<th>Dec.</th>
<th>Re-Enc.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>23</td>
<td>0.93</td>
<td>0.99</td>
<td>1.05</td>
<td>0.09</td>
</tr>
<tr>
<td>64</td>
<td>28</td>
<td>4.53</td>
<td>4.23</td>
<td>4.32</td>
<td>0.22</td>
</tr>
<tr>
<td>128</td>
<td>32</td>
<td>17.28</td>
<td>17.32</td>
<td>17.45</td>
<td>0.50</td>
</tr>
<tr>
<td>256</td>
<td>37</td>
<td>80.64</td>
<td>81.045</td>
<td>86.56</td>
<td>1.16</td>
</tr>
<tr>
<td>512</td>
<td>41</td>
<td>333.75</td>
<td>334.07</td>
<td>359.54</td>
<td>2.56</td>
</tr>
<tr>
<td>1024</td>
<td>46</td>
<td>1333.03</td>
<td>1344.10</td>
<td>1461.46</td>
<td>5.75</td>
</tr>
</tbody>
</table>
Conclusions

- **NTRUReEncrypt** is a highly-efficient proxy re-encryption scheme based on the NTRU cryptosystem.
- This scheme is bidirectional and multihop, but not collusion-resistant.
- The key strength of this scheme is its performance: outperforms other schemes by an order of magnitude.
- Potential improvement with parallelization techniques.
- Opens up new practical applications of PRE in constrained environments.
- We also propose **PS-NTRUReEncrypt**, a provably-secure variant that is CPA-secure under the Ring-LWE assumption.
Future Work

- Achieve CCA-security
- Definition of a unidirectional and collision-resistant scheme
- Fine-tune the parameters of NTRUReEncrypt for decreasing the probability of decryption failures after multiple re-encryptions
- Better bounds for the provably-secure version
- Analysis of the selection of parameters based on best known lattice attacks
Thank you!