Using Temporal Logics of Knowledge in the Formal Verification of Security Protocols

Clare Dixon, Mari-Carmen Fernández Gago, Michael Fisher and Wiebe van der Hoek
Department of Computer Science
The University of Liverpool, Liverpool L69 7ZF, UK
{clare, mcarmen, michael, wiebe}@csc.liv.ac.uk

Abstract

Temporal logics of knowledge are useful for reasoning about situations where the knowledge of an agent or component is important, and where change in this knowledge may occur over time. Here we use temporal logics of knowledge to reason about security protocols. We show how to specify part of the Needham-Schroeder protocol using temporal logics of knowledge and prove various properties using a clausal resolution calculus for this logic.

1. Introduction

Improved communication infrastructures encourage parties to interchange more and more sensitive data, such as payment instructions in e-commerce, strategic information between commercial partners, or personal information in, for instance, medical applications. Issues such as authentication of the partners in a protocol, together with the confidentiality of information, therefore become increasingly important. Consequently, cryptographic protocols are commonly used to distribute keys and authenticate agents and data over hostile networks. Although the protocols used often appear watertight, many examples are known of sensitive applications that were ‘cracked’ and had to be furnished with new, ‘improved’, protocols. It is obvious that in such information-sensitive applications as above, one prefers to formally prove that certain information can not be eavesdropped by unwanted third parties.

The application of logical tools to the analysis of security protocols was pioneered by Burrows, Abadi and Needham. In [1] and [7] specific epistemic logics, collectively referred to as BAN logics, were proposed to deal with authentication issues. We propose an approach using a combination of temporal and epistemic logics.

By combining both temporal and epistemic logics, we provide a logical framework in which systems requiring both dynamic aspects and informational aspects relating to knowledge can be described. This is particularly important in security protocols, where one wants to ensure that certain knowledge is obtained over time or, at least, that ignorance of potential intruders persists over the whole run of the protocol. These logics have the advantages of a well-defined semantics, an existing body of theoretical work relating to, for example, axiomatisations and complexity, see for example [9], and sound and complete proof methods for example [2].

In this paper, we bring together specification using temporal logics of knowledge and verification using clausal resolution, and apply these to the problem of formally analysing security protocols. In order to show how such protocols can be specified and verified, we consider one very well known protocol, namely the Needham-Schroeder protocol [12]. This protocol has been widely studied with particular problems uncovered via formal analysis, for example [11]. Our aim is to demonstrate the suitability of $KL_{(n)}$, with its resolution method, for security and authentication, rather than bringing new insights to the Needham Schroeder protocol.

Note that, due to lack of space, we will neither give a full description of the resolution calculus, nor full details of the Needham-Schroeder proofs. These details can be found in a companion technical report [4].

2. The Needham-Schroeder Protocol (NSP)

The Needham-Schroeder protocol (NSP) with public keys [12] intends to establish authentication between an agent $A$ who initiates the protocol and an agent $B$ who responds to $A$. The complete protocol consists of seven messages, but we here focus on a simplified version consisting of only three messages. The messages that we omit are those whereby the agents request other agent’s public keys from a server. The protocol can then be described as the fol-
Here $X \to Y$ denotes that agent $X$ sends agent $Y$ a message. Message contents of the form $\{X, Y\}_{pub \text{-key}(Z)}$ represent messages containing both $X$ and $Y$ but then encrypted with $Z$'s public key. Elements of the form $N_X$ are special items of data, called nonces. Typically, agents in the protocol will generate their own unique nonce (often encrypted) which is initially unknown to all other agents.

3. Temporal Logic of Knowledge

The logic, $KL(n)$, a temporal logic of knowledge, is the fusion of propositional linear-time temporal logic with multi-modal $S_5$. The temporal component is interpreted over a discrete linear model of time with finite past and infinite future and the each modal relation is an equivalence class. This logic has been studied in detail [9] and is the most commonly used temporal logic of knowledge. We use the usual set of operators including $\bigcirc$ (next), $\bigodot$ (sometime or eventually), $\square$ (always), $K_i$ for knowledge and allow an operator start to denote the initial moment in time. For details of the syntax and semantics of $KL(n)$ see for example [2].

To prove properties of our specification we use a resolution calculus for $KL(n)$. Due to lack of space we omit the details of the proof method but refer the interested reader to [2, 3].

4. Specifying the NSP in $KL(n)$

In this section, we will use $KL(n)$ to specify the NSP. In particular, we will provide axioms describing the key aspects of both the system and the protocol. In order to do this we use the following syntactic conventions. Let $M_1$ and $M_2$ be variables over messages, $Key$ be a variable over keys and $X,Y,\ldots$ be variables over agents. Moreover, for every agent, $X$, we assume there are keys $pub \text{-key}(X)$ and $priv \text{-key}(X)$, while in this protocol $A$ and $B$ are constants representing two specific agents and we introduce an agent $C$ to represent a potential intruder. We identify the following predicates:

- $val_{nonce}(N_X, V)$ is satisfied if the value of nonce $N_X$ is $V$;
- $contains(M_1, M_2)$ is satisfied if the message $M_2$ is contained within $M_1$.

To simplify the description, we allow quantification and equality over finite sets of agents, messages and keys; thus, this logic remains essentially propositional.

Specifying Structural Assumptions We begin with various structural assumptions concerning keys and message contents. These are given in Figure 1.

1. $\forall X, Key, M_1. \ \send(X, M_1, Key) \\Rightarrow \neg contains(M_1, priv \text{-key}(X))$
   - agents will not reveal their private key to others
2. $\forall X, Y, V_1, V_2. \ \\val_{pub \text{-key}}(X, V_1) \leftrightarrow \square\val_{pub \text{-key}}(X, V_1) \land \val_{priv \text{-key}}(X, V_2) \leftrightarrow \square\val_{priv \text{-key}}(X, V_2) \land \val_{nonce}(X, V_3) \leftrightarrow \square\val_{nonce}(X, V_3)$
   - the public keys, private keys and nonces of all the agents remain the same during the protocol
3. $\forall X, Y, V. \ (\val_{pub \text{-key}}(X, V) \land \val_{pub \text{-key}}(Y, V)) \implies X = Y$
   - no two agents have the same public keys
4. $\forall Key, M_1. (send(A, M_1, Key) \land [contains(M_1, N_A) \lor contains(M_1, N_B)]) \\Rightarrow (Key = pub \text{-key}(B))$
   - if agent $A$ sends out messages containing $N_A$ or $N_B$ they must be encrypted with $B$’s public key
5. $\forall Key, M_2. (send(B, M_2, Key) \land [contains(M_2, N_A) \lor contains(M_2, N_B)]) \\Rightarrow (Key = pub \text{-key}(A))$
   - if agent $B$ sends out messages containing $N_A$ or $N_B$ they must be encrypted with $A$’s public key.

Figure 1. Specifying Structural Assumptions.

Specifying Scenario Assumptions In Figure 2 we instantiate message contents, keys and names for this particular scenario.

Specifying Basic Knowledge Axioms In Figure 3 we specify the attributes of an agent’s knowledge.

Specifying Communication Axioms We now specify communication between agents, and how this affects the agent’s knowledge. For convenience, we use past-time temporal operators, in particular $\bigcirc$, meaning in the previous moment in time, and $\bigodot$, meaning at some time in the past. These operators have the usual semantics (see for example [4]). This is shown in Figure 4.
14. \( \forall X, M_1, N_1 \circ ((Msg(M_1) \land contains(M_1,N_1)) \Rightarrow (\exists V_1 K_{Xval\text{ nonce}}(N_1,V_1) \Rightarrow \Box[K_{Xval\text{ nonce}}(N_1,V_1) \lor (\exists Y \forall V. rcv(X,M_1, pub\text{ key}(Y)) \land K_{Xval\text{ priv\text{ key}}}(Y,V)])) \)

— for all moments except the first moment if \( M_1 \) is a message which contains \( N_1 \) an agent knows the content of \( N_1 \) either if it already knew the content of \( N_1 \), or if it received an encrypted version of \( M_1 \) that it could decode.

15. \( \forall X, Key, M_1, rcv(X,M_1,Key) \Rightarrow \exists Y. \Diamond send(Y,M_1,Key) \)

— if an agent receives a message, then there was some agent that previously sent that message.

16. \( \forall X, Key, M_1, N_1 (send(X,M_1,Key) \land contains(M_1,N_1)) \Rightarrow \exists V_1. K_{Xval\text{ nonce}}(N_1,V_1) \lor \Diamond rcv(X,M_1,Key) \)

— if an agent sends a message \( M_1 \) encrypted with \( Key \), then it must either know the contents \( M_1 \) or just be forwarding the encrypted message as a whole.

---

**Figure 4. Specifying Communication Axioms.**

---

**Figure 2. Specifying Scenario Assumptions.**

---

**5. Verifying Properties of the Specification**

Once we have the above axioms relating to the specific scenario, we can attempt to prove various statements. Proof is by clausal resolution. For more details see [4].

**B’s Knowledge on Receipt of \( N_1 \)** The first example will capture the statement “once B receives the nonce of A encoded by B’s public key then B knows the nonce of A”. This can be translated into \( KL_{(n)} \) as

\[\Box (rcv(B,m_1, pub\text{ key}(B)) \Rightarrow \Box K_{Bval\text{ nonce}}(N_1,a_n))\]

**C’s Ignorance** A key part of this protocol is that information is transferred between agents A and B without agent C ever being able to intercept sensitive information. We can verify this by showing that, in the scenario above, C will never know the value of A’s nonce, i.e.

\[\forall V. \square \neg K_{Cval\text{ nonce}}(N_A,V)\]

**Confirmation of B’s Knowledge** Once A receives \( m_2 \) (which, in turn, contains \( N_A \)) back, then it can infer that B knows the value of \( N_A \), i.e.

\[rcv(A,m_2, pub\text{ key}(A)) \Rightarrow \Box K_{Bval\text{ nonce}}(N_A,a_n)\]

---

**6. Related Work and Conclusions**

BAN logics such [11] and [7] analyse security protocols by reasoning about the beliefs of principals. In our approach we use a well studied non-classical logic, i.e. the temporal logic of knowledge to specify and verify protocols. We initially choose to reason about knowledge rather than belief as the epistemic logic of knowledge (S5) is stronger than that of belief (KD45) requiring the axiom \( Kl \Rightarrow l \) i.e. if an
agent knows $l$ then $l$ is true. We could also easily incorporate beliefs to capture situations when a principal believed items that may not be true.

Further, we use temporal operators to capture temporal information, relating to the order of events for example sending and receiving messages, that is not explicitly stated in BAN logics. In [14], an extension of BAN, time is incorporated in by allowing the past time temporal operators always in the past and its dual sometime in the past to impose some order on events. We allow a much richer temporal language. BAN logics implicitly assume that beliefs cannot decrease over time. Here we must explicitly state what knowledge persists.

In an approach similar to ours, in [6] a simple branching time logic allowing limited combinations of temporal operators is combined with modal logics of knowledge and permission/obligation to specify security protocols. However no proof method is provided for the resulting logic.

In [8] the authors use Lamport’s Raw Temporal Logic of Actions (RTLA) [10] to specify and verify security protocols. In RTLA an action is a statement about pairs of states. Axioms, for example relating to sending and receiving messages, are written with respect to the relevant changes in state. The language allows connectives from classical logic as well as the temporal connectives $\Box$ and $\Diamond$ and other constructs.

Another approach that does use theorem proving, though not particularly related to our approach, is presented in [5]. This paper shows how to introduce time into the Communicating Sequential Processes (CSP) protocol verification framework of [13]. Then CSP is embedded in the PVS (Prototype Verification System).

In this paper, we have shown how temporal logics of knowledge are useful for specifying complex aspects of security protocols. One of the advantages of using a standard combination of temporal and modal logics is that there is a clear semantics for this logic. This was a problem with the early BAN logics. Secondly there is an existing bank of axiomatisations, complexity, proof methods etc that can be applied. In combination with clausal resolution techniques we have developed, this allows us to carry out verification of properties of security protocols. While there has been work on verification of such protocols before, the clarity of the logic, together with the flexibility of the proof technique, makes this work important. In the future, we will consider adding first-order aspects to the logic, thus allowing the verification of infinite state protocols.

Acknowledgements This work was partially supported by EPSRC research grant GR/R45376/01.

References


