Publications

Export results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is D  [Clear All Filters]
I. Meraouche, S. Dutta, S. Kumar Mohanty, I. Agudo, and K. Sakurai, "Learning multi-party adversarial encryption and its application to secret sharing",
IEEE Access , IEEE, 2022. DOI (I.F.: 3.367)More..

Abstract

Neural networks based cryptography has seen a significant growth since the introduction of adversarial cryptography which makes use of Generative Adversarial Networks (GANs) to build neural networks that can learn encryption. The encryption has been proven weak at first but many follow up works have shown that the neural networks can be made to learn the One Time Pad (OTP) and produce perfectly secure ciphertexts. To the best of our knowledge, existing works only considered communications between two or three parties. In this paper, we show how multiple neural networks in an adversarial setup can remotely synchronize and establish a perfectly secure communication in the presence of different attackers eavesdropping their communication. As an application, we show how to build Secret Sharing Scheme based on this perfectly secure multi-party communication. The results show that it takes around 45,000 training steps for 4 neural networks to synchronize and reach equilibria. When reaching equilibria, all the neural networks are able to communicate between each other and the attackers are not able to break the ciphertexts exchanged between them.

Impact Factor: 3.367
Journal Citation Reports® Science Edition (Thomson Reuters, 2020)

S. Agrawal, M. Lal Das, and J. Lopez, "Detection of Node Capture Attack in Wireless Sensor Networks",
IEEE Systems Journal, vol. 13, issue 1, IEEE, pp. 238 - 247, 03/2019. (I.F.: 3.987)More..
Impact Factor: 3.987
Journal Citation Reports® Science Edition (Thomson Reuters, 2019)

R. Roman, et al., "Advanced Secure Multimedia Services for Digital Homes",
Information Systems Frontiers, vol. 14, Springer, pp. 527-540, July 2012. DOI (I.F.: 0.851)More..

Abstract

Our society is becoming increasingly more IT-oriented, and the images and sounds that reflect our daily life are being stored mainly in a digital form. This digital personal life can be part of the home multimedia contents, and users demand access and possibly share these contents (such as photographs, videos, and music) in an ubiquitous way: from any location and with any device. The purpose of this article is twofold. First, we introduce the Feel@Home system, whose main objective is to enable the previously mentioned vision of an ubiquitous digital personal life. Second, we describe the security architecture of Feel@Home, analyzing the security and privacy requirements that identify which threats and vulnerabilities must be considered, and deriving the security building blocks that can be used to protect both IMS-based and VPN-based solutions.

Impact Factor: 0.851
Journal Citation Reports® Science Edition (Thomson Reuters, 2012)

PDF icon Roman2010a.pdf (1.36 MB)
J. Forne, et al., "Pervasive Authentication and Authorization Infrastructures for Mobile Users",
Computer and Security, vol. 29, elsevier, pp. 501-514, 2010. DOI (I.F.: 0.889)More..

Abstract

Network and device heterogeneity, nomadic mobility, intermittent connectivity and, more generally, extremely dynamic operating conditions, are major challenges in the design of security infrastructures for pervasive computing. Yet, in a ubiquitous computing environment, limitations of traditional solutions for authentication and authorization can be overcome with a pervasive public key infrastructure (pervasive-PKI). This choice allows the validation of credentials of users roaming between heterogeneous networks, even when global connectivity is lost and some services are temporarily unreachable. Proof-of-concept implementations and testbed validation results demonstrate that strong security can be achieved for users and applications through the combination of traditional PKI services with a number of enhancements like: (i) dynamic and collaborative trust model, (ii) use of attribute certificates for privilege management, and (iii) modular architecture enabling nomadic mobility and enhanced with reconfiguration capabilities.

Impact Factor: 0.889
Journal Citation Reports® Science Edition (Thomson Reuters, 2010)

PDF icon JordiForne2009.pdf (4.07 MB)
C. Dixon, C. Fernandez-Gago, M. Fisher, and W. van der Hoek, "Temporal Logics of Knowledge and their Applications in Security",
First Workshop in Information and Computer Security (ICS’06), vol. 186, Elsevier, pp. 27-42, 2007. DOI More..

Abstract

 Temporal logics of knowledge are useful for reasoning about situations where the knowledge of an agent or component is important, and where change in this knowledge may occur over time. Here we investigate the application of temporal logics of knowledge to the specification and verification of security protocols. We show how typical assumptions relating to authentication protocols can be specified. We consider verification methods for these logics, in particular, focusing on proofs using clausal resolution. Finally we present experiences from using a resolution based theorem prover applied to security protocols specified in temporal logics of knowledge.

C. Fernandez-Gago, U. Hustadt, C. Dixon, M. Fisher, and B. Konev, "First-Order Temporal Verification in Practice",
Journal of Automated Reasoning, vol. 34, Springer, pp. 295-321, 2005. DOI (I.F.: 0.875)More..

Abstract

First-order temporal logic, the extension of first-order logic with operators dealing with time, is a powerful and expressive formalism with many potential applications. This expressive logic can be viewed as a framework in which to investigate problems specified in other logics. The monodic fragment of first-order temporal logic is a useful fragment that possesses good computational properties such as completeness and sometimes even decidability. Temporal logics of knowledge are useful for dealing with situations where the knowledge of agents in a system is involved. In this paper we present a translation from temporal logics of knowledge into the monodic fragment of first-order temporal logic. We can then use a theorem prover for monodic first-order temporal logic to prove properties of the translated formulas. This allows problems specified in temporal logics of knowledge to be verified automatically without needing a specialized theorem prover for temporal logics of knowledge. We present the translation, its correctness, and examples of its use.

Impact Factor: 0.875
Journal Citation Reports® Science Edition (Thomson Reuters, 2005)

A. Winfield, J. Sa, C. Fernandez-Gago, C. Dixon, and M. Fisher, "On the Formal Specification of Emergent Behaviours of Swarm Robotics Systems",
International Journal of Advanced Robotics Systems, vol. 2, SAGE Publishing, pp. 363-371, 2005. DOI More..

Abstract

It is a characteristic of swarm robotics that specifying overall emergent swarm behaviours in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation we need such specifications. This paper explores the use of temporal logic to formally specify, and possibly also prove, the emergent behaviours of a robotic swarm. The paper makes use of a simplified wireless connected swarm as a case study with which to illustrate the approach. Such a formal approach could be an important step toward a disciplined design methodology for swarm robotics.

J. Lopez, J. A. Montenegro, J. L. Vivas, E. Okamoto, and E. Dawson, "Specification and Design of Advanced Authentication and Authorization Services",
Computer Standards & Interfaces, vol. 27, no. 5, Elsevier, pp. 467-478, Jun 2005. DOI (I.F.: 0.62)More..

Abstract

A challenging task in security engineering concerns the specification and integration of security with other requirements at the top level of requirements engineering. Empirical studies show that it is common at the business process level that customers and end users are able to express their security needs. Among the security needs of Internet applications, authentication and authorization services are outstanding and, sometimes, privacy becomes a parallel requirement. In this paper, we introduce a methodology for the specification of security requirements and use a case study to apply our solution. We further detail the resulting system after extending it with an Authentication and Authorization Infrastructure.

Impact Factor: 0.62
Journal Citation Reports® Science Edition (Thomson Reuters, 2005)

PDF icon javierlopez2005c.pdf (210.49 KB)
S. Rusell, E. Dawson, E. Okamoto, and J. Lopez, "Virtual Certificates and Synthetic Certificates: New Paradigms for Improving Public Key Validation",
Computer Communications, vol. 26, no. 16, Elsevier, pp. 1826-1838, 2003. (I.F.: 0.508)More..

Abstract

The certificate paradigm is applied recursively to obtain the public keys of a number of Certification Authorities and, accordingly, to obtain the public keys of a number of final entities. Thus, validation of the authorized public key of a party in a network transaction is commonly based on processing the certificate chain descended from a trusted root issuer, involving non-negligible time and cost. Those chains become long in communications between large organizations, which is the typical case of e-commerce and e-government applications. The process of validation of extensive chains introduces performance problems in two aspects: signature verification and revocation checking. That is, the repeated processing of long chains of certificates creates severe efficiency problems. This fact causes that most of the advantages provided by Public Key Infrastructures (PKIs) are not conveniently exploited. In this paper we analyze the scenarios in which large volumes of digitally signed transactions between commercial entities exist. These cases require of interoperation among PKIs. We show that solutions available in those scenarios still involve processing of too long chains of certificates, either at the receiving computer or by an outsourced entity. For this reason, we propose new concepts of virtual certificate and synthetic certificate for faster and less costly processing of certificate chains. In this way, communications in a certificate-based intercommunity can be highly improved. We also show how these types of certificates can be applied in practice.

Impact Factor: 0.508
Journal Citation Reports® Science Edition (Thomson Reuters, 2003)

PDF icon SelwynRusell2003.pdf (227.92 KB)
J. Davila, and J. Lopez, "Sistemas Electrónicos de Micropago",
Revista de Contratación Electrónica, vol. 22, pp. 3-22, 2001.
J. Davila, J. Lopez, and F. Rosello, "Diseño de Protocolos de No-Repudio",
Revista SIC: Seguridad en Informática y Comunicaciones, vol. 38, pp. 1-5, 2000.
Modify or remove your filters and try again.