Publications

Export results:
[ Author(Desc)] Title Type Year
Filters: First Letter Of Last Name is G  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
D. Galindo, R. Roman, and J. Lopez, "On the Energy Cost of Authenticated Key Agreement in Wireless Sensor Networks",
Wireless Communications and Mobile Computing, vol. 12, Wiley, pp. 133-143, Jan 2012. DOI (I.F.: 0.863)More..

Abstract

Wireless sensors are battery-powered devices which are highly constrained in terms of computational capabilities, memory and communication bandwidth. While battery life is their main limitation, they require considerable energy to communicate data. Due to this, it turns out that the energy saving of computationally inexpensive primitives (like symmetric key cryptography (SKC)) can be nullified by the bigger amount of data they require to be sent. In this work, we study the energy cost of key agreement protocols between peers in a network using asymmetric key cryptography. Our main concern is to reduce the amount of data to be exchanged, which can be done by using special cryptographic paradigms like identity-based and self-certified cryptography. The main news is that an intensive computational primitive for resource-constrained devices, such as non-interactive identity-based authenticated key exchange, performs comparably or even better than traditional authenticated key exchange (AKE) in a variety of scenarios. Moreover, protocols based in this primitive can provide better security properties in real deployments than other simple protocols based on symmetric cryptography. Our findings illustrate to what extent the latest implementation advancements push the efficiency boundaries of public key cryptography (PKC) in wireless sensor networks (WSNs).

Impact Factor: 0.863
Journal Citation Reports® Science Edition (Thomson Reuters, 2012)

PDF icon Galindo2010.pdf (261.6 KB)
S. Gurgens, J. Lopez, and R. Peralta, "Analysis of E-commerce Protocols: Adapting a Traditional Technique",
International Journal of Information Security, vol. 2, no. 1, Springer, pp. 21-36, 2003. More..

Abstract

We present the adaptation of our model for the validation of key distribution and authentication protocols to address some of the specific needs of protocols for electronic commerce. The two models defer in both the threat scenario and in the protocol formalization. We demonstrate the suitability of our adaptation by analyzing a specific version of the Internet Billing Server protocol introduced by Carnegie MellonUniversity. Our analysis shows that, while the security properties a key distribution or authentication protocol shall provide are well understood, it is often not clear which properties an electronic commerce protocol can or shall provide. We use the automatic theorem proving software ‘‘Otter’’ developed at Argonne National Laboratories for state space exploration.

PDF icon SigridGuergens2003.pdf (222.22 KB)