

Looking through the crystal ball: Identifying future security, privacy and social risks in a prospective IoT scenario

SecIoT 2010 29th November 2010, Tokyo

Barbara Daskala, CISSP, CISA, ENISA

James Clarke, Waterford Institute of Technology, ... Dennis K. Nilsson, Swedish Institute of Computer Science, Sweden

.01001001000101100www.enisa.europa.eu

Why a 'crystal ball'?

- IoT is a prospective vision
- Considering a possible future IoT scenario on air travel [ENISA study]
- Using a risk assessment approach to identify potential risks
- Putting things in context: Covered many different aspects!

ENISA 'Flying 2.0' Study

- EC Communication "Internet of Things An Action Plan for Europe"
- Main Objective: identify and explore risks in a future air travel scenario, of emerging and future technologies and applications (IoT/ RFID, LBS...)
- Three different scenarios / three actors

ENISA Study WG Members

- Alessandro Bassi, Hitachi Europe SAS, France •
- **Jim Clarke**, Researcher, Waterford Institute of Technology, Ireland •
- France Charles de Couessin, Executive Partner, ID Partners, France •
- **Sotiris Ioannidis**, Associate Researcher, Institute of Computer Science, • Foundation for Research and Technology (FORTH), Greece
- Eleni Kosta, Legal Researcher, K.U.Leuven Interdisciplinary Centre for Law & • ICT (ICRI), Belgium
- **Paul McCarthy**, Research Fellow, Lancaster University, UK •
- Huang Ming-Yuh, Program Manager, Strategic Information Assurance, The • Boeing Company, US
- Eurico Neves, CEO, INOVA+ Serviços de Consultadoria em Inovação • Tecnológica SA, Portugal
- **Dennis Nilsson**, Consultant at Syncron Japan KK, Tokyo, Japan ٠
- Milan Petkovic, Philips Research, The Netherlands ٠
- **Pawel Rotter**, AGH University of Science and Technology in Krakow, Automatics ٠ Department, Poland
- Markus Tiemann, Human Factors and Cabin/Cargo Operations, AIRBUS • **Operations**, Germany
- **David Wright**, Managing Partner, Trilateral Research & Consulting LLP, UK

The 'Akira' scenario

www.enisa.europa.eu

- When: 2015 5 years into the future •
- Who: Akira, 20 year-old, a Japanese scholarship student
- Where: airport (London to Japan), on ۲ the way to the airport, on the aircraft, arrival
- What: Use of smart technologies to ۲ perform the various steps of air travel

J100100100010

The major phases in the scenario

- **Getting to the airport** the Tube, London, RFID enabled card
- **Airport check-in** RFID-enabled frequent traveler card, fingerprint check
- Security & border access controls
- Waiting to board Social networking [JP-Professionals-unite.com]...
- **Boarding** seamless
- In flight Internet in the air [ad-hoc network], Creative Commons
- **Arrival and transfer** Frequent flyer card contains luggage tags

0100100100010110

The major phases in the scenario (cont'd)

- **Boarding** seamless, smart boarding process based ۲ on verifying 2D barcodes as well as biometrically authenticating passengers
- **In flight** Internet in the air
- **Arrival and transfer** Personal electronic devices and • airport infrastructure guide passengers through immigration control, luggage claim, and onwards to bus, train or rental car

The risk assessment in brief

- Methodology based on ISO/IEC 27005:2008
- Identify and valuate assets (values, rights, systems, services...): composite asset [data & physical device]
- Identify and assess vulnerabilities (of assets) and threats

0100100100010

- Identify and assess major risks in the scenario
- Make recommendations

What are we trying to protect? – The assets

INTANGIBLE

- Automated reservation, checking and boarding procedure
- Electronic visa issuing process
- Luggage and goods handling

IOB

 Automated traffic management

ALT

TANGIBLE

- Passports and National ID cards
- Mobile 'smart' devices
- Health monitoring devices
- Travel documents (paper)
- RFID & barcode readers
- Credit Cards/Debit card/Payment cards/'e-wallet'
- Other RFID cards
- Scanners & detectors
- Networks
- State databases
- Commercial and other databases
- Temporary handset airport guides
- Luggage and goods

Identifying major risk areas...

Technical

- High dependency on technology...
- Overall computing network infrastructure failure Severe service interruption and unavailability
- Realisation of malicious attacks to compromise systems (e.g. social networking, DoS attacks, cloning of RFID tags, jamming, blocking, side channel attack)
- Electronic ID failures: identity theft...
- Failure of vehicles and ground transportation infrastructure

traffic jams, accidents etc.

Identifying major risk areas... (cont'd)

Policy & organizational

- Reservation, check-in and boarding procedures rendered unavailable
- Security screening failure (e.g. scanners malfunction, failure of procedures etc.)
- Interoperability issues across countries
- Cannot issue/control electronic visas
- Inability to travel: loss of paper documents, other delays / failures, check-in / passenger identification
- Procedures / instructions , devices complex to use → not followed

```
Boarding Pass
hame: Snithee (Allen Confirmation: WTFDMG
Seat: 21-B Gate B-3
Depart: Houston 2:40 AM
Arrive: Gitmo 11:10AM
```


Identifying major risk areas... (cont'd)

Social (including privacy)

- Function creep / repurposing of data
- Loss of privacy
- Social sorting and social exclusion
- Increased surveillance
- Low user acceptance, user frustration

FRUSTRATION AHEAD

Identifying major risks... (cont'd)

Legal

- · Lack of common or harmonized data protection legislation
- 'Legal vacuum' Legislation lagging behind technological advancements

Non-compliance with the data protection legislation

NOTE Various risks are highly interconnected! Distinction between security, privacy risks not always very clear!

And now what?

Addressing the risks requires considering many aspects...

POLICY

- Rethink existing business structures and introduce new business models
- User-friendliness of devices and procedures, include rather than exclude!

RESEARCH

- Data protection and privacy
- Usability
- Managing trust
- Multi-modal person authentication
- Proposing standards of light cryptography protocols

Recommendations (cont'd)

LEGAL

- Reevaluate and update data protection legislation
- Harmonisation of data collection

FOR EUROPEAN COMMISSION

- Enforcement and application of the European regulatory framework
- Alignment of research with industrial and societal needs
- promoting participation of industry, and in particular SMEs in research activities as FP7
- Ethical limits research
- Need for impact assessment and trials of new technologies before deployment

Some conclusions...

YES!

IoT is a promising vision and may solve many problems!

BUT...

There are **important risks** posed that need to be addressed

SO we need to...

- be proactive
- weave security & privacy into IoT
- work together!

[existing EC initiatives on Privacy Impact Assessment framework of RFID applications and IoT Expert group and]

0100100100010110000101000011

Thank you! ありがとうございました!

For the ENISA report, visit: http://www.enisa.europa.eu/act/rm/emerging-and-future-risk/deliverables