Optimization of Public Key Cryptography (RSA and ECC)
for 16-bits Dewces based on 6LoWPAN

Jesus Ayuso, LLeandro Marin, Antonio Jara and

Antonio F. G. Skarmeta
University of Murcia (Spain)

. -'"" “ 1ST INTERNATIONAL WORKSHOP ON
. THE SECURITY OF THE INTERNET OF THINGS
. T Tokyo (Japan), November 29, 2010

seclo e

INTERNET OF THINGS 2010

Outline

1. Introduction and Internet of Things in clinical
environments based on 6LoWPAN

. Security Threats and Requirements

. Security primitives for 6LoWPAN devices

. Mathematical optimization for 6LoWPAN devices

. Results

. Conclusions and Future Work

0 01 B W DN

{ Al
) \
w_ — - R ——— -

1. Introduction

Internet of things, and particularly 6LoWPAN is defining a
new challenge for security, since wireless sensor networks are
being connected to the Internet.

it is necessary to provide efficient and usable security mechanisms that
could protect the WSN against attacks.

Healthcare based on Internet of Things present a new set of challenges in
security, since this application domain is one of the most restrictive.

2. Security Threats
Passive
(eavesdropping)

Active (data
injection)

Common attacks

Power exhaustion

Denial of Service
Attacks (DoS)

Jamming attack

Security
Threats Node compromise Internal memory

Side-channel Attacks

- Sybil attack
Impersonation

Attacks

Protocol-specific
Attacks

2

Reply attack

2. Security Reguirements

Confidentiality

Integrity

Authentication

Authorization
Availability

Freshness

orward anc
Requirements | Backward
Secrec

Oroanizatioxn
Auditing

Security

Non-repudiation

Privacy and
Anonymity

STT——
=2 -

=

\ = —

—

3. Security primitives for 6LoWPAN device

Symmetric Key Cryptography (SKC) provides confidentiality
and integrity to the communication channel, and requires that both the
origin and destination share the same security credential (i.e. secret key),
which is utilized for both encryption and decryption.

Public Key Cryptography was considered unsuitable for sensor node
platforms, but that assumption was a long time ago. The approach that
made PKC possible and usable in sensor nodes was Elliptic Curve
Cryptography (ECC), which is based on the algebraic structure of elliptic
curves over finite fields. Some studies has been carried out about RSA in
reduce chips but mainly is going to be focused on ECC.

New scalability level, which can not be satistfied with Symmetric Key
Cryptography (SKC). For that reason, it is required Public Key
Cryptography (PKC), it is evaluated and optimized RSA and ECC
algorithms.

4, Mathematical Optimization

RSA and ECC require two different integer sizes (k). Specifically,
it is considered 1024-bit for RSA and 160-bit for ECC

Montgomery’s representation

~ In Montgomery representation for representing the numbers a and b,
which are going to be multiplied, we have aR and bR mod n. Problem is
coming with the multiplication operation, we get abR”2, but what we need
is abR. The great advantage of Montgomery is just to avoid that, since
Montgomery offers the reduction of the factor R.

Multiplication operation is what consumes the higher part of the time,
since it is repeated thousands of times. For that reason, multiplication
operation is what we will go to optimize and discuss more in detail

4, Mathematical Optimization (Multiplication

Let an instruction from the microprocessor’s set of instructions to carry
out multiplication operation, which operated 2 registers of 16 bits and save

the 32 bits of the result in two registers of 16 bits. For example, this
instruction is simulated in MSP430 chip, which is the microprocessor used
by Tmote SKky for our evaluation — around 150 cycles

A

Program Code emulated for Multiplication in MSP430

7 EXECUTION TIMES FOR BECISTERS CONMTENTES (CYCLEE} without CRLL:
i MPYD: Unsignad 16 x 16-bit Multiplication

7 MACU: Multiplication amd Accumuwlzticon

7 TREE MACT MPYD EXAMFLE

7 MIRIMR 132 134 00000h x 00000h = QOO00O000N

7 MEDITM 148 150 ORSASh x OSASRh = OIRTEIEOZh

7 MRX IpAR 184 1k& OFFFFh x OFFFFh = OFFFEOOOLR

7 UNSICHED HULTIPLY EUEROUTINE: IROPL x IRDPIL > IRACMYIRACL

7 USED EECISTERE IROF1, TROFZL, IROPZM, IRACL, IRACH, IRET

MPYU CLE IBACL 7 0 > LEBs RESOLT

CLE IRRCM ¢ 0 > MEHs RESOLT

7 UNSICHED MULTIPLY AND RCCIMOLATE SOEROUTINE:
7 (IRDPL x IROPIL) + IERCM|IRRCL » IERCH|IRRCL

MRCU CLE IFOFZH ; MSEs MOLTIPLIER

MOV ¥1,IRET ; BIT TEST RECISTER

LS00 EIT IEBT,IROPL 7 TEST ACTUAL BIT

JE LE0L 7 IF O: DD HOTHIRG

ADD IROP2L, IRACL ; IF 1: ADD MULTIPLIER TO RESOLT
AODC IROPZM, TRACH

L5§01 ALA IRDPZL 7 MULTIFLIER x 2

RLLC ITROFZH ;

ELA IEBT ; HEXT BIT TO TEST
JHC L§002 @ IF EIT IN CARAY: FINISHED
RET

4, Mathematical Optimization (Multiplicatiof

We have aR and bR mod n. For each step of the multiplication of aR by
the digits of Bi, since multiplication is carried out in blocks of 16 bits, this
needs to add the result with the previous result i.e. an addition
of (a sum of two numbers K bits and 16 bits, so alpha (k +1) /16 additions),
then this needs to divide it by 216 mod n, we call delta for the time used
for the division by 2"16.

. . : 6=%(u+3a)+2u+2a.
The total time for each one of the 16 bits blocks (k/16 16/)+ 2+ 2o

blocks, By) is (i + 20)k/16 + a(k + 1)/16 = £EtalBkil)
and addition 4, 1.e. the total time is “H'I_?:?k-i_l]k + %%’ Based on EXtended
Euclidean algorithm

oo pk? | (e43a)k® _ (2up430)k?
M~SE+ "5 == —

4, Mathematical Optimization (bit shifting)

We have aR and bR mod n are stored in binary representation, so
aR =%, a;2" and bR =3, ;2"
We calculate (aR)(bR)R”"-1 = (ab)R, therefore we need to
carry out Kk right bit shiftings (with k = 160 or 1024 according)

Since modulus n is odd, when it is divided by 2 mod n, two options are
defined: either it is even number and it can be directly shifted, or it is odd
number and consequently needs to add n, in order to reach 0 in the least
significant bit and be able to shift it.

For the multiplication process is needed a variable to accumulate the
current result, we will call to that variable P, Each one of the digits from P
is going to be multiplied by the digits from A and divided by 2.

= s
‘I - .

4, Mathematical Optimization (bit shifting)

To estimate the time, we will consider that the probability of finding Bi =1
or 0 is the same, 1.e. 1=2. Therefore, for each k bits of Bi, when it is 1, it
needs to carry out an addition of Kk bits (i.e. addition of ai) and a division
by 2 of P. And when it is 0 just only one right bit shifting. Therefore, k
divisions by 2 and k=2 additions. Since, each division by 2 is, such as
mentioned, when it is a shifting and 1/2 times also an addition of n.

The total time is:

MSP430 offers 16-bits operations, additions and blts shlftlng are defined in
blocks of 16-bits. Alpha is the time for 16-bits additions and shifting
(usually 1-4 CPU cycle for bit shifting and 1-6 cycles for additions, depends
‘ on access to memory and reglsters) The final time is: :

4, Mathematical Optimization (bit shifting)

FProgram Sketch of assembler code for Montgomery's
multiplication based on bit shifting
- T Fir {fras, wham 1= storad tha partial rasult, is kapt in tha ragistar sinca %0 to &9
Code based on Bit shifting L e S8,D YT o 90 81 Aa\E e $0,02 yGAE S A0y 53 \MAE s 0, 04
mav.w #0,%5 Yn\E mov.w #0, %8 \n\E mov.w #0,%7 \n\E mov.w #0,%2 o\t mowv.w #0,%3 so\L"

For{l=071<k; i++]

F[L1]=0; ffkaap Iln tha mamory stack tha flst oparand and the sacond ocna dividad by 2
rrc.wW 18{%10} “n\t push.w 1Z(%10} Ym\tL®

for{l=0;1<k-1;1++] [
far {shift = OxOl; shilft!=0; shiftec=1]}]
if(b[i] & shift) sod{P.al;
if lFI':'l & |:|i':|:||.:l Idﬂl_:\',:l_lr' S iWa carrcy outk wo varslions dnpur.d'.ng an tha CRITY flil]' |D-d|‘_l'_!¢' of tha sacond n:ip-ﬂri.‘ll‘_:-
ffapanding ocn tha bits of tha flrst ocparand wa hawa toc rapaat sawaral additions
ffand bit shiftimg of tha ragistars whara 1s storad tha partizl rasulb.

¢f/Tha sama batwaan 18 and 0 im black of 2 bytas il6 bibts)
rrc.w O({%10) o\t pash.w O(%10) “n\L"

ford{J=07 §<k-17 J#+} [F+Right blt shiftings=s
PL]) =2= 17 J/RODITICH OF 1€0 BITS IS CRARIED OUT IN 30 CYCLES

IF(P[H+1l] & OxOL) F[H] I= Ox=0F " LsAZ: add.w Z{rlh,s0 so\t®
N ® addc.w 44{rl), 5l \m\t®
e o 1= " addc.w &{rll, 82 \oNt®
Flx-1] 22= 1 ® addc.w S{rl), i3 LoLE®
l " addc.w 10(r1], %4 \nhE®
] *" addc.w 1Z{rl],.%5 “m\L"
" gddc.w 14{rlj.%& \m\L"™
if(lsGraatarEqual (F: o)} " addc.w 1E({rl],%7 \m\L"
.) T o * addc.w 18(rl], %8 \mAL®
sub P, nj# = addc.w 20{rl}, %% 4n,L®

¢ fEIT SHIFTING OF 160 EITS IS CARAIED OOT IN 10 CYCLES
®" rroc A% A\m\E rrc &2 WwnAL rrc AT AmAEt oo B A\EAE rre &S A\EAZE TTC %4 A\mAZE rre &3 hm\E
rre %3 Am\E rre %1 ‘\m\E rro &0 yn\L®

- - T T ———

5. Results - Comparative

2 (2p3a)k? ; g . 29 _
e < e —=23Ra<2u+3a= 5 < L

When the number of cycles to carry out microprocessor’s multiplication |
operation is more than 15 times the cycles to carry out addition or bit
shifting, it is preferable bit shifting solution. Since, MSP430
microprocessor’s multiplication operation requires a big amount of clock
cycles (150 cycles), while the bit shifting and additions are supported and it
just needs between 1 n 4 cycles for bit shifting and 1 and 6 cycles for
addition, Therefore, the evaluation has presented that bit shifting is better
than microprocessor’s multiplication operation with a relation of when its
cost is 15 times or less than multiplication. It is between 38 and 150.

e

5. Results - Comparative

Multiplication is carried out in12480 cycles
(1,5625 milliseconds in the 8 Mhz MSP430
from Tmote SKky). In order to reach this
solution, we have used 10 microprocessor’s
registers to keep the 160 bits variable with
the partial multiplication results, with this
optimization we have reduced almost the
40% of the total number of cycles, since rrc
operation for bit shifting, and add operation

for addition spend 1 cycle and 3 cycles
respectively, instead of 4 and 6. The Program
shows as bit shifting of the 160 bits is carried
out in just 10 cycles, and addition in 30
cycles with this optimization. Finally, we
have unrolled loops in order to optimize
more the final assembler code.

Program Sketch of assembler code for Montgomery's
multiplication based on bit shifting

ffras, wham 1s storad tha partial rasult, 1s kapt in tha raglstar sinca %0 to &9
" mav.w #0080 wn\L mowv.w FO0: %1 wn\t mov.w #O0: %2 S\nA\E mowv.w O 53 Ao\t mowv.w #0; 54
mav.w #0. %5 vnAE mov.ow #0.%E WnA\E mov.w #0. 87 wnA\E mov.w 0. %8 ywn\t mov.w #O0.%9 wohE®

{/kaap ln tba mamoccy stack tha flst oparand and tha sacond cna dividad by 2
" rrc.w 1E{%10}) Sn\t push.w 1E(%10} %nm\t"

//Tha sama batwaan 1§ and 0 im blaock of 2 bytas (16 biks)
®* rrc.w D{%10) o\t pash.w O(%10) ‘\m\L®

{/MWa carry out bwo varsions dapanding on tha carry flag (oddity of tha sacond oparand)
{/Dapanding on tha bits of tha flrst cparand we hawa to rapaat sawaral additions
ffand bit shifting of tha ragistars whara 1s storad tha partlal rasulk.

JFRODITION OF 180 BITS IS CRARIED OUT IN 30 CYCLES
® _LshZ: addw Z{rlp,; %2 o\t®
® addc.w 44rlp, 51 o\t®

" addc.w 6{rl}l, %2 “\o\t"

® addc.w S{rl); 53 “o\t"

® addc.w L10(rl};%4 m\Lc*®

® addc.w 13(rl};%s “Wn\LE"

" addc.w 14{rl}.%E yo\b®

" addc.w 1E{rl}.%7 wm\L®

® addc.w 18(rl};%§ “wn\LE"

* addc.w Z0Qrl).%% \n\L"

¢ F/EIT EHIFTING OF 140 EITS IS CARRIED OUT IN 10 CYCLES
" rre %% wnAzE rre 48 ‘oAt rro 8T ‘mM\E cro %6 wmM\E £re 55 ‘oAt rre %4 S\nvt oo 23 wn\E
rrc %2 wnAE roc %1 S\n\E rooc %0 yn\t®

5. Conclusions and Future Work

Internet of things, and particularly 6LoWPAN is defining a new challenge '
for security, since wireless sensor networks are connected to the Internet

Healthcare domain and specifically mHealth requires scalable security
based on PKC

The evaluation has concluded that ECC is a suitable solution for Future
Internet devices, such as 6LoWPANnRodes, since time spent for
Montgomery multiplication is just 1,5625 milliseconds.

Ongoing work is focused on assembler implementation of the modular
inverses, in order to define a full optimized exponentiation to implement

ECDSA (for digital signature), ECIES (for data encryption), and ECDH
(for key establishment). In order to compare our solution with respect to

IN | other current implementations such as TinyECC. I

Questions?

Thanks for your attention

Questions?

Do you want to get more information?
Then, get in contact with
Leandro Marin - University of Murcia (Spain) — leandro@um.es

Extra

TABLE 1
RSA RESULTS: LEFT COLUMN PRESENTS ALGORITHMS FROM THE

FASTEST (TOP) TO THE SLOWEST (BOTTOM). RIGHT COLUMN PRESENTS
ALGORITHMS FROM THE LEAST WEIGHT (TOP) TO THE MOST (BOTTOM)

Montgomery + NAF L-R Classic L-R
| Montg. + Booth Modif. L-R Classic R-L M
5 Montgomery L-R Montgomery L-R E
P NAF L-R Booth L-R M
E Booth Modif. L-R Booth R-L 0
E NAF Compact. L-R Booth Modif L-R K
D Classic L-R NAF Compact L-R Y
Booth L-R Montg. + Booth Modif. L-R | |
Classic R-L NAF L-R
Booth R-L Montgomery + NAF L-R

TABLE Il
ECC RESULTS: LEFT COLUMN PRESENTS ALGORITHMS FROM THE
FASTEST (TOF) TO THE SLOWEST (BOTTOM). RIGHT COLUMN PRESENTS
ALGORITHMS FROM THE LEAST WEIGHT (TOP) TO THE MOST (BOTTOM)

Montgomery + NAF L-R Classic L-R

* | Montg. + Booth Modif. L-R Classic R-L M

5 Montgomery L-R Booth L-R E

P Montgomery R-L Booth Modif. L-R M

E NAF Compact. L-K NAF Compact L-R 0

E Booth Modif. L-R Montgomery L-R R

' 1 D Montgomery-Kaliski R-L Montgomery R-L Y
!

Classic L-K Montgomery-Kaliski RE-L e S .
Booth L-K Montg. + Booth Modif. L-R '
Classic R-L Montgomery + NAF L-R

