
Optimization of Public Key Cryptography (RSA
and ECC) for 16-bits Devices based on 6LoWPAN

Jesús Ayuso and Leandro Marin
Department of Applied Mathematics

Computer Science Faculty
University of Murcia

Murcia (Spain)
Email: {jap89826, leandro}@um.es

Antonio J. Jara and Antonio F. Gómez Skarmeta
Department of Information and Communications Engineering

Computer Science Faculty
University of Murcia

Murcia (Spain)
Email: {jara, skarmeta}@um.es

Abstract—Internet of things (IoT) is one of the last advances in
ICT, providing a global connectivity and management of sensors,
devices, users and information. Specifically, we are working on
Future Internet devices based on 6LoWPAN. 6LoWPAN presents
an extension of WSNs to the Internet, which has defined a
new set of security challenges. For example, new cryptographic
mechanism more scalable are required, in order to provide
security properties such as authentication, privacy and integrity
to communications end-to-end trough the Internet. Right now,
WSNs cryptographic is based on Symmetric Key Cryptography
(SKC), but it is not suitable for IoT, since symmetric key
establishment is not scalable. Fortunately, research on security
for sensor networks is showing promising results such as efficient
implementations of Public Key Cryptography (PKC) algorithms
and lightweight self-healing mechanisms.

Our contribution is an analysis of security requirements from
IoT applications, and mathematical optimization for RSA and
ECC algorithms in 6LoWPAN nodes. Specifically, multiplication
operation is the most expensive operation in RSA and ECC
algorithms, i.e. it consumes the majority of the time, since it is
repeated thousands of times. Therefore, multiplication operation
is the part that will be discussed in more detail. This work
proposes an implementation of multiplication operation for RSA
and ECC based on bit shifting instead of the microprocessor’s
multiplication operation. It seems a contradiction to study the
process of bit shifting, when exists a specific operation, but we
have found that in 6LoWPAN devices, such as Tmote Sky and rest
of motes based on MSP430 microprocessor, multiplication oper-
ation is not supported, it is actually emulated and consequently
requires a big amount of clock cycles (150 cycles in MSP430),
while the bit shifting is supported and it just needs between 1
an 4 cycles.

The evaluation has presented that bit shifting is better than
microprocessor’s multiplication operation with a relation of
32αk2 < 3(µ + α)k2 + 2(2µ + α)k, where α is the number
of cycles for bit shifting, and µ is the number of cycles for the
microprocessor’s multiplication. Therefore bit shifting is more
suitable when its cost is 15 times or less than multiplication i,e,
µ < 15α. MSP430 has a µ/α between 38 and 150.

I. INTRODUCTION

Providing effective and appropriate security primitives is
one of the most important objectives of information and
communication technologies (ICT). Internet of things (IoT) is
one of the last advances in ICT, providing a global connectivity
and management of sensors, devices, users and information.
Particularly, 6LoWPAN technology offers the capacity to

extend WSNs based on IEEE 802.15.4 to Internet. 6LoWPAN
is an open standard for low power WPANs under IPv6 [10].
This standard is considered a suitable element to introduce the
concept ”Internet of Things” in the real-world [21].

IoT technologies offer a wide range of applications in
healthcare, which improves the quality of services, reduce
mistakes, and even detect health anomalies from vital signs.
This paper presents briefly how IoT technology is applied in
clinical environments to present the requirements from an IoT
environment for security, privacy and authenticated access.

The problem is that 6LoWPAN nodes are highly constrained
in terms of computational capabilities, memory, communica-
tion bandwidth, and battery power. As a result, it is challeng-
ing to implement and use the cryptographic algorithms and
protocols required for the creation of security services.

Our research is focused on cryptographic primitives, which
are required by most of the security protocols and mecha-
nisms in order to integrate the security properties into their
operations. These cryptographic primitives are Symmetric Key
Cryptography (SKC), Public Key Cryptography (PKC), and
Hash functions. SKC and Hash functions are directly sup-
ported by IEEE 802.15.4. The problem is that IoT requires
a higher scalability, since any node from Internet should be
able to connect with a node from a 6LoWPAN. For that reason,
PKC needs to be supported in 6LoWPAN. Our research in
this paper has been evaluate and optimize RSA and ECC
algorithms for 6LoWPAN nodes, such as Tmote Sky.

Therefore, the purpose of this paper are: Firstly, to analyse
the impact of the integration of WSN and the Internet, this
is considered a hypothetical clinical scenario based on 6LoW-
PAN, over WSNs and over that clinical scenario is analysed the
security threats and requirements, in Section II. Secondly, it
is carried out an overview of the different security mechanism
for sensor networks, in Section III. Finally, we propose a set
of mathematical optimizations to do feasible the application
of Public Key Cryptographic in 6LoWPAN nodes, in Section
V, which are being evaluated in Section VI.

II. SECURITY THREATS AND REQUIREMENTS IN FUTURE
INTERNET NETWORKS BASED ON 6LOWPAN

A. Security Threats

This section presents a brief overview of the different
threats, which WSN are vulnerable. A deep analysis of them
can be found in [20]. The security threats types are:

• Common Attacks: Wireless communication channel is
public, therefore it is subject to various types of attacks,
either passive (eavesdropping) or active (data injection).

• Denial of Service Attacks (DoS): The objective of this
attack is to avoid the provisioning of services. The most
basic DoS attacks can target the nodes themselves (power
exhaustion attack), e.g. sending request continuously until
the node consume its battery, or the communication
channel (jamming attack), e.g. introducing noise signal
in the frequency which node is transmitting.

• Node Compromise: An device is considered being com-
promised when an attacker is able to either read or modify
its internal memory, and access to the node information
such as secret keys or confidential data.

• Side-channel Attacks: An adversary can monitor certain
physical properties of the nodes, such as electromagnetic
emanation from the chip’s surface in a passive way, in
order to extract the information of the device.

• Impersonation Attacks: An attacker node can create
multiple fake identities (sybil attack), and also can create
duplicates with the same identity (replication attack).

• Protocol-specific Attacks: Some essential protocols used
in WSN, such as routing, aggregation, and time synchro-
nization, are targeted by some attacks in order to influence
the internal nodes functionality and the network services.

B. Security Requirements

Such as presented in the Section II-A, WSN are highly
vulnerable to attacks. The effects of those attacks are not de-
sirables. For example, following the hypothetical scenario of a
clinical environment, a DoS attack could stop a critical patient
continuous vital sign monitoring , consequently in case of
anomalies, they are not notified. For example, impersonation
attack could reply information from a patient, e.g. informing
that he is right when he is not. Finally, any access to the
patient’s information means access to the patient’s privacy.
Therefore, it is clear the need of security mechanisms to
prevent the attacks and to minimize the adverse effects of such
attacks. The desirable security properties, following [20], in a
WSN are:

• Confidentiality: A message should be understood just by
the recipients. Confidentiality is one the most important
security properties in clinical environments, since pa-
tient’s information is private and sensitive. It may be not
mandatory in certain scenarios where the data is public
(e.g. environment data such as humidity).

• Integrity: A message should not be altered or modified.
Integrity is a mandatory property because the trust in the
information is related with the trust in the integrity of this.

Since wireless medium is open, it is easy to get a packet,
manipulate it and forward it with a modified content. For
example, in clinical environments an attack could change
the glucose value of a patient.

• Authentication: Data authentication allows a receiver
to verify that the data is really sent by the indicated
sender. This security property is quite important in sensor
networks. In clinical environments it is really important,
since the patient’s node needs to authenticate to the sender
of the private information request.

• Authorization: This property ensures that only autho-
rized entities are able to perform certain operations in
the network. For example, in clinical environments it is
necessary to ensure that just some doctors have a proper
authorization, in order to perform certain tasks and access
to specific private information.

• Availability: The users of a sensor network must be
capable of accessing its services whenever they need
them. Therefore, the different elements of the network
must be robust enough to provide services even in the
presence of malicious entities or adverse situations. In
clinical environments, this security property is necessary
to ensure that patient’s data and alarms are delivered.

• Freshness: Data freshness means that the data produced
by the sensor is recent. In clinical environments, the infor-
mation must be received as soon as possible (e.g. alerts
of heart attack). Freshness is also linked to duplicated
information, i.e. when an adversary success on replaying
an old message inside the network.

• Forward and Backward Secrecy: Since new sensor
nodes are deployed whenever other sensor nodes fails
to replace it, appear two new properties that need to be
considered, on one hand, forward secrecy, where a sensor
should not be able to read any future messages, and on
the other hand, backward secrecy, where a joining sensor
should not be able to read any previous message.

• Self-Organization: Sensor nodes should be indepen-
dent and flexible enough to autonomously react against
problematic situations, organizing and solve the problem
themselves. These problematic situations can be caused
either by attackers trying to influence over the func-
tionality of the system elements and by extraordinary
environmental circumstances in the network.

• Auditing: Sensor network should be able to log signifi-
cant events that occur inside the network. This property
is necessary due to the autonomous nature of the nodes,
since users are not controlling their functionality, they are
not able to know about the existence of a certain event
unless the nodes log it.

• Non-repudiation: A node cannot deny sending a mes-
sage it has previously sent. For achieving it, it is necessary
to produce certain ”evidence” in case a dispute arises.
Using the evidence, it is possible to prove that a device
of the network performed a task. This security property
is very relevant in clinical environments, where be able
to prove that a drug has been taken by a patient.

• Privacy and Anonymity: These are very important in
scenarios where the location and identities of the nodes
should be hidden or protected. For example, in clinical
environments where a patient’s node represent to its
patient, therefore it transcends beyond the technological
dimension and affect its social environment, since sensor
networks are used as a surveillance tool to collect data
about the patient’s vital sign. This feature is so important
in clinical environments, that our ongoing work is focused
on include an Identification Management Platform (IdM)
to ensure privacy and anonymity of patients.

III. OVERVIEW OF SECURITY MECHANISM

WSNs are highly constrained from different aspects. These
constrains need to be taken into account in order to protect
WSNs to the attacks and threats presented in Section II.
Remark that these security requirements and the WSN vul-
nerabilities are increased with the apparition of the Internet of
things, which allows the connection of WSNs to the Internet.

Our research is focused in cryptographic primitives, which
are required by the security protocols and mechanisms in order
to integrate the security properties into their operations. These
cryptographic primitives are Symmetric Key Cryptography
(SKC), Public Key Cryptography (PKC), and Hash Functions.

A. Symmetric Key Cryptography (SKC) and Hash Functions

Symmetric Key Cryptography (SKC) provides confidential-
ity and integrity to the communication channel, and requires
that both the origin and destination share the same secu-
rity credential (i.e. secret key), which is utilized for both
encryption and decryption. As a result, any third-party that
does not have such secret key cannot access the information
exchange. The majority of WSNs are based on the IEEE
802.15.4 standard, which offers three levels of security: Hash
Functions, Symmetric Key Cryptography and both [8], [17].

B. Public Key Cryptography (PKC)

Public Key Cryptography (PKC), also known as asymmetric
cryptography, is useful for secure broadcasting and authentica-
tion purposes. It requires of two keys: a key called secret key,
which has to be kept private, and another key named public
key, which is publicly known. Any operation done with the
private key can only be reversed with the public key, and vice
versa. Hash Functions are used to create ”digital fingerprints”
of data. This property can be used to build other cryptographic
primitives like the mentioned Message Authentication Code
(MAC), which provides authenticity and integrity in the mes-
sages. These primitives alone are not enough to protect a
system, since they just provide the confidentiality, integrity,
authentication, and non-repudiation properties. Nevertheless,
without these primitives, it would be nearly impossible to
create secure and functional protocols.

Public Key Cryptography was considered unsuitable for
sensor node platforms, but that assumption was a long time
ago. The approach that made PKC possible and usable in
sensor nodes was Elliptic Curve Cryptography (ECC), which

is based on the algebraic structure of elliptic curves over finite
fields. Some studies has been carried out about RSA in reduce
chips [25], but it was non-viable, this study is going also
to present optimizations for RSA, but mainly is going to be
focused on ECC, since it has smaller requirements both in
computation and memory storage, due to its small key sizes
and its simpler primitives [26].

The related works of the implementation of an efficient
cryptographic algorithm for constrained devices have been
focus on the optimizations of the multiplication operation,
since it is the most expensive operation in RSA and ECC
algorithms. There several implementations of RSA and ECC,
ECC can be over either GF (2m) or GF (p), we have focused
on modular arithmetic since this can be applied for RSA
and ECC, and this has similar nature to the arithmetic of
the micro-controller used in the 6LoWPAN devices. However,
some interesting approaches have been defined for ECC im-
plementations over GF (2m), for example [28] has showed
that field multiplication is faster over GF (2m) than in GF (p)
optimizing multiplications for GF (p), in order to define an
arithmetic of the micro-controller closer to GF (2m) has been
suggested some new hardware implementations [29]. Some
of the most known software implementations over modular
arithmetic are, on one hand, for RSA with assembly code
and instruction set extension on a 8-bit ATmega128 [25],
They presents a hybrid multiplication algorithm exploiting
advantages of operand and product scanning multiplication
algorithm to reduce the number of memory accesses. On other
hand, for ECC are TinyECC [22], [23] and NanoECC [24],
which implement ECC-based signature generation and verifi-
cation (ECDSA), encryption and decryption (ECIES), and key
agreement (ECDH). TinyECC adopted several optimization
techniques such as optimized modular reduction using pseudo-
Mersenne prime, sliding window method, Jacobian coordinate
systems, inline assembly and hybrid multiplication to achieve
computational efficiency. Note that the computational and
memory requirements of these algorithms are not small (e.g.
ECDSA requires 19308 bytes ROM and 1510 bytes RAM for
the MICAz, generating a signature in 2 seconds. and verifying
it in 2.43 seconds), although the implementation of these
primitives is constantly evolving and improving, one of that
news approaches to this challenge is the work presented in
this paper.

The same idea of hardware focused implementations [29]
and exploit specific hardware supported instructions [25] in
order to improve and simplify the multiplication is what we
are presenting in this paper. Specifically, this work proposes
an implementation of multiplication operation for RSA and
ECC based on bit shifting and additions instead of the micro-
processor’s multiplication operation. This approaches results
interesting for microprocessor, which has not hardware support
for multiplication operation such as MSP430, where it is
actually emulated and consequently requires a big amount of
clock cycles, while the bit shifting is supported and it just
needs between 1 and 4 cycles (depends on data is in a register
or in memory).

IV. MATHEMATICAL OPTIMIZATION BASED ON BIT
SHIFTING INSTEAD OF MICROPROCESSOR’S

MULTIPLICATION OPERATION

There is an important literature about the advantages of the
Montgomery’s representation for this calculation, see V-A1.
For that reason, it is used in our solution for both solutions
i.e. based on bit shifting and multiplication operation. RSA
and ECC require two different integer sizes (k). Specifically,
it is considered 1024-bit for RSA, i.e. k = 1024, R = 21024,
and 160-bit for ECC, i.e. k = 160, R = 2160).

In Montgomery representation for representing the numbers
a and b, which are going to be multiplied, we have aR and
bR mod n (n is a prime for ECC, and the multiplication of
two primes in RSA). Addition and subtraction operations with
these numbers do not cause problems since R is common fac-
tor. The problem is coming with the multiplication operation,
when aR and bR is multiplied, we get abR2, but what we need
is abR. Therefore, we have to reduce it by a factor R. The
great advantage of Montgomery representation is just to avoid
that, since Montgomery offers the reduction of the factor R
during multiplication; reaching, in this way, a more effective
multiplication.

Such as mentioned, the multiplication operation is what
consumes the higher part of the time, since it is repeated
thousands of times. For that reason, multiplication operation is
what we will go to optimize and discuss more in detail in the
next subsections, specifically we are going to define two ways
to carry it out: bit shifting and microprocessor’s multiplication
operation.

A. Bit shifting

Let a and b two integers in Montgomery representation.
Then, such as mentioned, we have aR and bR mod n that
assume between 0 and n − 1. They are stored in binary
representation, so that aR =

∑
i ai2

i and bR =
∑
i bi2

i.
We calculate (aR)(bR)R−1 = (ab)R, therefore we need to

carry out k right bit shiftings (with k = 160 or 1024 according
to the case.)

Recall that modulus n is odd (either it is a prime in ECC,
or it is the multiplication of two primes in RSA), thus when
it is divided by 2 mod n, two options are defined: either it is
even number and it can be directly shifted, or it is odd number
and consequently needs to add n, in order to reach 0 in the
least significant bit and be able to shift it.

For the multiplication process is needed a variable to
accumulate the current result, we will call to that variable
P , which digits are P =

∑
i Pi2

i. Each one of the digits
Bi is going to be multiplied by

∑
iAi2

i and divided by 2.
As initially P is 0, if Bi = 0 for some initial values, it can
be ignored. Therefore, this starts directly by the digit in the
position i0, such that Bi0 = 1, and copy the value of Ai in
Pi.

From the position i0, we can find in the next steps: Bi = 0
or 1. On one hand, when Bi = 0, it has to divide P by 2, and
add n when P is odd. On other hand, when Bi = 1, then it
need to add the value of aR to P , before it is divided by 2.

To estimate the time, we will consider that the probability of
finding Bi = 1 or 0 is the same, i.e. 1/2. Therefore, for each
k bits of Bi, when it is 1, it needs to carry out an addition of
k bits (i.e. addition of ai) and a division by 2 of P . And when
it is 0 just only one right bit shifting. Therefore, k divisions
by 2 and k/2 additions. Since, each division by 2 is, such as
mentioned, when it is a shifting and 1/2 times also an addition
of n. The total time is:

k(d+ s/2) + (k/2)s = k(d+ s), where d is the time for k
right bit shiftings, and s is the time for k bits addition.

Since the microprocessor MSP430 offers 16-bits operations,
additions and bits shifting are defined in blocks of 16-bits.
Therefore, we call α to the time for 16-bits additions and
shifting (usually 1-4 CPU cycle for bit shifting and 1-6 cycles
for additions, depends on access to memory and registers).
The final time is:

2αk2/16 = αk2/8.

The program code of the bit shifting algorithm explained is
presented in the Program 1, but since this is critical part of
the program, we have programmed it in assembler code, see
Program 3.

Program 1 Code based on Bit shifting
for(i=0;i<k;i++)

P[i]=0;

for(i=0;i<k-1;i++){
for(shift = 0x01; shift!=0; shift<<=1){
if(b[i] & shift) add(P,a);
if(P[0] & 0x01) add(P,n);

for(j=0;j<k-1;j++){ /*Right bit shifting*/
P[j] >>= 1;
if(P[j+1] & 0x01) P[j] |= 0x80;

}
P[k-1] >>= 1;

}
}

if(isGreaterEqual(P,n))
sub(P,n);

B. Microprocessor’s multiplication operation

Let an instruction from the microprocessor’s set of instruc-
tions to carry out multiplication operation, which operated
2 registers of 16 bits and save the 32 bits of the result
in two registers of 16 bits. For example, this instruction is
simulated in MSP430 chip, which is the microprocessor used
by Tmote Sky for our evaluation, Program 2 presents the
internal operations to support 16-bits x 16-bits multiplication.
We are going to call µ to the time spent by that operation,
and α for the time of 16-bits additions and 16-bits shifting.

Let the next numbers to apply the multiplication aR =∑
j Aj2

16j and bR =
∑
j Bj2

16j . In this case j values are
between 0 and k/16, instead of between 0 and k from Program
1. Therefore, for each multiplication of k bits, we need to carry
out k/16 16-bits multiplications and 2k/16 additions, getting
like result a number equal to k + 16 bits. Therefore, the time
is equal to: (µ+ 2α)k/16.

For each step of the multiplication of aR by the digits of
Bi, since multiplication is carried out in blocks of 16 bits, this

needs to add the result with the previous result i.e. an addition
of (a sum of two numbers k bits and 16 bits, so α(k+1)/16
additions), then this needs to divide it by 216 mod n, we call
δ for the time used for the division by 216.

The total time for each one of the 16 bits blocks (k/16
blocks, Bi) is (µ + 2α)k/16 + α(k + 1)/16 = µk+α(3k+1)

16 ,
and addition δ, i.e. the total time is µk2+α(3k+1)k

256 + kδ
16 .

Division of a number of k+16 bits by 216 mod n is carried
out adding (or subtracting) n until that the result is multiple of
216. If the last digit of n in base 216 is equals to 1 the process
is simple, since the number of times to subtract n is indicated
by the last digit of the number that we want to divide by 216

mod n. Therefore the total time is equal to:

δt =
(µ+3α)k+α

16 .

δt is the ideal time, when we have chosen n such that its
last digit is equal to 1, in order to carry out in a simple way
the division. In a general case we cannot assume the value
of the last digit of n is equal to 1, therefore this estimation
is not realistic. But, Extended Euclidean algorithm can be
used, in order to fix the process pre-calculating the modular
multiplicative inverse of the last digit of n mod 216 and it can
be used with the last digit of p. Therefore we reach the next
time, which is more realistic.

δ = k
16 (µ+ 3α) + 2µ+ 2α.

This can be simplified by assuming that terms that do not
have k are not so relevant for the total time. Therefore δt and δ
are quite similar, in the order of k

16 (µ+3α). Therefore, based
on that expression and reducing terms that do not have k2, the
next total time for microprocessor’s multiplication operation
is defined:

M ' µk2

256 + (µ+3α)k2

256 = (2µ+3α)k2

256 .

Program 2 Code emulated for Multiplication in MSP430 [30]
; EXECUTION TIMES FOR REGISTERS CONTENTS (CYCLES) without CALL:
; MPYU: Unsigned 16 x 16-bit Multiplication
; MACU: Multiplication and Accumulation
; TASK MACU MPYU EXAMPLE
; MINIMUM 132 134 00000h x 00000h = 000000000h
; MEDIUM 148 150 0A5A5h x 05A5Ah = 03A763E02h
; MAXIMUM 164 166 0FFFFh x 0FFFFh = 0FFFE0001h
; UNSIGNED MULTIPLY SUBROUTINE: IROP1 x IROP2L > IRACM/IRACL
;
; USED REGISTERS IROP1, IROP2L, IROP2M, IRACL, IRACM, IRBT
;
MPYU CLR IRACL ; 0 > LSBs RESULT
CLR IRACM ; 0 > MSBs RESULT
; UNSIGNED MULTIPLY AND ACCUMULATE SUBROUTINE:
; (IROP1 x IROP2L) + IRACM|IRACL > IRACM|IRACL
;
MACU CLR IROP2M ; MSBs MULTIPLIER
MOV #1,IRBT ; BIT TEST REGISTER
L$002 BIT IRBT,IROP1 ; TEST ACTUAL BIT
JZ L$01 ; IF 0: DO NOTHING
ADD IROP2L,IRACL ; IF 1: ADD MULTIPLIER TO RESULT
ADDC IROP2M,IRACM
L$01 RLA IROP2L ; MULTIPLIER x 2
RLC IROP2M ;
;
RLA IRBT ; NEXT BIT TO TEST
JNC L$002 ; IF BIT IN CARRY: FINISHED
RET

C. Comparative between bit shifting and microprocessor’s
multiplication operation

The comparative between bit shifting and microprocessor’s
multiplication operation shows us that in a general way bit

shifting is better than microprocessor’s multiplication opera-
tion, when the following equation is true:

αk2

8 < (2µ+3α)k2

256 ⇒ 32α < 2µ+ 3α⇒ 29
2 < µ

α .

In conclusion, when the number of cycles to carry out
microprocessor’s multiplication operation is more than 15
times the cycles to carry out addition or bit shifting, it is
preferable bit shifting solution. Since, MSP430 microproces-
sor’s multiplication operation requires a big amount of clock
cycles (150 cycles in MSP430), while the bit shifting and
additions are supported and it just needs between 1 n 4 cycles
for bit shifting and 1 and 6 cycles for addition, this depends
on the access to registers and memory, i.e. rrcR4, i.e. bit
shifting for registers is just 1 cycle, but rrc0(R1), which is
bit shifting in the memory address with value R1 are 4 cycles,
at the same way for add operation. Therefore, the evaluation
has presented that bit shifting is better than microprocessor’s
multiplication operation with a relation of when its cost is 15
times or less than multiplication i,e, µ < 15α, and MSP430
has a µ/α between 38 and 150.

In addition, other optimizations have been considered,
which are presented in the Section V. Finally, a real evaluation
over Tmote Sky, i.e. MSP430 microprocessor, is carried out
in Section VI.

V. OTHER MATHEMATICAL OPTIMIZATIONS OF SECURITY
MECHANISM BASED ON PKC

In addition to the optimization presented in the previous
section. we are going to define additional optimizations, which
have been highly mentioned and used in the related works.

In both cases, ECC and RSA, we have an Abelian group
G with an operation. In ECC it is used the group of rational
points in a elliptic curve with additive notation and in RSA
the multiplicative group Z∗

n.
The operation in G involves addition, multiplication (for

RSA) and also modular inverses (for ECC). Modular inverses
can be computed using several multiplications and additions.
The most critical part is the integer multiplication, since this is
the most expensive operation. Optimizations made in this part
of the problem will be called Optimizations on Multiplication,
such as the already mentioned in the Section IV.

Abelian groups are Z-modulus over the ring of integers Z,
therefore we have an operation G × Z → G. Given g ∈ G
and e ∈ Z we need to compute g · e (or ge if we are
using multiplicative notation). In both cases e use to be a
big integer. The optimizations made in this part will be called
Optimizations on Powering.

There is a third kind of optimizations that have been
considered, they are the optimizations related to the way we
represent the integers. The usual binary format is not the best
in most of the cases. These optimizations will be considered
in Integer Representations.

A. Integer Representations

We have considered the usual binary representation for
integers, and also the following ones:

1) Montgomery Representation for the bases: Let n be a
positive integer and consider the ring of modular integers Zn.
Two integers a and b are equivalent in Zn if a − b = nt
for some t ∈ Z. There are exactly n different classes in Z,
the elements equivalent to 0, 1, · · · , n − 1. When we make
sums and multiplications over the elements in Zn and the
result is out of the range 0, · · · , n − 1 we use to compute
the element inside this range that it is equivalent to our result.
This operation requires a division by n, that is rather time
consuming. The Montgomery representation is probably the
best one for modular arithmetic. It is very well known and
requires a not very high computational effort.

It is based on the fact that we can use a multiplicative unit R
in Zn and pre-compute the modular inverse R−1. In order to
represent an element a ∈ Zn, we keep the product aR(modn).
The multiplication by R is of course a bijection over the set
Zn (the inverse operation is to multiply by R−1), therefore
we have the same information. But with this representation it
is easier to keep the sums and the products inside the range
0, · · · , n− 1.

This system is useful when we have to make a lot of
operations in modular arithmetic (this is our case) and we
do not need to make Montgomery reductions (going from aR
to a and backwards). This representation is rather usual and
the details can be found in [5].

2) NAF Representation for the exponents: The NAF (non-
adjacent form) representation uses the digits 0, 1 and −1 to
represent an integer. An integer is in NAF representation if
non-zero digits are not adjacent. For example, the number
(1, 0, 0,−1) will be 1 · 23 + (−1) · 20 = 8 − 1 = 7. This
representation reduces the number of multiplications when we
compute ge (or g · e in additive notation). This representation
is well known in cryptography. We have also used some tricks
based on the fact that two non-zero digits cannot be adjacent in
order to encode the there possible values 0, 1 and −1 in binary
format with minimal memory consume. This last optimization
will be called compacted NAF representation.

B. Optimizations on Powering

The following algorithms are used to compute ge (or g · e
in additive notation) when e is written in binary notation e =∑k
i=0 ei2

i. The binary digits ei are used from 0 to k in the
right to left algorithm and from k to 0 in the left to right one.

Right to Left Powering

b = g
result = 1 (neutral element in G)
for i = 0 to k do

if ei equals 1 then
result = groupOperation(result, b)

end if
b = groupOperation(b, b)

end for

Left to Right Powering

result = g

for i = k − 1 to 0 do
result = groupOperation(result, result)
if ei equals 1 then
result = groupOperation(result, g)

end if
end for
Both algorithms are rather similar, but the R-L one needs

one more variable. Remark, that both algorithms can be easily
integrated with NAF representation.

C. Optimizations on Multiplication

We have also considered the next optimizations, but finally
we have applied the solution based on Montgomery with
NAF and L-R powering, such as presented in Table II. This
optimizations has been carried out with bit shifting such as
mentioned in Section IV.

1) Booth: Booth’s multiplication algorithm is a rather faster
alternative to multiply integers. This algorithm check two bits
of the operands and perform different operations on each
alternative 00, 01, 10, 11. After that operations the variable is
shifted. Mathematical details of the algorithm can be found in
different sources, for example [6]. We have also considered a
faster version of the algorithm in which four bits are used.

2) Karatsuba-Ofman: The details of this multiplication
algorithm can be found in [4, Section 4.3.3]. The basic idea
of this algorithm is as follows: x and y are 2k-bits operands,
and suppose x and y are x = x12

k + x0 and y = y12
k + y0.

Then we can multiply x and y making the following half-size
operations x1y1, x0y1 + x1y0, x0y0.

We can apply this idea again to the products xiyj and
reduce again the product to half-size operands. This recursive
approach needs a lot of computational resources and it is not
so effective. We have applied the method once and the results
suggest that the method is not effective in our situation.

3) Barrett: We have mentioned previously that the sums
and multiplications had to be made in Zn, therefore, after
making the product xy we have to compute the equivalent
result inside the range 0, ·, n − 1. The Barrett algorithm is
used to make this reduction. The mathematical details can be
found in [1].

D. Modular Inverses

Given x ∈ Zn, the modular inverse of x is the element
y ∈ Zn such that xy is equivalent to 1 in Zn. This element y
exists and it is unique when gcd(x, n) = 1. We do not need to
compute modular inverses for RSA, but ECC requires compu-
tation of them. We have considered two different algorithms
for that:

1) Powering: Having in mind that xϕ(n) = 1 in Zn (Euler
formula), we know that xϕ(n)−1x = 1, therefore xϕ(n)−1 is the
(unique) modular inverse of x. In ECC we compute inverses
in Zp with p prime, therefore we know that ϕ(p) = p− 1 and
this operation involves just powering x. This algorithm will
have O(log3(p)).

2) Extended Euclid Algorithm: If gcd(x, n) = 1, then we
can find u and v such that xu+yv = 1. These elements u and
v can be computed by Euclid’s Extended Algorithm. We have
used the binary version given in [3, Algorithm 1.3.8] with the
appropriate reductions.

Both algorithms have been compared in [2]. The first one
it a bit slower, but requires less variables than the second
one. Finally, we have applied for our solution Extended
Euclid Algorithm with some adoptions, in order to support
Montgomery representation.

VI. RESULTS AND EVALUATION

The evaluation of the algorithms optimized has been initially
evaluated over the Intel 8051 Simulator Keil from ARM, and
the results have been verified with the cryptographic library
LiDIA [18]. Finally, this has been evaluated over real motes,
specifically over Tmote Sky with the Contiki 2.4 OS [19].

The features and hardware resources of the Tmote Sky are:

• Wireless Transceiver Chipcon CC2420 (includes Intel
8051, 8 bits CPU), based on IEEE 802.15.4 (2.4 GHz)

• Bandwidth of 250 Kbps
• Microcontroller Texas Instrument MSP430 F1611 of 16

bits and 8 MHz (RAM: 10 KB and Flash: 48 KB)
• ADC, DAC, and DMA
• Humidity, temperature and lighting sensors. 16 ports to

support external I/O devices and sensors.
• Low energy consumption. Quick wake-up sleep (<6 µs)
• Hardware support for Symmetric Key Cryptographic,

specifically AES until 128 bits key length.

A. Results for ECC and RSA algorithms in Tmote Sky

The results from the different mathematical optimizations
presented in the Section V for RSA are presented in a ranking
of the different algorithms with respect to memory and speed
are presented in the Table I. At the same way, the results for
ECC are presented in a ranking of the different algorithms
with respect to memory and speed is presented in the Table
II.

TABLE I
RSA RESULTS: LEFT COLUMN PRESENTS ALGORITHMS FROM THE

FASTEST (TOP) TO THE SLOWEST (BOTTOM). RIGHT COLUMN PRESENTS
ALGORITHMS FROM THE LEAST WEIGHT (TOP) TO THE MOST (BOTTOM)

Montgomery + NAF L-R Classic L-R
↑ Montg. + Booth Modif. L-R Classic R-L M
S Montgomery L-R Montgomery L-R E
P NAF L-R Booth L-R M
E Booth Modif. L-R Booth R-L O
E NAF Compact. L-R Booth Modif L-R R
D Classic L-R NAF Compact L-R Y

Booth L-R Montg. + Booth Modif. L-R ↓
Classic R-L NAF L-R
Booth R-L Montgomery + NAF L-R

TABLE II
ECC RESULTS: LEFT COLUMN PRESENTS ALGORITHMS FROM THE

FASTEST (TOP) TO THE SLOWEST (BOTTOM). RIGHT COLUMN PRESENTS
ALGORITHMS FROM THE LEAST WEIGHT (TOP) TO THE MOST (BOTTOM)

Montgomery + NAF L-R Classic L-R
↑ Montg. + Booth Modif. L-R Classic R-L M
S Montgomery L-R Booth L-R E
P Montgomery R-L Booth Modif. L-R M
E NAF Compact. L-R NAF Compact. L-R O
E Booth Modif. L-R Montgomery L-R R
D Montgomery-Kaliski R-L Montgomery R-L Y

Classic L-R Montgomery-Kaliski R-L ↓
Booth L-R Montg. + Booth Modif. L-R
Classic R-L Montgomery + NAF L-R

There is one particular aspect of sensor network security
that is commonly neglected or overlooked: the relationship
between the security requirements, the features of the appli-
cation and its context, and the security mechanisms. Indeed,
the context and the requirements of a specific application
have a great influence on the security mechanisms that should
be used to protect the network [20]. For that reason, the
results are presented as a balance between time and memory
requirements, since depends on our application requirements
and devices, we are able to choose a solution where speed is
optimized or another where memory usage is optimized.

The quickest ECC algorithm is based on Montgomery
+ NAF L-R, such as presented in Table II, this has been
optimized for MSP430 with bit shifting in assembler language
for the Montgomery multiplication for 160 bits. We have
optimized Montgomery multiplication, which is carried out
in 12480 cycles (1,5625 milliseconds in the 8 Mhz MSP430
microprocessor of Tmote Sky). In order to reach this solution,
we have used 10 microprocessor’s registers to keep the 160
bits variable with the partial multiplication results, with this
optimization we have reduced almost the 40% of the total
number of cycles, since rrc operation for bit shifting, and add
operation for addition spend 1 cycle and 3 cycles respectively,
instead of 4 and 6. The Program 3 shows as bit shifting of the
160 bits is carried out in just 10 cycles, and addition in 30
cycles with this optimization. Finally, we have unrolled loops
in order to optimize more the final assembler code.

VII. CONCLUSION

Internet of things, and particularly 6LoWPAN is defining a
new challenge for security, since wireless sensor networks are
being connected to the Internet. Therefore, it is necessary to
provide efficient and usable security mechanisms that could
protect the WSN against attacks. While it was possible to
deploy a secure sensor network based on AES for certain
applications, there are some new challenges that need to be
considered with this extension to the internet. IoT requires a
new scalability level, which can not be satisfied with Symmet-
ric Key Cryptography (SKC). For that reason, it is required
Public Key Cryptography (PKC), it is evaluated and optimized
RSA and ECC algorithms. Finally, it has been evaluated over
MSP430 microprocessor from Tmote Sky.

This evaluation has concluded that ECC is a suitable
solution for Future Internet devices, such as 6LoWPAN

Program 3 Sketch of assembler code for Montgomery’s
multiplication based on bit shifting
//res, where is stored the partial result, is kept in the register since %0 to %9
" mov.w #0,%0 \n\t mov.w #0,%1 \n\t mov.w #0,%2 \n\t mov.w #0,%3 \n\t mov.w #0,%4
mov.w #0,%5 \n\t mov.w #0,%6 \n\t mov.w #0,%7 \n\t mov.w #0,%8 \n\t mov.w #0,%9 \n\t"

//keep in the memory stack the fist operand and the second one divided by 2
" rrc.w 18(%10) \n\t push.w 18(%10) \n\t"

//The same between 18 and 0 in block of 2 bytes (16 bits)
" rrc.w 0(%10) \n\t push.w 0(%10) \n\t"

//We carry out two versions depending on the carry flag (oddity of the second operand).
//Depending on the bits of the first operand we have to repeat several additions
//and bit shifting of the registers where is stored the partial result.

//ADDITION OF 160 BITS IS CARRIED OUT IN 30 CYCLES
".LsA2: add.w 2(r1),%0 \n\t"
" addc.w 4(r1),%1 \n\t"
" addc.w 6(r1),%2 \n\t"
" addc.w 8(r1),%3 \n\t"
" addc.w 10(r1),%4 \n\t"
" addc.w 12(r1),%5 \n\t"
" addc.w 14(r1),%6 \n\t"
" addc.w 16(r1),%7 \n\t"
" addc.w 18(r1),%8 \n\t"
" addc.w 20(r1),%9 \n\t"

//BIT SHIFTING OF 160 BITS IS CARRIED OUT IN 10 CYCLES
" rrc %9 \n\t rrc %8 \n\t rrc %7 \n\t rrc %6 \n\t rrc %5 \n\t rrc %4 \n\t rrc %3 \n\t
rrc %2 \n\t rrc %1 \n\t rrc %0 \n\t"

nodes, since time spent for Montgomery multiplication is just
1,5625 milliseconds.

Ongoing work is focused on assembler implementation
of the modular inverses, in order to define a full
optimized exponentiation to implement ECDSA (for digital
signature), ECIES (for data encryption), and ECDH (for key
establishment). In order to compare our solution with respect
to other current implementations such as TinyECC, which
is the best public implementation of ECC for these kind of
devices.

ACKNOWLEDGMENT

This work has been carried out in frames of, on one hand,
the grants from the Fundación Séneca ”Programa de Ayuda a
los Grupos de Excelencia 04552/GERM/06” and 12006/PI/09,
and on other hand, the project from the Ministry of Science
and Innovation of Spain (MTM2009-11696). Finally, the au-
thors would like to thank the University of Murcia by the
scholarship: Becas/Contrato Predoctorales.

REFERENCES

[1] P.D. Barrett, Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor, Advances
in Cryptology. LNCS, vol. 263, pp 311-323. Springer, 1987.

[2] R.P. Brent, Some integer factorization algorithms using elliptic curves, in
Proc. 9th Australian Computer Science Conference, 1985.

[3] H. Cohen, A Course in Computational Algebraic Number Theory, 3rd ed.
GTM 138, Springer 1996.

[4] D. Knuth, The Art of Computer Programming 2. Seminumerical Algo-
rithms, 3rd ed. Addison-Wesley, 1997.

[5] P. Montgomery, Modular Multiplication Without Trial Division, Math.
Computation, vol. 44, pp. 519–521, 1985.

[6] W. Stallings. Computer Organization and Architecture: Designing for
performance, 5th ed. ISBN 0-13-081294-3. New Jersey: Prentice-Hall,
Inc. 2000.

[7] A. Sleman, and R. Moeller. Integration of Wireless Sensor Network
Services into other Home and Industrial networks; using Device Profile
for Web Services (DPWS), Information and Communication Technologies:
From Theory to Applications 2008, pp. 1-5, 2008.

[8] 802.15.4-2003, IEEE Standard, Wireless medium access control and
physical layer specifications for low-rate wireless personal area networks,
May 2003.

[9] J.W. Hui, and D.E. Culler, Extending IP to Low-Power, Wireless Personal
Area Networks, IEEE Internet Computing, Vol. 12, Iss. 4, pp.37-45, 2008.

[10] N. Kushalnagar, G. Montenegro, J. Hui, and D. Culler, 6LoWPAN:
Transmission of IPv6 Packets over IEEE 802.15.4 Networks, RFC 4944,
September 2007.

[11] Xin Ma and Wei Luo, The Analysis of 6LowPAN Technology, Compu-
tational Intelligence and Industrial Application. PACIIA ’08. Volume 1,
pp. 963-966, 2008,

[12] A.J. Jara, R.M. Silva, J. Sa Silva, M.A. Zamora, and A.F.G. Skarmeta,
Mobile IPv6 over Wireless Sensor Networks (6LoWPAN) Issues and
feasibility. European Wireless Sensor Networks, 2010.

[13] A.J. Jara, A.J., M.A. Zamora, and A.F.G. Skarmeta,HWSN6: Hospital
Wireless Sensor Networks based on 6LoWPAN Technology: Mobility Fault
Tolerance Management. IEEE International Conference on Computational
Science and Engineering, 2009.

[14] J. Granjal, R. Silva, E. Monteiro, J. Sa Silva, and F. Boavida. Why is
IPSec a viable option for wireless sensor networks, Wireless and Sensor
Networks Security, 2008.

[15] H. Mukhtar, Kim Kang-Myo, S.A. Chaudhry, A.H. Akbar, Kim Ki-H,
and S-W Y., LNMP-Management architecture for 6LoWPAN, Network
Operations and Management Symposium, 2008.

[16] Z. Shelby, P. Thurbert, J. Hui, and S. Chakrabarti, C. Bormann and
E. Nordmark, 6LoWPAN Neighbor Discovery, draft-ietf-6lowpan-nd-10,
Internet-Draft IETF, work in progress, 2010.

[17] Carolina Tripp Barba. Impacto de mecanismos de seguridad en el
funcionamiento de sensores IEEE 802.15.4, In Spanish, 2008.

[18] S. Hamdy, LiDIA. A library for computational number theory. Reference
Manual. Edition 2.1.1, 2004.

[19] A. Dunkels, O. sterlind. Contiki Programming Course: Hands-On Ses-
sion Notes. Swedish Institute of Computer Science, 2008.

[20] J. Lopez, R. Roman, and C. Alcaraz. Analysis of Security Threats, Re-
quirements, Technologies and Standards in Wireless Sensor Networks, In
Foundations of Security Analysis and Design V: FOSAD 2007/2008/2009
Tutorial Lectures, LNCS, vol. 5705. Springer-Verlag, 289-338. 2009.

[21] R. Roman, J. Lopez. Integrating Wireless Sensor Networks and the
Internet: A Security Analysis. Internet Research 19(2), 246-259 (2009)

[22] A. Liu, P. Ning. TinyECC: A Configurable Library for Elliptic Curve
Cryptography in Wireless Sensor Networks. 7th International Conference
on Information Processing in Sensor Networks, SPOTS Track, USA, pp.
245-256, 2008.

[23] S.C. Seo, D.-G. Han, H.C. Kim, S. Hong, TinyECCK: Efficient Elliptic
Curve Cryptography Implementation over GF(2m) on 8-bit MICAz Mote.
IEICE Transactions on Info and Systems E91-D(5), 1338-1347, 2008.

[24] P. Szczechowiak, L.B Oliveira, M. Scott, M. Collier, R. Dahab. Na-
noECC: Testing the Limits of Elliptic Curve Crytography in Sensor
Networks. Dublin City University, Ireland; UNICAMP, Brasil, 2008.

[25] N. Gura, A. Patel, A. Wander, H. Eberle, S.C. Shantz. Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs. Workshop on
Cryptographic Hardware and Embedded Systems, 2004.

[26] Y. Hitchcock, E. Dawson, A. Clark, P. Montague. Implementing an effi-
cient elliptic curve cryptosystem over GF(p) on a smart card. ANZIAM
Journal, 2003.

[27] J. Ramio Aguirre. Seguridad Informatica y Criptografia. In Spanish.
Universidad Politecnica, Departamento de Publicaciones, 2006.

[28] Leif Uhsadel, Axel Poschmann, and Christof Paar. Enabling Full-Size
Public-Key Algorithms on 8-bit Sensor Nodes. European Workshop on
Security and Privacy in Ad hoc and Sensor Networks, 2007.

[29] A. Hodjat, L. Batina, D. Hwang, I. Verbauwhede, HW/SW Co-Design
of a Hyperelliptic Curve Cryptosystem using a Microcode Instruction Set
Coprocessor Integration, VLSI Journal 40(1), pp.45-51, 2007.

[30] Lutz Bierl, MSP430 Family Mixed-Signal Microcontroller Application
Reports, http://focus.ti.com.cn/cn/lit/an/slaa024/slaa024.pdf, pp. 478-480,
2000.

