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Abstract
The Smart Grid offers many benefits due to the bidirectional communication

between the users and the utility company, which makes it possible to perform a
fine-grain consumption metering. This can be used for Demand Response pur-
poses with the generation and delivery of electricity in real time. It is essential to
rapidly anticipate high peaks of demand or potential attacks, so as to avoid power
outages and denial of service, while effectively supplying consumption areas. In
this paper, we propose a novel architecture where cloud computing resources are
leveraged (and tested in practice) to enable, on the one hand, the consumption
prediction through time series forecasting, as well as load balancing to uniformly
distribute the demand over a set of available generators. On the other hand, it also
allows the detection of connectivity losses and intrusions within the control net-
work by using controllability concepts.
Keywords: Smart Grid, control systems, structural controllability, power domi-
nance, prediction, load balancing, fault detection, resilience.

1 Introduction
The traditional architecture of the electricity grid has evolved in great measure since its
original conception where the production and distribution of energy were supervised
by a centralized system. With the introduction of Internet communication technologies
in this scheme, there has been a shift towards a more interactive, interconnected and
dynamic grid model of the 21st century, known as the Smart Grid. Its main benefit
is the two-way flow of information, through which the user (i.e., by means of a smart
meter installed in the household) and the utility company can communicate, making
it possible to perform a fine-grain consumption metering, whose information is acces-
sible to both of them [1]. This allows the user to participate in programs that aim to
reduce electricity use when energy prices rise, and also allows him/her to sell the elec-
tricity generated at home (e.g., using solar panels). The utility company can also take
advantage of this technology to improve Demand Response, by managing the genera-
tion and delivery of electricity in real time, so that grid operators can rapidly anticipate
high peaks of demand and avoid power outages.

This metering model is put into practice through the Advanced Metering Infrastruc-
ture (AMI). This comprises all the elements that collect and transfer the consumption
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data measured in the home domain through many aggregation points until it reaches the
utility provider end, where the information is analyzed for billing and control purposes,
by means of the so-called Meter Data Management Systems (MDMS).

This data acquisition process requires both industrial and information technology
equipment. On the one hand, the industrial network is conformed by the SCADA
(Supervisory Control And Data Acquisition) systems that are leveraged to remotely
access the devices that sense the energy flow of many consumers in real time. These
include, for example, the RTUs (Remote Terminal Units), and PLCs (Programmable
Logic Controllers), that are present in the substations spread over the WAN (Wide Area
Network or the Smart Grid). On the other hand, support for the MDMS procedures
by interconnecting these industrial assets with external networks (e.g., Internet) and
innovative technologies (e.g., cloud computing) to undergo further data analysis and
support Demand Response.

This growing interconnection of SCADA systems (which traditionally work in iso-
lation) has increased the number of cyber-security threats in this context [2], favor-
ing the appearance of sophisticated attacks which aim to stealthily compromise nodes
within the control network over a long period of time. The presence of these attacks
can damage the infrastructure and jeopardize the availability of resources, which trans-
lates into the inability to hold the power supply and potential blackouts in the grid [3].
By the same token, safety measures must also be introduced to preserve the availabil-
ity of the power supply against high peaks of demand (that may also be provoked on
purpose), hence avoiding outages.

For the aforementioned reasons, we present the design and implementation of (1)
a defense mechanism to detect topological changes in the industrial network arising
as a consequence of these attacks, using collaborative decision algorithms and graph
theory. In addition to ensuring security, here we also address the safety of the Smart
Grid resources by implementing (2) a load balancing model that permits a successful
energy supply for the entire grid taking into consideration the prediction of future con-
sumption. Both safety and security measures are included in a novel architecture to be
easily integrated in the current Smart Grid model.

The remainder of this paper is organized as follows: Section 2 presents the afore-
mentioned architecture and all the networks and components needed for the safety
security mechanisms. In Section 3 the load balancing and consumption prediction al-
gorithm are defined. The respective fault detection and control protection mechanisms
are explained in Section 4. The experimental tests with the security and safety tech-
niques are discussed in Section 5. Finally, some conclusions are given in Section 6.

2 Architecture and initial assumptions

2.1 Five networks-based architecture, network of networks
The architecture of our approach is presented in this section and has two main purposes:
(i) to predict high electricity peaks in comparison with the recent demand to uniformly
distribute the energy supply to the consumption areas, and (ii) protect the control from
external attacks. To achieve both goals, and therefore, the contributions of the work
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presented here, an architecture of two main networks is modeled: an energy network
(Ne) and a communication network (Nc). These two networks contain five independent
but strongly interconnected subnetworks, which are shown in Fig. 1. Each subnetwork
contains a set of Internet-enabled nodes (e.g., meter concentrators, gateways, RTUs,
etc.) capable of interconnecting by itself with other subnetworks. As for the energy
network, the following subnetworks have been defined:

Ne
1 illustrates the customer’s premises, subdivided into several power distribution areas

or communities. In this case, each area characterizes a sub-part of a population,
demanding energy according to its needs, requirements and life quality.

Ne
2 represents the spinal column of the entire energy generation and distribution in-

frastructure, which remains in a fixed and static deployment and configuration
state.

In practice, electricity generators in Ne
2 are interconnected in the power grid with

the consumption areas in Ne
1 through rigid transmission and distribution lines. Besides

these energy subnetworks, we also deal with communication subnetworks that firstly
transfer the energy usage data from the consumers to the provider and secondly transmit
the control commands from the utility to adjust the generators according to the demand.
In this sense, we define:

Nc
1 represents the set of smart meters that collect the measured energy usage data in

the home domain.

Nc
2 corresponds to the cloud computing-based communication system to centralize all

the computation and the forecasting process in nodes with high capacity to esti-
mate new and nearby states, such as servers or proxies. In this way, it is possible
to decouple the control processes and the demand management from additional
computational processes that are required for the prediction.

Nc
3 embodies all the control and automation processes, required to protect the most

critical underlying systems, such energy distribution and transmission substa-
tions. In this context, different cyber-physical elements are characterized such
as acquisition and supervision elements working as driver nodes (e.g. RTUs,
PLCs or gateways), and observation and control elements serving as sensory and
reactive devices (e.g. sensors and actuators).

In real world, cloud resources belonging to Nc
2 aggregate the information received

from the users (via their smart meters embedded in Nc
1) and compute an estimation

of future consumption. According to this forecast, the generators of the production
system are programmed by means of the actuators placed in the Nc

3 subnetwork, which
finally provide the electricity supply back to the consumption areas.

However, the conceptual construction of each of these subnetworks further entails
working with aspects associated with graph theory and other concepts, related to struc-
tural controllability [4] and dominance [5]. For example, components of the subnet-
work Ne

1 and Nc
2 are modeled on the basis of a random pattern, where the greater part
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Figure 1. Five subnetworks-based architecture

of Ne
1 is permanently linked to Ne

2 elements (due to the fixed deployment of the energy
distribution infrastructure) whereas a few nodes of Nc

2 are permanently connected to
elements of each area in Nc

1 and driver nodes in Nc
3. Nc

3, to the contrary, follow specific
network constructions centered on power-law distributions of type y ∝ x−α . This con-
straint is due to the structural features of real control infrastructures, which are based
on multiple interconnected substations with a few industrial nodes (e.g, RTUs, sen-
sors, actuators). This conceptually follows a hierarchical network architecture based
on nodes with high degree (i.e., the number of edges incident on the node) connected
to nodes with lower degree; similar characteristics to the power-law distributions as
stated in [6] and [7]. The authors in [7], additionally, justify why other models are not
applicable for power grids, such as the small-world distributions. According to them,
the conditions given by, for example, Watts and Strogatz [8] are not satisfied by Power
Grid samples due to physical and economic issues.

Ne
2, in turn, is based on specific grid distributions of type IEEE 118-bus or IEEE

300-bus as specified in [9], where we extract a subpart of these models to lead the
practical case studies and the experimental results presented later.

2.2 Background and preliminary assumptions
To formalize the problem, we characterize two graphs, one related to Ne and another
one to Nc. For Ne, let G e(V e,Ee) be a directed bipartite graph, such that V e is the union
of the nodes in Ne

1 and Ne
2, and the set of n customer areas in Ne

1 are connected to m grid
generators of Ne

2 through grid connections in Ee. For the resilience and load balancing,
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we assume that each area is associated with δ generators, such that δ ≥ 2. Within Nc,
we consider Nc

3 to analyze the adversarial influence on the operational processes. Let
G c

3 (V
c
3 ,E

c
3) be a directed graph, containing the minimum set of driver nodes (referred

to here as DN) capable of injecting control signals into the rest of the elements in V c
3 ,

also denoted here as the set of observed nodes (the set O), such that DN and O ⊆ V c
3 ,

all of them connected through communication links in Ec
3 .

Under these conditions, several threat assumptions should be considered during the
modeling and simulation of study cases. Firstly, attacks to be analyzed in this paper
are concentrated in G e(V e,Ee) and G c

3 (V
c
3 ,E

c
3), where the adversarial model follows

a weak approach, in which it is also assumed the attacker has high mobility in both
subnetworks (to perform attacks against the power supply and the control network, re-
spectively). The threats can be multiple and varied, where the adversary may target β

nodes or edges, and depending on the network, the interests may be very different. An
attack in Ne

1 may, for example, focus on producing concurrently anomalous deviations
in the real demand and potentially overloading the power grid, misusing the energy
during peak times. Contrarily, an attack in G c

3 (V
c
3 ,E

c
3) may mean the constant remov-

ing of a few random communication links in specific nodes, simulating a denial of
service. In this case, the attackers’ goal would be to alter the structural controllability
to strategically unprotect the control itself and the functionality of Ne

2.
Given this and the interconnected nature of the electrical systems and the technolo-

gies for the control and automation in real time, two independent, but narrowly related,
approaches are presented in this paper. These are intended to protect the following: (1)
the processes of production and distribution of energy and the (2) the control processes
in response to unexpected changes which may also have a (mild, severe or irreparable)
rebound effect on the dependent subnetworks (e.g., outages in Ne

1, overloading in Ne
2)

[10].

3 Consumption prediction and load balancing
Taking into account the aforementioned architecture, the first task required for the
cloud infrastructure in Nc

2 is the ability to provide load balancing support to the gen-
erators according to the demand, for an effective electricity supply. Specifically, the
main concern is the anticipation of upcoming peaks of demand, which could also be
caused on purpose to cause blackouts in certain areas of the grid. By possessing this
knowledge in advance it is possible to rapidly distribute the existing demand, at a given
moment, among all the generators available in the grid (located in Ne

2), so that the af-
fected consumption areas can keep receiving the requested energy and the continuity
of the service is ensured.

In order to test the proposed load balancing algorithm in practical terms, it is desir-
able to firstly devise a way to simulate the generation of consumption data in real time.
We intend to imitate the demand response under normal conditions and in the presence
of anomalies (by introducing eventual outages in the data), with the aim of performing
predictions that serve as input for the load distribution. This way, we can check the
effectiveness of the algorithm against peaks and adverse conditions in a timely manner.
For the sake of veracity when designing the generation of the bulk data that is used to

5



Figure 2. Hourly load values of Spain in 2015 [11]

check the accuracy of predictions, we have based our work on the datasets provided by
the European Network of Transmission System Operators for Electricity (ENTSO-E)
[11]. This organization represents 43 electricity transmission system operators (TSOs)
from 36 countries across Europe, and provides hourly load values of all those countries
at monthly intervals. Specifically, we have designed a custom dataset comprising all
the hourly consumption values (in MW) of Spain from 2015, the last year for which
data is available. If we show all these samples in a window of 24 hours, we obtain the
graph in Fig. 2.

As we can see in the figure, all the daily consumption values over the 365 days are
plotted, resulting in a curve where most of the electricity demand is concentrated in the
evening and decreases during the night. Based on this information, we use the actual
data to define a mathematical function (henceforth the F function) that automatically
generates consumption values indefinitely. For that, we perform a non-linear regression
using the Gauss-Newton algorithm that finds a function of the type y = Asin(Bx +
C)+D that conforms to a set of data points (xi,yi). For the sake of clarity and the
purpose of showing the efficiency of the prediction and load balancing method, we
assume that the resulting consumption value only depends on the day of the week
and the time of the day at which we want to predict the usage value (as independent
variables of the function). Additionally, the month could be considered to analyze the
influence of seasons. However, to provide a degree of randomness in the data and avoid
returning the same value for a given set of input arguments (i.e., day of the week and
hour), we consider adding certain deviations, whose value is arbitrarily chosen from
a uniform distribution U(−λ ,λ ), where λ represents the maximum divergence value.
In addition, we have included the possibility of experiencing a peak of consumption
(i.e., a considerable increase in certain values) under a probability γ . We must also
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mention that the original electricity values from the datasets have been divided by 100
to represent the conceptual consumption of a single area or province in Spain. By
doing this, the demand of multiple consumption areas over the grid is simulated, which
is accomplished through the execution of the aforementioned F function, in parallel, for
several instances. Apart from this function to simulate the consumption, we must find
a way to predict future values based on previous behavior. Altogether, this information
will serve as input for the load balancing algorithm executed in the Nc

2 systems, that
finally is responsible for the prevision of the energy supply for all areas within the grid.

In this paper, the prediction of the energy usage between neighborhoods is based
on time series forecasting. Contrary to traditional machine learning methods, which
also work with multiple datasets but treat all the observations equally, time series adds
an explicit order dependence to all of them: the time dimension. This gives higher
importance to the last observations rather than all data available, which is valuable for
prediction. In addition, the analysis of time series can also determine seasonal patterns,
trends or the relationship with external factors. In our case, the aim is to forecast
future values of a time series, that is, the one described by the consumption curve.
Specifically, we use the statistical model ARIMA, which stands for AutoRegressive
Integrated Moving Average and counts on three different components, expressed as
ARIMA(p,d,q):

• Autoregression (AR): use of a dependent relationship between an observation
and a number of lagged observations, represented by the p parameter.

• Integrated (I): in order to make the time series stationary, it differentiates be-
tween raw observations (e.g. subtracting an observation from an observation at
the previous time step). The number of times that the observations are differen-
tiated is represented by d.

• Moving Average (MA): use of a dependency between an observation and a
residual error from a moving average model. The size of the moving average
window is represented by q.

These parameters (p,d,q) are characterized according to the general ARIMA model:

Yt =−(∆dYt −Yt)+φ0 +Σ
p
i=1φi∆

dYt−i−Σ
q
i=1θiεt−i + εt (1)

where φ1, ...,φp are the parameters of the autoregressive part of the model and
θ1, ...,θq belong to the MA, and the rest of parameters are part of the integration filter.
Lastly, ε adds an error margin. The parametrization and accuracy of the ARIMA model
for our purposes are discussed later, specifically in Section 5. The result of applying
this model provides a set of future energy readings, taking into account the last con-
sumption reports. As explained, once we have this information, the last step for load
balancing consists in uniformly distributing the available electricity supplied by the
generation resources in the grid among all the consumption areas at a given moment
(which is represented with the graph G e(V e,Ee)), taking into account the forecasted
value of the amount of requested energy by each of these areas.

In more detail, for the design of the load balancing algorithm, we have the following
constraints: let us assume a set of generators G of Ne

2 that supply electricity for a set of
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areas A. Each generator i has a maximum load denoted by gi, and each area j demands
a j units of energy, having 1≤ i≤ |G| and 1≤ j ≤ |A|. As initial conditions, we accept
that:

• C1: there does not exist any area j whose a j is higher than any gi, for all i ∈ G.
This ensures that every area can be supplied by at least one generator.

• C2: the sum of electricity requested by all the areas does not exceed the sum of

electricity supplied by the generators; formally, ∑
|A|
j=1 a j ≤ ∑

|G|
i=1 gi. This ensures

that all areas can be provided with the requested energy.

Therefore, what we want to find is a relationship R ⊆ A x G between areas and gen-
erators, such that each area is assigned with a generator and the sum of electricity
requested by the areas associated with a generator, does not exceed its capacity. This
can be modeled as a search algorithm, since we explore a set of candidate solutions in
the form of a tree, beginning with the initial one (an area is assigned to a generator)
and gradually adding associations in the search for a valid solution, which is when all
areas are assigned with a generator and C1 and C2 are consistently satisfied.

More specifically, we have designed a novel algorithm that makes use of back-
tracking, which is widely used for constraint satisfaction problems [12]. It incremen-
tally builds candidates in the solution, and discards each partial candidate as soon as it
determines that it does not comply with the proposed conditions, which makes it im-
possible for the candidate to be completed as a valid solution. The resultant technique
is explained in Algorithm 1.

Algorithm 1 Load Balancing (A, G)
output (R = {(a j ,gi)} where 1≤ i≤ |G| and 1≤ j ≤ |A|)
R←{}
R← SOLVELOADBALANCING(A,G,R)

function SOLVELOADBALANCING(A,G,R)
if |R|= |A| then

Found← True return Ra

else
Found← False
j← 1
while not Found and area a j not assigned and j ≤ |A| do

i← 1
while not Found and i≤ |G| do

if energy assigned to generator i+a j ≤ gi then
R′← R

⋃
(a j ,gi)

SOLVELOADBALANCING(A,G,R’)
end if
i← i+1

end while
j← j+1

end while
end if

end function

aA solution where an assignation has been found

In this case, a partial candidate represents a relationship R where not all areas are
assigned to a generator. As described, the algorithm begins by assigning one random
area to one random generator, and keeps iterating in the search for a valid solution,
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assigning new areas to generators if their capacity still allows it and recursively calling
the function (which is modeled by the inner loop of the algorithm). Otherwise, the par-
tial candidate is discarded and another area is assigned in the first loop of the algorithm.
Thus, the Found variable finally indicates whether or not there is a feasible relationship
between areas and generators that successfully distributes the energy, complying with
C1 and C2 conditions.

4 Fault detection and control protection
Together with the prediction and load balancing algorithm that ensures the safety of the
power supply infrastructure, the other task required for the resilient architecture con-
sists in the security of the control elements belonging to Nc

3, represented with the graph
G c

3 (V
c
3 ,E

c
3). We aim to secure the structural controllability domain by developing a dis-

tributed decision algorithm that enables us to detect subtle changes in the underlying
network, that may be the result of an stealth attack. If we assume a set of finite agents
uniformly distributed over the industrial network (named driver nodes in Section 2),
it is possible to execute cooperative algorithms that allow them to accurately identify
what parts of the topology have suffered changes, which is determined by exchanging
information about their surroundings with each other. This information can be used to
deploy effective recovery techniques to guarantee the continuity of the service.

Original network

1

5

32

OR2 (Power 
Dominating Set)

OR1 (Dominating 
Set)

4

1

5

32 4

1

5

32 4

Figure 3. Observation rules for the election of the driver nodes

The aforementioned driver nodes (DN ∈V c
3 ) are selected according to the following

two rules [13], which are represented in Figure 3. Note that although these two rules
are treated as observation rules, we apply them here to the dual problem related to
controllability:

OR1 A driver node, nd in DN, observes itself and all its neighbors, which conforms the
DOMINATING SET of nodes. This implies that every node not in DN is adjacent
to at least one member of DN.

OR2 If a driver node, nd in DN, of degree d ≥ 2, is adjacent to d− 1 driver nodes,
then the remaining node v in O becomes driver node as well, such that DN ←−
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DN ∪ {v} and O←− O \ {v}. Thus, the set of driver nodes provided by OR2
includes the fulfilment of OR1, which conforms the POWER DOMINATING SET.
It means that every edge in Ec

3 is adjacent to at least one member of DN.

Specifically, we have considered that the set of driver nodes fulfills OR1 and OR2
conditions. The detection algorithm between these agents is a light modification of
the opinion dynamics algorithm described in [14], processed by each driver node nd
in G c

3 (V
c
3 ,E

c
3) in discrete time. This approach creates a fragmentation of the affected

zones within the network once the agents share information about their surrounding
topology.

For the computation of opinion dynamics it is necessary to define a matrix W
of size n x n (with n = |V c

3 |) holding the weights that represent the confidence be-
tween the agents’ opinions. Each agent assigns a weight to the rest of agents in its
surroundings (particularly those nodes sharing a communication link) based on the
closeness between their opinions. Altogether, the vector xnd(t) holds the opinion of
each driver node such that it is updated by xnd(t + 1) = W (t,xnd(t))xnd(t), where t
refers to another iteration of the algorithm. The logic of this equation is equal to
xnd(t + 1) = wi1xnd1(t)+wi2xnd2(t)+ · · ·+winxndn(t) such that wi j = 1. Each opin-
ion is originally calculated according to the new state of the network with respect to
the original topology, which is computed with the difference in the node betweeness
centrality:

BC(v) = ∑
s,t∈V

δ (s, t | v)
δ (s, t)

(2)

where δ (s, t) represents the shortest (s,t)-paths (with s 6= v 6= t) and δ (s, t | e) the
paths passing through the node v. This way of representing structural behaviors in-
cludes the way to characterize the principal control loads in Nc

3 [15], assuming that the
main network control dynamics flow through the shortest paths. Therefore, any topo-
logical variation impacts on BC and subsequently on the new upgrading of xnd(t + 1)
in time t + 1. Once we execute the opinion dynamics with t tending to infinity (i.e.,
a high number of steps), it is possible to visualize the consensus between clusters of
agents about topological changes on different parts of the network. Opinions' 1 mark
topological changes within Nc

3 that are generally located in the surroundings of those
local driver nodes that detect the deviation. This also means that a persistent, yet subtle
change, over time, with values close to or exceeding 0.5 can mean the approximation
of a structural change.

In order to prove the effectiveness when detecting topological changes, we must
simulate the action of a stealth attack, taking its nature into consideration. Specifically,
these mutations appear as a consequence of the lateral movements taken to find new
victim nodes and hence gain influence within the network. These attacks have to be
planned strategically instead of leading arbitrary attacks, where the target must be fo-
cused on the control and its dynamics as stated in [16]. Based on the general attack
behavior described in that paper, we have defined three different attack models:

STG1 : the attacker focuses on an arbitrarily chosen node within the network and per-
forms a change on any of its adjacent edges, to subsequently move to a neighbor
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node in a random way.

STG2 : the threat is concentrated on those driver hubs with the highest degree d+ and
d−, where the attack aims to randomly remove a few edges.

STG3 : the adversary is able to attack the node with the highest influence over the
control by simply observing the traffic and its bandwidth. Through graph theory,
this representation is possible through the highest edge betweeness centrality of
the neighborhood as specified in [16].

Taking into account these three threats, Algorithm 2 outlines the life cycle described
by a stealth intrusion like this. It takes the original network described with G c

3 (V
c
3 ,E

c
3)

and performs a succession of individual attacks against the edges Ec
3 (i.e., either the ad-

dition or removal of incoming or outcoming edges), resulting in the modified network
represented with G ′3(V

c
3 ,E

′
3). After each edge modification, the attacker propagates to

an adjacent node in accordance with one of the strategies presented before. At this
point, the decision dynamics algorithm can be executed to detect the portions of the
network that are affected by the attack.

Algorithm 2 Stealth attacks life cycle
output: G ′3 representing the resulting matrix M
local: G c

3 (V
c
3 ,E

c
3),numO f Attacks,ST Gx

attackedNode← random vi ∈V c
3 ; G ′3 ← G c

3

for i:=1 to numO f Attacks step 1 do
attack← randomAttack over attackedNode (edge addition or removal)
update G ′3 based on attack
if ST Gx = 1 then

attackedNode← random vi ∈V c
3

else if ST Gx = 2 then
attackedNode← NEIGHBOURWITHHIGHESTDEGREE(M,attackedNode)

else if ST Gx = 3 then
attackedNode← NEIGHBOURWITHHIGHESTBETWEENESS(M,attackedNode)

end if
end for

5 Experimental results and discussions
After successfully designing mechanisms to firstly ensure the safety of the grid and
also the security of the control elements involved, our aim is to test these services in
practice.

To start with, we have to implement the F function in charge of generating the
consumption plot that in conjunction with the information provided by the prediction
process, serves as input to the load balancing algorithm. As described in Section 3,
we have leveraged the annual consumption dataset in Spain as of 2015 to adjust a
nonlinear correlation of the data to create the F function. This function simulates the
consumption for a specified hour and a dayO f T heWeek, over which we have also
added some extent of randomness λ (here we assume λ = 15) and a potential peak (a
value of 50 has been considered) in the energy usage under a given probability γ . The
result is the following expression:
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Figure 4. Weekly consumption generated by F function

F = 100∗ cos(hour/3.82+π/3)+100
−8∗dayO f T heWeek+λ + peak

(3)

Where the output value is expressed in MW, and holds the value of consumption for
certain regions within the grid. For instance, Fig. 4 shows the result of executing the F
function for an entire week (i.e., showing the evolution over its 168 hours), with a peak
probability of 5%. Taking a close look, we can rapidly see the two peaks produced on
Monday and Friday at night. It is also clear that the overall progression evolves towards
a lower consumption as the weekend approaches.

Once we have modeled the F function and we are able to successively generate
consumption values over a time period, we move on to parametrize the ARIMA sta-
tistical model so as to treat the consumption output as a time series and perform the
forecasting. In order to find the optimal value for the p, d, and q parameters, it is neces-
sary to follow a formal methodology that estimates each one by examining the AR or
MA behavior of the series and testing with initial values to subsequently analyze how
the model fits the original data [17]. For this purpose, the Simple and Partial Autocor-
relation functions (AFC and PACF, respectively) are used. Once the appropriateness of
the model has been compared, its residual errors are checked with the Akaike Informa-
tion Critera (AIC). For our particular case of forecasting the consumption time series,
we have automated this process through the R forecast package [18], which enables
the estimation of its coefficients and also gives a ratio of likelihood. For example, if we
gather the consumption values of ten days, it determines that the ARIMA(3,0,1) model
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Figure 6. Load balancing for the two proposed systems

is suitable to fit the information, the value of which is computed as follows (taking into
account Eq.1):

Yt = a1Yt−1 +a2Yt−2 +a3Yt−3 +b1εt−1 + εt (4)

After defining the model, it is possible to perform the prediction of upcoming days.
Specifically, Fig. 5 represents the forecast of two more days after a given period of time,
which shows the accuracy of the ARIMA when predicting the consumption curve, that
follows the expected progression.

Once we have the information about the future status of the grid at our disposal, we
are in a position to execute the load balancing algorithm that uniformly distributes the
electricity demand among all the generators available. Specifically, the energy usage
prediction for all the individual areas spread over the Smart Grid provide sufficient in-
put to the utility to carry out Demand Response. Recalling the concepts of the proposed
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Figure 7. Opinion dynamics after 50 attacks

architecture previously introduced in Section 2, Ne
2 represents the energy distribution

infrastructure, composed by the generators and substations that supply the electricity to
the consumption points (e.g., neighborhoods and electric vehicle charge points). These
assets are interconnected following the network described by the graph G e(V e,Ee),
where we assume there are θ areas demanding energy to δ generators.

In the interest of veracity and taking into account that the aforementioned network
remains rigid in its topology and configuration state, we have considered the IEEE-14
and IEEE-57 bus systems to carry out simulations based on a real-grid test case [19].
Both of them consist of a simple approximation of the American Electric Power sys-
tem as of the early 1960s. The first system has 11 loads (assumed to be the areas of
consumption for our purposes) connected to 5 generators, whereas the second model
has 7 generators and 42 loads. A test case has been defined for each one, with as many
areas (θ ) and generators (δ ) as each system respectively defines. We have supposed
that every generator i in the G set has a maximum load gi that is randomly selected
in a defined interval, and each area j demands a j units of energy whose value is, at
most, the maximum value of capacity for a single generator. Taking these parameters
into consideration, Fig. 6 shows the simulation of the load balancing algorithm for the
IEEE-14 and IEEE-57 systems, where we can see how the consumption areas are ac-
commodated to the available generators. To simplify, we have considered a maximum
of capacity per generator of 10MW and 15MW, respectively.

So far, we have put into practice the mechanism that preserves the availability of
the AMI infrastructure in its safety dimension. As for security, we now show the effec-
tiveness of the intrusion detection technique based on opinion dynamics. For this, we
have randomly created a network of a power-law distribution composed by 100 nodes,
where we have conducted a set of 50 topological attacks as described in Algorithm 2.
If we run the opinion dynamics algorithm over the set of 70 agents (which are driver
nodes of G c

3 ), we can check how the opinions evolve to reach a consensus and create
different clusters within the network. More specifically, Fig. 7 shows how the total
number of agents of the network are divided into substantial sets depending on the
degree of change, for the three attack strategies that we define in Section 4.

In these plots, each line represents the change in the opinion of the corresponding
agent when the algorithm is executed over 50 steps (t = 50 in the opinion dynamics al-
gorithm). Altogether, the presence of big clusters of opinions mean a confident consen-
sus of agents about a change experienced in a particular area, whose level of criticality
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is higher as it approaches 1. This is particularly evident in the STG3 test case, where
most of the agents agree on a topological attack in a specific part of the network, with
approximately 60% of change. This behavior occurs due to the attack model chosen:
the attack in STG3 always propagates to nodes with higher influence on the control
(i.e., a higher betweeness centrality, this is, the driver nodes), which makes it easier
for the agents to locate the subtle changes (and is also the most realistic pattern, since
the attacker commonly aims to gain the control of the network). This result is some-
what similar to STG2, because it is expected that those nodes with a higher degree are
precisely the ones that have greater hierarchy over the network. However, since STG1
focuses on propagating the attack in a random way, it is harder for the agents to reach a
consensus on the portions of the network that are affected, resulting in a fragmentation
of multiple opinions. On the whole, this constitutes a valuable insight into deploying
accurate response techniques to overcome the effects of one of these threats.

6 Conclusions
The Smart Grid is a innovative technology that brings many benefits to both operators
and users, although it does have some drawbacks when it comes to security and safety,
which can slow down its adoption in practice. Like other critical infrastructures, the
evolution of its industrial equipment towards a highly connected and distributed model
imposes several issues related to guaranteeing the availability of resources.

In this paper, we have proposed a novel architecture divided into five subnetworks
that firstly permits the integration of a cloud infrastructure in charge of performing
predictive analytics to comply with Demand Response, implementing a load balancing
algorithm. In addition, we have leveraged a cooperative algorithm to allow operators to
detect the presence of subtle attacks on the industrial network, which means a first line
of defense. Experimental tests have been carried out to demonstrate the feasibility of
our approach. Future work will involve the creation of advanced response techniques
to allow the continuity of the network in the presence of attacks in the different, sen-
sitive sections of the Smart Grid. In addition to this, we aim to compare our opinion
dynamics-based approach with other distributed models (e.g., distributed consensus) in
order to find more precise solutions in the detection processes.
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