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Abstract

If a Wireless Sensor Network (WSN) is to be completely integrated into the Internet as part
of the Internet of Things (IoT), it is necessary to consider various security challenges, such
as the creation of a secure channel between an Internet host and a sensor node. In order to
create such channel, it is necessary to provide key management mechanisms that allow two
remote devices to negotiate certain security credentials (e.g. secret keys) that will be used to
protect the information flow. In this paper we will analyse not only the applicability of existing
mechanisms such as Public Key Cryptography and pre-shared keys for sensor nodes in the IoT
context, but also the applicability of those link-layer oriented key management systems (KMS)
whose original purpose is to provide shared keys for sensor nodes belonging to the same WSN.
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1. Introduction

The vision of the Internet of Things is, as of 2010, in an embryonary state. Most of the
elements of our world, our things, do not have the digital intelligence that enables them to be
aware of the existence of a virtual cyberworld, where they could be able to collaborate with
literally billions of entities: other things, humans, computational processes, our own physical
environment, and so on. But this vision is being pursued with tenacity, and the technologies
that will enable it (e.g. RFID, Wireless Sensor Networks, Machine-to-Machine interactions) are
slowly but inexorably becoming part of our daily lives.

Whether we achieve the complete vision of the Internet of Things or only a part of it depends
on multiple factors. One of those factors is security. The Internet of Things must comply with
multiple security requirements (e.g. privacy, robustness), in order to provide a strong foundation
that will be resilient against those who will try to take advantage of its existence. Not only the
integration of all the elements that will compose the Internet of Things must be secure, but also
those elements must be inherently secure by themselves. As a result, there are multiple security
challenges that must be taken into account.

Focusing on one of the technologies of the Internet of Things, Wireless Sensor Networks, a
particularly important challenge is the creation of an end-to-end secure channel between remote
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entities. Sensor networks can allow things to know the state of their surroundings and commu-
nicate with other entities. Therefore, it is necessary to allow the elements of a sensor network,
the sensor nodes, to connect other entities through the Internet. However, the issues surrounding
the protection of the information flow are not trivial. Sensor nodes are usually constrained de-
vices with limited computational power, and the key management mechanisms used to negotiate
a session key with other entities might be too heavy for them.

Therefore, it is the purpose of this paper to analyse how existing key management systems
that are frequently used in actual Internet scenarios could be applied in Internet-enabled Sen-
sor Networks. However, in our study we will go one step further, and also evaluate those key
management mechanisms that are focused on the negotiation of link-layer keys between neigh-
bouring nodes. Obviously, such mechanisms were not designed with an Internet scenario in
mind. Nevertheless, the existing corpus of research on this particular field is large enough to
warrant an investigation on their applicability.

The structure of this paper is as follows. Section 2 provides an introduction to the Internet of
Things and the role of Wireless Sensor Networks in this new vision. Section 3 describes the most
relevant security challenges of Internet-enabled Sensor Networks, focusing on the problem of es-
tablishing a secure channel with remote entities. Moreover, we also state the assumptions and
methodology of our analysis. In section 4, we analyse the applicability of Public Key Cryptog-
raphy and the different pre-shared keys strategies, while in section 5 we focus on the analysis of
existing link-layer oriented key management systems. Finally, we present our main conclusions
and future work in section 6.

2. The Role of WSN in the Internet of Things

2.1. An Overview of the Internet of Things

As of 2010, The Internet of Things, or IoT, is a vision of the future. Its definition is still
fuzzy [1, 2], but all the people that share such vision also share the same belief: it is possible to
create a world-wide network of interconnected objects, or things, that will have an active role in
the Future Internet. Such things will probably be readable, recognizable, locatable, addressable,
and/or controllable via the Internet [3]. Moreover, these things do not need to be the electronic
objects we encounter everyday, such as computers, but also other products like cars, books, or
even food. Actually, within this vision our very households and the buildings that surround us
could be considered things, filled with other things.

These things, that belong to the real/physical world, will make use of different technologies
(e.g. embedded systems) to create a digital/virtual space, where they will interact with each other
and other entities (e.g. software processes, human beings) through well-defined interfaces. As
a consequence, things are expected to become active participants in business, information and
social processes. Observe that this digital space will be tightly related to the real world: not only
the things will be able to maintain their real identity in the virtual world, but also they will access
to information from the real world (e.g. their physical location, the state of their environment)
and interact with real-world entities.

As for the real improvements that the IoT can bring to humanity, this vision creates new
opportunities in various application domains. For example, the industrial sector can make use
of the IoT services to improve the financial or commercial transactions between entities. Also,
our environment can be effectively protected and monitored, and new services can be created
to foster the development and inclusion of societies, cities and people. Particular examples of
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Figure 1: Real World, Virtual World, and WSN

specific services within these application domains are human activity monitoring (e.g. healthcare
and elderly care), infrastructure integrity management (e.g. critical infrastructure supervision),
and energy efficiency (e.g. smart energy metering, efficient consumption by vehicles) [2].

There are a wide range of technologies that will be involved in building the IoT. The enhance-
ment of the communication networks infrastructure (e.g. through ultra-wideband networks, 3G
and 4G networks) will be essential, as well as the adoption of IPv6 in order to provide a unique
IP address to each thing involved in the network. The technologies that allow the location and
identification of physical objects (e.g. RFID) will also be basic in this context. There are also
other technologies that will influence on the successful development of IoT applications, such as
computer vision, biometric systems, robotics, and others. One of these technologies, Wireless
Sensor Networks [4], is able to provide an autonomous and intelligent link between the virtual
world and the physical world, and in fact it has been thoroughly studied. We will focus on WSN
on this article, as it brings the IoT one step closer to reality.

2.2. Sensor Networks in a Globally Connected World

WSNs have evolved considerably in the last few years, turning from a promising research
field into an efficient and profitable technology in certain fields (e.g. industrial environments [5]).
The core element of a WSN is the sensor nodes, low-powered and resource-constrained devices
that can ‘feel’ (gather physical data), ‘think’ (process data and make informed decisions), and
‘talk’ (communicate with other entities using a wireless channel). These sensor nodes (or simply
nodes) collaborate with each other in a distributed manner towards the same goal: to provide any
virtual entity with information from its physical surroundings, such as temperature, humidity,
light, or even radiation.

The role of WSN in the IoT is that of a virtual skin: by becoming part of those things (e.g.
teddy bears, appliances, buildings, environments), it allows them to become aware of their sur-
roundings and to share this information with other things in order to take informed decisions (cf.
Fig. 1). For example, a teddy bear can detect if it is being hugged by its owner so as to play a lul-
laby if (according to an Internet time service) it is time to go to bed. At a greater scale, a building
can be able to know about the state of its elements, such as classrooms, offices, laboratories, and
restrooms, and change itself accordingly (e.g. turn lights off at night in unoccupied rooms). Even
more, an intelligent city can be able to aggregate the information coming from its infrastructures



(e.g. transportation, power grids, healthcare, water distribution systems), achieving a holistic
point of view that will be crucial in any decision-making processes.

In fact, according to the academic community, WSN are expected to provide interconnected
solutions for aircraft monitoring systems, intelligent buildings, healthcare environments, phar-
maceutical products, processing industries, and environment monitoring [2]. Moreover, the in-
tegration of WSN in the IoT is also a fact supported by several governments and international
companies. Noteworthy examples are ‘A Smarter Planet’ [6], a strategy developed by IBM which
considers sensors as fundamental pillars in intelligent water management systems and intelligent
cities; and the CeNSE project by HP Labs, focused on the deployment of a worldwide sensor
network in order to create a “central nervous system for the Earth” [7].

The technologies that will enable the integration of WSN with the IoT are being currently de-
veloped and tested. For example, the 6LoWPAN standard, defined by IETF [8], allows the trans-
mission of IPv6 packets through computationally restricted networks. Also, the ROLL routing
standard aims to provide end-to-end routing solutions for industrial, connected home, building
and urban WSN [9]. Moreover, there are ongoing standards that try to implement web services
in the sensor nodes themselves, such as the Constrained Application Protocol or CoAP [10].
Note that it is also possible to link the data produced by the sensor nodes and retrieved by a
front-end system (i.e. base station) with web services based on SOAP and REST [11], mes-
saging mechanisms (such as emails and SMS) or social networks (e.g. Twitter) and blogs (e.g.
Wordpress) [12].

Precisely, one particular issue that must be considered when connecting a WSN to the Internet
is the following: should sensor nodes provide their services directly (e.g. a thing that is equipped
with a sensor node provides a web service interface), or it is better to delegate this task to the
base station? It has been mentioned before that a thing should be “locatable, addressable [...]
via the Internet” [1], but this particular configuration might not be suitable for certain scenarios.
There have been various studies that analyse this particular issue [13, 14]. Their conclusion is
the following: in some specific scenarios (e.g. SCADA systems [15]) a sensor node does not
need to provide its services directly, but there are other scenarios (e.g. First Responders) where
a sensor node should be completely integrated into the Internet.

3. Security Issues of a Globally Connected WSN

In order for WSN to become an intrinsic part of the IoT, it is necessary to consider various
challenges: from the adaptation of existing Internet standards to the creation of interoperable
protocols and the development of supporting mechanisms for composable services [2]. Not
surprisingly, one of these challenges is security, mainly because it is not possible to directly
apply existing Internet-centric security mechanisms due to the intrinsic features of WSN (e.g. the
capabilities of the nodes, the bandwidth of the wireless channel). On the following paragraphs,
we will highlight the most relevant security challenges that are related to the integration of WSN
within the IoT. Note that these challenges are tightly related to WSN, but can also be applicable
to other relevant technologies of the IoT (e.g. embedded systems, mobile phones, RFID).

Even if a WSN itself is protected with its own security mechanisms (e.g. using the link-
layer security of IEEE 802.15.4), the public nature of the Internet will require of the existence
of secure communication protocols for protecting the communications between two peers. As
aforementioned, sensor nodes can make use of the 6LoWPAN protocol to interact with a I[Pv6
network (i.e. the Internet). Moreover, they are powerful enough to implement symmetric key
cryptography standards such as AES-128 [16], and can be able to implement certain Random
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Number Generators [17]. However, mainly due to the power constraints and limited computa-
tional capabilities of the nodes, at present there is no explicit support for the IPsec protocol suite
in 6LoWPAN [18]. As a consequence, it is necessary to study how other mechanisms could be
used in order to create an end-to-end secure channel, such as TLS/SSL at the transport layer [19],
or WS-Security at the application layer if SOAP-based web services are used [20]. Precisely, the
implementation of Secure Web Services in constrained nodes is another issue that must be care-
fully considered.

The creation of these secure channels is just one of the steps on the creation of a securely
integrated WSN. Not all the services provided by a WSN will be public, thus we must develop
Authentication and Authorization mechanisms in order to avoid unauthorized users (humans,
machines) to access to the functionality of the WSN. This is not a trivial task, as the inherent
distributed nature of the elements of a WSN must be considered. Moreover, we need to create
suitable and scalable Identification mechanisms that can provide ‘unique identifiers’ and ‘vir-
tual identifiers’ to all the different actors - WSN, sensors, users, and other devices. Finally, we
must take into account the survivability problem of Internet-connected WSN. As with any other
Internet server, a sensor node will surely be targeted by malicious entities trying to hinder the
availability of its services. There have been some preliminary works on the development of In-
trusion Detection Systems (IDS) for this particular environment [21], although more research is
necessary if we want to reach our goal of a self-repairing, robust network.

Other important challenges on this particular field are the integration of security mecha-
nisms [14] and data privacy [22]. Regarding integration, we must consider the security of the
IoT from a global perspective. Even if different technologies such as WSN and RFID are se-
cure by their own, their integration will surely generate new security requirements that must be
fulfilled. Furthermore, it is necessary to analyse how the security mechanisms that protect one
single technology will be able to coexist and interact with each other. As for privacy, recall the
concept of WSN as a bridge between the real world and the virtual world. However, such bridge
can be also abstracted as an omnipresent, intangible entity that behaves as an information high-
way. This situation raises various questions: Who owns the data? How an user can be sure that
his data is safe and will not be used without his consent? How personal data can be disclosed
and used by authorized parties?

3.1. An Special Case: Secure Channels, Key Management

As we have already mentioned in the previous section, one of the challenges of connecting a
WSN to the Internet is the creation of a secure channel that can adequately protect the informa-
tion flow. This particular problem is simplified whenever the sensor nodes delegate all Internet
connectivity to a base station (BS). This BS it is a more powerful device that usually behaves
as an interface between the services provided by the sensor nodes and the users of the network.
From the point of view of any Internet client (e.g. Things, Internet hosts), the real server will be
the BS. Once the BS receives a query, it will forward it to a sensor node and wait for its reply.
In case a sensor node needs to open a channel with an external server, it will simply forward
the query to a BS, which will make the query on its behalf. Therefore, the BS will behave as
any other web server, implementing any necessary security mechanisms. Also, the communi-
cations between the sensor nodes and the BS will be protected using the WSN specific security
mechanisms (e.g. shared keys between the nodes and the BS).

On the other hand, it has been mentioned (implicitly and explicitly) that some scenarios
will require of a direct channel between an Internet host and a sensor node (cf. sections 2.1
and 2.2). For those scenarios, amongst other things, it is necessary to provide key management
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mechanisms that allow two remote devices to negotiate certain security credentials (e.g. secret
keys) that will be used to protect the information flow. As in this context sensor nodes become
full-fledged citizens of the Internet, we should examine at the existing security mechanisms and
protocols used on the Internet that provide this functionality. For example, with TLS, two peers
can negotiate a common key for ensuring secure end-to-end transit at the transport layer. Also,
at the web services layer, WS-Security and its associated specifications can be used to set up a
secure channel in the general Web services framework, where languages and protocols such as
WSDL, UDDI, and SOAP are used.

In TLS, a client and a server negotiate a stateful connection by using a handshaking proce-
dure. This procedure is as follows [19]. First, both peers exchange hello messages to agree on the
ciphersuite (i.e. cryptographic algorithms) to be used, exchange random values, and check for
session resumption. Later, they exchange certificates and cryptographic information to authen-
ticate themselves and to provide session information, which will be used to generate the shared
secret. Finally, the client and the server verify that the handshake has finished correctly without
tampering by an attacker. Most of the ciphersuites require of Public Key Cryptography (PKC) in
order to authenticate the server (and the client) and to derive the shared secret, although the nego-
tiation can make use of a pre-shared key by using the TLS-PSK ciphersuite [23]. Note that TLS
is designed to be used with reliable transport channels such as TCP, but a datagram-compatible
variant is also available [24].

As for web services security, the WS-Trust specification provides a framework for requesting
and issuing security tokens, allowing applications to construct trusted SOAP message exchanges.
This functionality is used by WS-SecureConversation [25], allowing parties to exchange multiple
messages in a secure fashion for the lifetime of a communications session. There are three
different ways for establishing the security tokens: a) created by a trusted third party known as
security token service (STS), b) created by one of the agents and propagated with a message, and
¢) created by negotiation. In fact, the negotiation extensions allow both requestors and recipients
to perform a set of exchanges prior to returning a security token.

Both TLS and the web services security protocols provide mechanisms for negotiating a
shared secret between two peers. Most of these negotiation mechanisms are based either on
Public Key Cryptography or on the existence of pre-shared master secret keys. By using PKC,
two devices can exchange random values in a secure way (e.g. through PKC encryption) in order
to generate a session key. As for pre-shared keys, these keys can be shared in advance amongst
the communication parties, who will use them to create the session key. However, as PKC is
supported but quite time consuming in constrained sensor nodes [26], and the use of a single pre-
shared key might be unsuitable for certain IoT applications, it is necessary to analyse whether
these key management mechanisms can be directly applied to Internet-enabled sensor nodes. It is
important to point out that there are existing works that partially discuss this particular issue [27],
and any reader interested in this area should also consider them.

Another question that might arise at this point is the following: In an Internet-enabled envi-
ronment, can we reuse the key management systems (KMS) used to bootstrap a link-layer key
between sensor nodes, using them to negotiate a session key between remote entities? Granted,
there are major differences in the design of protocols that establish a session key between remote
entities with those that try to provide link-layer credentials to physical neighbours. Moreover,
these KMS usually implement specific optimizations (e.g. use the physical location of the nodes)
taking advantage of the properties of the WSN environment.

Nevertheless, the underlying goal of these protocols is, in fact, the same: to create a common
key between peers. Moreover, this particular research field is quite mature, as suggested by
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the high number of published papers and surveys in the area. For example, a simple search in
databases of abstracts and citations, such as Scopus1 or Google Scholar?, reveals that there are
at least 400 scholarly articles written after 2002 on this particular area. As a consequence, it is
worth analyzing whether these link-layer KMS protocols, which are designed with the limitations
of WSN in mind, could be used in an Internet environment to establish a direct secure channel
between a sensor node and an Internet host.

3.2. Assumptions and Methodology

As our main goal is to analyse if Public Key Cryptography, pre-shared key strategies, and
link-layer oriented Key Management Systems can be used to create secure channel between
remote (constrained) entities, it is necessary to explain our assumptions and to state our method-
ology. Regarding the assumptions about the network structure and its elements, they are the
following:

o Accessing the WSN. The routers that connect a WSN with the rest of the Internet must
be able to convert any packets from IPv6 (Internet) to 6LoWPAN (WSN) and viceversa,
as packets coming from both networks cannot be directly mapped. In this analysis we
assume that such routers are in fact the base stations from the WSN, thus they can perform
monitoring and management functions in certain situations.

e Network structure. There are many different types of WSN, ranging from sensor net-
works located on the ocean floor with specific transceivers (underwater WSN [28]) to
sensor networks where the router is only available at certain moments in time (unattended
WSN [29]). In this analysis we will make use of the most “traditional” type of sensor
network: a group of sensor nodes scattered in a certain area (e.g. a building) using IEEE
802.15.4 transceivers and constantly connected to the Internet through a set of routers /
base stations.

e Sensor node features. There are different classes of sensor nodes, ranging from “Class I”
nodes with roughly 1kB of RAM and 16kB of instruction memory (e.g. Arduino Duemi-
lanove), to powerful “Class III”” nodes with 256kB of RAM and 4MB of instruction mem-
ory (e.g. Sun SPOT). In this analysis we will focus on the most common “Class II” node
(e.g. MICAz, IRIS). This type of node has 4-16kB of RAM and 48-256kB of instruction
memory, and are equipped with a 4Mhz-8Mhz microcontroller [30].

e Sensor node behaviour. In most cases sensor nodes are assumed to behave as servers
(server nodes), implementing web servers and providing services. However, in this anal-
ysis we will also assume that sensor nodes can also behave as web clients (client nodes).
Therefore, sensor nodes can be regularly contacted by external entities (‘pull’), but also
can send information to external servers at predefined intervals (‘push’). In our analy-
sis, whenever we mention “clients” and “servers” we will refer to both sensor nodes and
Internet hosts, while “client nodes” and “server nodes” refer only to sensor nodes.

e Service model. Although a sensor node can behave either as a client or as a server, in our
analysis we will only consider the existence of the client/server model. That is, we will
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not consider the existence of P2P applications where multiple sensors and Internet hosts
behave as clients and servers. Besides, we will not consider the existence of trusted third
parties that could assist on the establishment of a secure channel.

Regarding our methodology, we will follow a property-oriented analysis. Every key manage-
ment system has some properties, which are discussed below, that are relevant for the creation of
a session key between remote entities. We will use these properties to compare the different key
management systems and their suitability for the IoT.

o Distribution. This property is related to how the information that is needed for the ne-
gotiation of a shared secret (e.g. public key certificates, pre-shared keys) is distributed.
Distribution is considered as offline if all the information is stored beforehand within the
peers. A distribution can also be considered as online if part of the information can be
distributed during the negotiation process. An online distribution is desirable in the 10T,
as any client would be able to establish a secure channel with any server anytime, even if
they did not meet before.

o Authentication. This property defines whether the peers (client and/or servers) are au-
thenticated during the negotiation process or not. This can be achieved, for example, using
of a uniquely shared key or a PKC signature. Note that in the negotiation process it is
possible to authenticate a peer (e.g. if a pre-shared key is shared only with that peer) or a
group (e.g. if a pre-shared key is shared with a group of peers). For a IoT context, server
authentication is desirable, in order to assure clients that they are obtaining data from the
right source.

e Overhead. This property specifies both the communication and computational overhead
of executing the negotiation process. This property will refer mainly to the overhead im-
posed in sensor nodes, as i) they are much more resource constrained than other Internet
hosts and ii) the energy consumed by sending and receiving information through the wire-
less channel is quite high, and most sensor nodes will be battery-powered. As expected,
the overhead in the IoT context must be as low as possible.

o Resilience. This property indicates the ability to cope with stolen credentials. The re-
silience of a key management system is low if an attacker that extracts information from
one single device (e.g. Internet host, sensor node) is able to access all the secure infor-
mation flows. In contrast, resilience is high if an attacker can only impersonate the device
that was attacked. Unsurprisingly, a high resilience is desirable for IoT devices.

e Scalability. This property is tightly linked with the amount of information that must be
stored within a device in order to negotiate a secure channel with as much entities as
possible. Considering that the potential Internet servers that can be accessed by a certain
client (and viceversa) are huge, a key management system is not scalable if the amount of
preloaded information that must be stored inside a device grows linearly with the number
of potential client/servers. On the other hand, a key management system is scalable if
the information required to contact any potential peer does not impose an overhead to the
device. Again, it is desirable to have a high scalability.

o Extensibility. A key management system is not extensible if the number of peers that can
be securely contacted through a negotiation process is limited to a certain number. While
8
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Figure 2: Approaches for sharing secret information

most key management systems are extensible (and in fact extensibility is an essential prop-
erty for most applications), there are some mechanisms that do not provide extensibility.
This is not advisable for IoT applications that have a growing number of clients and/or
servers. As a result, this property must be considered in this analysis.

4. Analysis of Public Key Cryptography and Pre-shared Keys

In this section we will analyse the suitability of PKC and the pre-shared keys strategy to
negotiate session keys between a sensor node and any external entities in an Internet context.
Observe that it is possible to study different approaches for the pre-shared keys strategy. There
is a very simple approach where all the members of the network share a common key (/-7). In
addition, we can consider that all servers (/-s), all clients (c-1), or everyone (c-s) can have their
own unique keys. All these approaches (shown in Fig. 2) will be further explained and examined
in this section.

4.1. Public Key Cryptography

The development and implementation of public key primitives for sensor nodes by the aca-
demic community, such as those based on Elliptic Curve Cryptography (ECC), has been a re-
markable feat. The time to execute the main cryptographic operation of ECC, the scalar point
multiplication, has been reduced from 34 seconds [31] in 2004 to less than 0.5 seconds [26] in
2009. With ECC, any node can make use of digital signature schemes (ECDSA), key exchange
protocols (ECDH), and public key encryption schemes (ECIES) [32]. However, PKC is still too
expensive to be used by sensor nodes implementing web servers, as the overhead of its software
implementation (420 ms) is too high. Note that the use of other PKC primitives with extremely
efficient encryption and verification operations such as Rabin [33] is discouraged. For example,
in TLS server nodes need to decrypt a message encrypted by the client, but decryption in Rabin
is basically as costly as a decryption operation in RSA.

In spite of this, the PKC strategy provides a very good set of properties. The distribution
of the credentials can be done both offline and online, as the peer (public key) certificates can
be preloaded in the devices or transmitted upon request. Also, both clients and servers can
be authenticated when using an adequate ciphersuite. The resilience is also high, because a
subverted device usually stores only its public key and private key, thus an attacker can only

9



impersonate that particular device. The scalability is not great but it is still good: while it is
necessary to preload the certificate of a CA in order to verify all peer certificates signed by such
CA, those peer certificates can be exchanged during the negotiation process. Finally, as there
is no limitations on the number of peer certificates that can be validated, the extensibility is
excellent.

It seems that an Internet-connected sensor node that behaves as a server should not make use
of PKC. However, the situation changes if the sensor node behaves only as a client, accessing
external web servers. Any external system cannot perform a DoS attack to the node by forcing it
to calculate expensive PKC operations, as the node itself will make use of these operations only
when it wants to open a secure connection with an external server. In terms of storage, a sensor
node behaving as a client only needs the certificate of the CA that signed the certificate of the
servers it accesses, and such certificate can even be retrieved online. Moreover, if the client node
must authenticate himself, the only extra storage requirements are its public key and private key.

4.1.1. Analysis Results

Regarding the usage of PKC in server nodes, the performance of PKC in “Class II” nodes
(4-8 Mhz, 4-16kB RAM, 48-256kB Flash) is too low to be used in a web server. However, there
are some scenarios where the advantages of PKC, such as the ability to open a secure channel
with a previously unknown entity, are essential for the successful development of real-world
applications. For these particular cases, it is necessary to use more powerful nodes or hardware
extensions (such as cryptographic chips) that can optimize the execution of PKC primitives.

As for client nodes, PKC is actually a viable option for applications without hard real-time
requirements where its sensor nodes sporadically connect to external web servers, even for “Class
IT” nodes. Observe that there are other factors that must be taken into account when considering
this solution, such as the energy consumption of the node, the code size of the PKC algorithms
and their memory requirements, and the expected lifetime of the application.

4.2. Pre-shared keys

Table 1: Properties of PKC and PSK strategies
Pre-shared key
PKC 1-1 1-s c-1
Distribution Online, Offline Offline Offline Offline
Authentication Client/Server Group/Group | Group/Server | Client/Group
Overhead ECC operations Negligible Negligible Negligible

Resilience High Low/Low Low/High High/Low
Scalability Good High HighSerer HighCTent
Extensibility Yes Yes Yes Yes

In the pre-shared key strategy, the clients and the servers share some pre-established keying
material that can be used to derive a shared key between peers. Actually, in a WSN scenario,
there are multiple approaches to implement this particular strategy. For example, for external
connections, a group of sensor nodes can have the same pre-shared secret (i.e. one key per
WSN), or every sensor node can have its own pre-shared secret (i.e. n keys for a WSN of size
n, one per sensor). The description of the different approaches is listed below, and Table 1
provides a summary of the properties of these approaches, alongside with the properties of the
PKC approach.
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e [-]. In this approach, one group G, of clients share the same pre-shared key (k¢ ¢,) with a
group G of servers.

e [-s. In this approach, every server s has its own pre-shared key (K;). Consequently, clients
must store one key per server they want to connect to.

o c-1. In this approach, every client ¢ has its own pre-shared key (K.). As a result, the servers
must know in advance which are the clients that will try to connect them, and store a key
per client.

e ¢-s. In this approach, every individual client ¢ and server s share a common pre-shared
key (K s). Note that this particular approach will not be analysed in the pre-shared key
strategy, as it combines the disadvantages of both /-s and c-1.

One of the major drawbacks of these approaches is related to the distribution property. All
secret information must be preloaded prior to any exchange of information, thus it is only possi-
ble to securely connect clients and servers that already know of each other. Another drawback is
the overall resilience of the approaches. As one element (clients in /-s, servers in c-1, everyone
in /-1) will store all the pre-shared keys, such element is the weakest link of the security chain,
and any adversary that gains control of that element will take control of the whole network. Be-
sides, it is necessary to consider that the pre-shared key will be reused every time. Not only is
advisable to use a mechanism that will derive a session key from the pre-shared key, but also
such key should be updated over time.

Nevertheless, the benefits of using any of the pre-shared key approaches in a WSN context
are still significant. The computational overhead is negligible, as the pre-shared key is already
preloaded and there is no need to engage in costly negotiations. The scalability of all approaches
is mostly high, although there are some cases (the I-s approach for client nodes and the c-/
approach for server nodes) that are not advisable due to the limited memory available to the
nodes. As for the authentication property, it is possible to provide either client authentication
(c-1) or server authentication (/-s), although all approaches provide group authentication (e.g.
if I have the pre-shared key then you know I can be trusted). Finally, the extensibility of all
approaches is high, although there are some maintainability problems: in the c-/ approach every
server must be preloaded with the pre-shared key of any potential clients, and in the /-s approach
whenever a server changes its key all its clients must also change it.

4.2.1. Analysis Results

For server nodes, the /-s approach is useful enough to think about deploying it in small real-
world applications. Still, there are some factors that must be carefully considered, such as the
maintenance of the pre-shared keys and the resilience of the clients. As for client nodes, the 1-s
approach is useful only if the number of external servers that must be contacted for a particular
application is limited, due to memory constraints. Also, it should be mentioned that the /-7
approach could be appropriate whenever it is important to assure the identity of a particular
WSN, instead of the identity of specific server nodes. Finally, we give less importance to the c-1
approach as it can be possible to implement a user authentication scheme in the server at a higher
layer.
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5. Analysis of WSN Key Management Systems

In recent years, the development of key management systems (KMS) for establishing link-
layer keys between nodes in a WSN had been a very active research field [34]. It is possible
to classify these KMS protocols in four major frameworks: key pool framework, mathemat-
ical framework, negotiation framework (which includes protocols that use pre-shared key ap-
proaches), and public key framework. As we already discussed Public Key Cryptography and
network-wide key protocols in sections 4.1 and 4.2, in this section we will focus on all the other
KMS frameworks. As our goal is to check whether some of the KMS protocols could be used to
negotiate session keys between remote entities in an Internet context, first we will describe these
frameworks and we will review which KMS protocols could be suitable for fulfilling our goal.
Afterwards, we will provide an analysis of the applicability of the selected KMS protocols.

5.1. Overview of KMS Frameworks

The key pool paradigm plays a pivotal role in the key pool framework, one of the most im-
portant KMS frameworks ever proposed so far. The basic scheme behind this framework is quite
simple [35]. Firstly, the network designer creates a key pool, that is, a large set of precalculated
secret keys. Secondly, before network deployment every node is assigned with a unique key
chain, i.e., a small subset of the keys from the key pool. Thirdly, after the network deployment,
the nodes exchange their identification numbers of the keys from their key chains, trying to find
a common shared secret key. Finally, in case that two nodes do not share the same key, they try
to find a key path (i.e. a secure routing path) between them in order to negotiate a pairwise key.
Note that the concept of a ‘pool’ can also be applied to other KMS of different frameworks.

The KMS protocols that make use of certain branches of mathematics (e.g. linear algebra,
combinatorics, and algebraic geometry) to calculate link-layer keys belong to the mathematical
framework. Among the KMS protocols based on the linear algebra, the most important scheme
is Blom scheme [36]. In this scheme, every node i can calculate the pairwise key it shares with
another node j by solving A(i)-G(j), where G is a public Vandermonde matrix and A is calculated
using a symmetric random secret matrix D. In the KMS protocols based on combinatorics,
generalized quadrangle and symmetric design models [37] are the most widely used ones. Using
generalized quadrangles GQ(s, t) or finite projective planes FPP(g), a network designer can
construct a key chain of size s + 1 or g + 1, respectively. Some of these key chains provide
perfect connectivity, that is, every node share a key with any other node. Finally, for the KMS
protocols developed based on algebraic geometry, the most well known scheme works based on
the bivariate polynomials [38]. In this scheme, by using a bivariate polynomial f, every node A
in a network is able to obtain a pairwise key with another node y by solving f(A, y).

It is also possible to let the nodes negotiate their keys with their close neighbors right after the
deployment of a WSN. All the protocols that generate their keys through mutual agreement be-
long to the negotiation framework, and they usually work under the assumption that there is little
or no threat against the integrity of a WSN network in the very early stage of its lifetime [39].
Besides, all the KMS that consider the existence of a network-wide key [40] and those protocols
that focus on organizing the network into dynamic or static clusters [41] also belong to this par-
ticular framework. Notice that there are specific optimizations that can be done to the protocols
of this framework (such as code attestation and the Guy Fawkes protocol [42]) in order to assure
the authenticity of the peers in any stage of the network deployment.

Finally, every KMS protocol from the previously mentioned frameworks can be optimized in
multiple ways. For example, it is possible to use the knowledge of the final node locations in the
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WSN field (i.e. deployment knowledge) to minimize the memory consumption and communica-
tion overhead of the protocols. Other optimizations are focused on reducing the number and size
of the messages that are used to discover/derive a common key. Also, there are some optimiza-
tions that improve the underlying structure of a KMS in order to enhance certain properties such
as resilience and extensibility.

5.2. Suitability of KMS Protocols

Once we have presented the different KMS frameworks that can be used to establish a link-
layer key between nodes, we need to select those KMS protocols that could be used to open a
secure channel between remote entities. Such protocols must provide perfect key connectivity,
guaranteeing the creation of a common key between any pair of nodes. In addition, they must
not implement any optimizations that rely on the features of the deployment site or the wireless
channel. Precisely, some of the KMS protocols that belong to the mathematical framework fulfill
these requirements. We will review such KMS protocols on section 5.3. On the other hand, most
of the KMS protocols are not suitable for the [oT context. We will justify this statement in the
next paragraphs.

A major problem that affects the KMS protocols that belong to the key pool framework is
the insufficient connectivity. Most key chains of the elements of the network are constructed by
randomly extracting a subset of keys from a key pool, where the size of the key chain is usually
much smaller than the size of the key pool. As a result, there is always a chance that two different
key chains will not share a common key. This is not acceptable in an Internet scenario, where
a server node should receive any connections from the clients it knows, and viceversa. This
weakness is shared by all the KMS protocols that make use of the key pool paradigm to improve
their scalability while sacrificing their key connectivity. For example, some KMS protocols that
belong to the mathematical framework use specially crafted key pools of random polynomials /
matrices. This optimization improves their resilience, but sacrifices their key connectivity [38].

Other KMS protocols make use of the deployment knowledge to optimize the construction
of their data structures. For example, many KMS protocols assume that the deployment region
can be partitioned into small areas, known as cells. As an example of one of the optimizations,
the key chains of nodes that belong to the same cell can be constructed in a deterministic way,
rather than by selecting a random set from the key pool. This way, the connectivity between
the members of the same cell (and even the members of other neighbouring cells in some cases)
can be drastically improved [43]. However, this kind of deployment knowledge cannot be used
in the IoT context. Client and server nodes are usually located in different physical locations,
even in different countries. One possible approach to deal with this problem is to try to create a
‘virtual’ deployment knowledge, not based on the physical location of the devices but on their
connections. However, in a client/server context, we would discover that all clients and servers
that are able to open a secure channel with each other are in fact direct neighbours. In this 1-to-1
situation, the optimizations of KMS protocols that make use of deployment knowledge cannot
be applied.

As for those KMS protocols that belong to the negotiation framework, excluding those proto-
cols that make use of a network-wide key, they also can not be used in the IoT context. All such
protocols make use of the wireless channel and its features to effectively negotiate a common key.
Some protocols gradually increase the power of their transceivers to send information that will
only be detected by its nearest neighbours. Other protocols make use of the limited range of the
transceiver to establish a cluster and negotiate keys within that cluster, or use some mechanisms
linked to the efficiency of the wireless channel (e.g. code attestation) in order to establish initial
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trust. Such optimizations, that are based on the inherent nature of the wireless channel, cannot
be used in the IoT context: client and server nodes usually belong to different networks, and they
need to route the information through the Internet in order to be able to talk with each other.

Finally, combinatorics-based KMS protocols [37] are not considered in our analysis due to
key connectivity and scalability / authentication issues. The KMS protocols based on general-
ized quadrangles GQ(s, t) do not provide perfect connectivity, thus they are not suitable for our
purposes. As for the KMS protocols based on finite projective planes F'PP(q), the size of the per-
fectly connected key chain increases with the size of the network: in networks of size g*> + g + 1,
where q is a prime number, the size of the key chain is ¢ + 1. As a result, the communication
overhead increases (two peers must exchange their key IDs in order to find a common key).
Moreover, these protocols only provide group authentication, as it is not possible to distinguish
a specific node from other nodes.

5.3. Analysis of Mathematical-based KMS Protocols

Table 2: Properties of the Blom scheme

Blom
1-1 1-s c-1 c-S
Distribution Offline Offline Offline Offline
A icati Group/Group Group/ServerOFT ClientOPT jGroup | ClientOPT /ServerOPT
Overhead VecMul(1) VecMul(1) VecMul(1) VecMul(1)
ili LowOPT jLowOPT LowOPT /High High/LowOT T High/High
Scalability High High High High
Extensibility Limited(n) Limited(n) Limited(n) Limited(n)

Table 3: Properties of the Polynomial scheme

Polynomial
1-1 1-s c-1 c-s
Distribution Offline Offline Offline Offline
Authentication Group/Group Group/Server Client/Group Client/Server
Overhead PolyEval(1) PolyEval(1) PolyEval(1) PolyEval(1)
Resilience Low/Low Low/High High/Low High/High
Scalability High High High High
E ibili Yes Yes Yes Yes

The KMS protocols that might be suitable for some IoT scenarios are the Blom scheme [36]
and the Polynomial scheme [38]. A summary of the properties of these schemes, using the
notation and the client/server combinations initially introduced in section 4.2, is shown in Table 2
and Table 3. First we will describe the foundations of these KMS protocols in detail, and later
we will explain their main advantages and disadvantages.

The idea behind the Blom scheme is as follows: every node a (where @ = ID,,.,) receives
a public vector g, and a private vector a, of size 1 + 1. The public vector is a column from a
(A + 1) X n Vandermonde matrix G, and the private vector is a row from a secret n X (4 + 1)
matrix A, where A = (D - G)” and D is a secret symmetric matrix of size (1 + 1) X (A + 1)
over a finite field F,. If two nodes i and j want to negotiate a common key, they simply need
to exchange their public vectors g; and g;. After that, key = g; - a; = g; - a;. A influences over
the resilience of the protocol, as an adversary needs to capture A + 1 nodes in order to derive all
the secret keys. As for the other parameters, n defines the maximum number of nodes that can
be used in the network, while g influences over the key size. Note that a public vector g, can
be generated from a single precalculated seed s*. This optimization allows node authentication
(if the nodes store s in advance), and reduces the space requirements and the communication
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overhead. However, it increases the computational overhead (g, must be generated from s*) and
decreases the resilience (any public vector g can be calculated from s* and @) [36].

As for the Polynomial scheme (also known as Blundo scheme), each node « store a A-degree
polynomial share f(a,y) = f.(y), where f(x,y) is a bivariate A-degree polynomial Z{f =0 i jxiyj
over a finite field F,. If two nodes i and j want to negotiate a common key, they will exchange
their unique IDs to obtain key = f/(j) = fj’ (i). The resilience of this scheme is given by A, as an
adversary needs to retrieve A + 1 polynomials in order to derive all the secret keys. Regarding ¢,
not only it influences over the key size, but also limits the size of the node IDs: an ID must be
smaller than 29 [38].

One of the major advantages of the Blom scheme in comparison with the pre-shared key
strategy is the higher resilience. If the public vector g” is not constructed with a seed s%, any
adversary that retrieves the public (g,) and private (a,) vectors of a certain @ device of the
network will not be able to impersonate other devices unless A + 1 vectors are captured, even in
the /-1 approach. Another benefit of both schemes is the higher scalability. In the Blom scheme
a device only needs to store its public and private vectors g, and a,, while in the Polynomial
scheme a device must store only a polynomial share f; (y). The size of these vectors and functions
is not given by the size of the network 7, but by the size of the resilience factor A. This factor can
be tweaked in order to balance the memory required by the schemes (and the size of the initial
negotiation message in case of the unoptimized Blom scheme) and the resilience of the network.

However, there are some disadvantages that must be carefully considered. One problem is
caused by the parameter ¢g. In the Blom scheme, g influences on the key size, and in the Polyno-
mial scheme ¢ also influences over the size of the device IDs. Therefore, g should have a size of
at least 128 bits in order to support IPv6 addresses (as peer IDs) and key sizes of 128 bits. This
choice affects the computational overhead of the schemes, because the keys need to be calculated
by multiplying two vectors (Blom scheme) or by evaluating a polynomial (Polynomial scheme)
whose elements have 128 bits. And for 8-bit microcontrollers (with support for 16-bit operations
such as the ATmegal28L), these operations are expensive, requiring 64 word multiplications
to multiply two 128 bits numbers using “schoolbook™ multiplication. Note that the size of the
resilience factor A also influences over this computational overhead.

By using the information from the original papers and the datasheet from the ATmegal28L
microcontroller [44], we can estimate how long it takes for a sensor node to generate a shared
key with another device (considering only addition and multiplication operations) with g = 128.
One 128-bit multiplication operation takes 64 - 105 cycles, where 105 is the cost of multiplying
two 16-bit numbers. On the other hand, one 128-bit addition operation takes 64 - 2 cycles, where
2 is the cost of adding two 16-bit numbers.

Both the Blom scheme and the Polynomial scheme requires A 128-bit multiplications and
A 128-bit additions, applying some optimizations like the Horner’s rule for polynomial evalua-
tion [45]. As a result, the time required to obtain a shared key with 4 = 10 is approximately
67,360 cycles, or 8 ms in a 8 Mhz microcontroller. While the computational overhead of these
schemes is quite low in comparison with the cost of a PKC operation, such overhead is not
negligible and must be carefully considered in real-world implementations.

The Blom scheme has other problems, such as its extensibility. When constructing the G
and A matrices, the application designer must calculate in advance the maximum number of
peers n that will communicate with each other. As a result, the maximum number of clients and
servers that will interact for a particular application is limited from the very beginning. This
is not acceptable for large-scale applications. Another issue is related to the authentication of
the devices. As the public vectors of the Blom scheme do not have any kind of certificate that
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proves their authenticity, it is not possible to assure the identity of the devices, and any adversary
can launch a “man-in-the-middle” attack. Such attack can be avoided if the public vector g,
is generated from the seed s, as every device can store s and use it to check the validity of a
certain seed. Still, this check is very costly for sensor nodes. Using the binary exponentiation
methods [46], a node needs to calculate no more than 2 - 128 128-bit multiplications, imposing
an extra penalty of approximately 1,720,320 cycles (200 ms) using the values from the previous
paragraph.

5.3.1. Analysis Results

One of the hurdles that might hinder the applicability of Mathematical KMS protocols in
sensor servers is their computational overhead. However, if according to the requirements of the
application a server node can afford such overhead, the polynomial scheme is a better choice
than the pre-shared key strategy: the overall scalability is better, it is applicable for both client
nodes and server nodes, and it is also possible to implement a c-s approach where both clients
and servers can authenticate each other, although this c-s approach is not advisable if clients are
not trusted and can collaborate to obtain the original bivariate polynomial f(x,y). Note that if
the application requires more resilience and both extensibility and authentication are not crucial
factors, it can be possible to use the Blom scheme. Finally, a drawback of both schemes that
must be carefully considered is that two peers always generate the same session key. Therefore,
the use of random values during the key generation process should be considered.

6. Conclusions and Future Work

In this paper we have studied possible solutions for the problem of establishing a session
key between a client and a server in the context of the Internet of Things, where one or more
peers are sensor nodes from a Wireless Sensor Network. This problem is not trivial, as the inher-
ent limitations of many sensor nodes might hinder the application of existing key management
mechanisms. In our analysis, we also have tried to apply existing Key Management Systems
specialized in establishing link-layer keys between neighbouring nodes, as their underlying goal
is similar to those mechanisms that try to establish keys between remote entities. Our results can
be summarized as follows:

o In server nodes, Public Key Cryptography requires of powerful nodes and/or cryptographic
chips. In client nodes whose applications only need to connect external servers from time
to time, PKC could be a viable solution.

e Pre-shared key approaches can be useful for server nodes in small real-world applications.
However, existing mathematical-based KMS, like the Polynomial scheme, provide better
properties if the application can afford the extra overhead. Observe that such KMS can
also be a viable solution for client nodes.

The analysis presented in this paper is by no means a complete study on all the possible sensor
network scenarios that we can find in the Internet of Things, as we have only considered the
existence of client/server connections with no trusted third parties. If we take into account other
scenarios such as P2P scenarios, then it might be possible to make use of other key management
mechanisms, such as those systems based on the key pool paradigm. Moreover, the existence
of a trusted third party might enable the online distribution of specific credentials (e.g. shared
keys, Blom key pairs, polynomial shares) to trusted clients. Such scenarios will be considered in
future works on this area.
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