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Proximity attacks allow an adversary to uncover the location of a victim by repeatedly issuing queries with

fake location data. These attacks have been mostly studied in scenarios where victims remain static and there

are no constraints that limit the actions of the attacker. In such a setting, it is not difficult for the attacker to

locate a particular victim and quantifying the effort for doing so is straightforward. However, it is far more

realistic to consider scenarios where potential victims present a particular mobility pattern. In this paper, we

consider abstract (constrained and unconstrained) attacks on services that provide location information on

other users in the proximity. We derive strategies for constrained and unconstrained attackers, and show that

when unconstrained they can practically achieve success with theoretically optimal effort. We then propose

a simple yet effective constraint that may be employed by a proximity service (for example, running in the

cloud or using a suitable two-party protocol) as countermeasure to increase the effort for the attacker several

orders of magnitude both in simulated and real-world cases.
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1 INTRODUCTION
Proximity services are a special type of location-based service (LBS) where the user is informed

about nearby people of interest and their distance rather than their exact location in an attempt to

protect location privacy. To that end, queries are sent to the proximity service including the location

of the user, the search radius and possibly some information about the target. Unfortunately, when
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the exact distance to a user is revealed by the proximity service it is possible to retrieve the exact

location of the user. Examples include claims that Egyptian authorities leveraged dating apps to

track down gay users [6], and others attempted to find locations of Tinder users [19]. Consequently,

the need to provide rigorous privacy guarantees in proximity services is evident.

In view of these threats, some effort has been devoted to the development of privacy-preserving

proximity testing protocols [8, 12, 15]. These solutions allow two users to learn whether they

are within a certain distance of each other but no further information about their location or

distance is revealed to the other user. Some of these protocols rely on a trusted third party to handle

users’ locations while others get rid of this third party and operate in a decentralized way using

cryptographic 2-party protocols.

In general, these solutions focus on partially static models, where attackers can change their

location freely but victims can not. Capturing the behavior of an optimal attacker in this setting

when the victim is static is already hard although some progress has beenmade in recent years [9, 13].

However, this situation covers only a particular case of a victim’s behavior (i.e. user is at home

or office) and motivated us to investigate the expected effort for adversaries to localize users that

move in a particular mobility pattern, which covers the more general case of a victim that might be

travelling, moving around the city etc.

Although there has been extensive study in mobility models [2], attack strategies [11, 13, 19],

location privacy protectionmechanisms [8, 9, 18] and location privacy quantificationmetrics [16, 17],

there is very limited research on location prediction based on sequential spatio-temporal data using

a probabilistic approach. Given that location data acquired from an LBS platform are sequential

spatio-temporal data, one can obtain information on the moving patterns/behaviors of the user by

analyzing the trajectory dataset.

In this work, we are interested in quantifying the effort of an arbitrary attacker issuing proximity

queries in finding a user under certain models. In other words: how quickly can an attacker locate
a user based on queries to the LBS? In addition, we address the following question: can we design
a system that makes the expected location effort of an attacker more difficult while not harming
well-intended users? Inspired by work [9] that imposes constraints on the speed at which an attacker

can move in the plane, we have set out to explore how such restrictions would impact the attacker

effort in the moving target scenario. The main idea is that normally users will move at a maximum

speed, such as walking, biking or car-riding speeds, whereas attackers might make arbitrary queries

that would imply unrealistic moving speeds. By limiting the speed at which originating positions

by a querying party (attacker) can change, proximity attacks are mitigated. This countermeasure

can be applied both in the centralized (i.e. cloud provider) environment, as well as in the 2-party

setting with provable guarantees as shown in [9].

Our main contributions are as follows:

(1) We give upper and lower bounds on the minimum number of queries an attacker needs to

issue to locate the victim with probability
1

2
(generalizable to other probabilities). In particular,

for a search space of size M and assumptions on victim’s initial location and mobility, we

show that an optimal attacker needs at most
M
2
queries to locate a victim with probability

1

2
.

(2) We derive and implement a novel Linear Jump Strategy from the proof, and show empiri-

cally that its effort falls within the theoretical bounds. We find that for non-uniform initial

distributions of victims, the strategy performs worse. To address this, we propose a Greedy
Updating Attacker Strategy.

(3) We study the impact of constraining the speed of attacker queries, and show that with this

countermeasure in place an attacker performs significantly worse in simulated scenarios

(4) We evaluate our approach on a large dataset containing real world mobility patterns [22, 23].
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(5) We share the code used in our simulations and bound estimations as an open source project

under https://github.com/nicslabdev/proximityattacks.

Compared to [20], we introduce newmobility models for users that follow a given roadmap-based

topology and describe algorithms to compute the related probability matrix using a map and/or

traffic data. We also introduce constraints for the attacker, which requires a new mobility model

and the design and evaluation of novel attacker strategies. Our new results demonstrate that basic

speed constraints (for example, enforced in the cloud) greatly increase the time and cost of the

attack. We find that, the less random the initial distribution of the victim is, the harder for the

attacker to perform efficient attacking. Given the difficulty to extend our analytical results (that

apply for arbitrary optimal attackers) from the one-dimensional space to two-dimensions, we show

computational evidence that the bound of
M
2
also applies for several planes of bounded sizes.

The rest of this work is organized as follows. In Section 2, we present our mathematical modeling

of search spaces and mobility patterns. Section 3 summarizes the problem statement. We present

the mathematical analysis for calculating the probability of an attacker locating a victim using

location proximity queries in Section 4. Computational bounds are also derived in this section.

In Section 5, we present our practical linear jumping and greedy attacker strategies. Section 6

provides algorithms for making our simulations more realistic by incorporating road topology

and mobility information. In Section 7, we evaluate the proposed strategies under synthetic and

real-word settings. A countermeasure is presented and evaluated in Section 8, where it is shown

that by enforcing such countermeasure the effectiveness of the attacker can be greatly diminished.

Related work and conclusions are discussed in Sections 9 and 10, respectively.

2 PRELIMINARIES
2.1 Search Domain
In our model, users are able to move in a finite space that can be divided into discrete locations.
The granularity of the locations is limited by the maximum precision of the positioning device or

privacy considerations [5].

Space. For the two-dimensional case, the search space can be divided intom × n locations. Each

point typically has four adjacent locations, except for the corners. We call this space SM , with

M = mn. We focus on the two-dimensional case as it is by far the most common (as used on

a regular map), but use the simpler one-dimensional representation to make the analysis more

concise.

Most points in a two-dimensional space have four adjacent points, but in a finite search space

there are some (edge) points where the number of adjacent points is smaller. These locations can

be sequentially numbered. To go back and forth from a single dimension representation of a point

to a two-dimensional one we use the following projections:

proj (i ) : N→ N × Zn = (i div n, i mod n)

proj−1 (i, j ) : N × Zn → N = in + j, (1)

where Zn = {0, 1, 2, . . . ,n − 1}.

Time.We assume discrete time steps k ∈ {0, 1, 2, . . . }. In each time step, the user X can move once.

The movement of users is represented as a transition in our model.

Location. A user X located in the space SM at time k is denoted Xk , with k ∈ Z≥0 and Xk ∈
{0, 1, . . . ,M − 1}. The location of X at time 0 is called the initial location of X. Using the above

projection, we can define positioning and movement in both dimensions one and two. Given a

space SM , an entity’s possible positions are {0, 1, . . . ,M − 1}.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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The movement of entities is represented as a shift in our model. If an entityX is positioned in the

space SM , at time k , at position Xk , its position at time k + 1 can be represented as Xk+1 = Xk + j
for some j ∈ Z such that Xk+1 ∈ {0, 1, . . . ,M − 1}. The set of possible values for Xk+1 will be

determined by the particular mobility pattern of the entity.

As an example, if an entity in a two-dimensional search space SM (M =mn), is at Xi at time i ,
and at time i + 1, X has moved one point upwards and one to the left, we have Xi+1 = Xi + 1 − n,
and note that using the projection in (1) we get:

proj (Xi + 1 − n)

= (Xi + 1 − n div n,Xi + 1 − n mod n)

= (Xi div n − 1,Xi mod n + 1),

which intuitively means to decrease the x-coordinate of Xi by one and increase the y-coordinate

by one.

2.2 Mobility Models
We now informally describe some common mobility patterns (see Figure 1) to give a better intuition

of our modeling of search spaces and descriptions of entities moving in the search space. We will

use mobility patterns and mobility models interchangeably throughout this paper. Mobility patterns

can be used to describe an attacker’s search strategy or a victim’s common mobility pattern. In the

following sections we will focus first on a Random Walk mobility pattern for a victim to gain an

intuition on how different attacker strategies perform in this case, and later we will connect this

intuition to the more realistic case of a victim moving on a concrete city street map.

Xi≥0

(a) Static

X0

X6

X10

X15

(b) Linear

X0

X10

(c) Random Walk

X0

X1

X2

(d) Strategic Jump

X0

X3

X5

(e) Map walk

Fig. 1. Mobility Models

Static mobility model An entity X that follows a static mobility model starts at a random initial

position r in the search space SM and remains in the same position. For example, a person who

stays at home or in the office. With a fixed r ∈ SM :

Xk+1 = Xk , X0 = r , k ∈ Z≥0

Linear mobility model An entity X that follows a linear mobility model starts at an arbitrary

initial positionX0 within the search spaceS
M (M =mn for dimension two andM = n for dimension

one) and keeps moving such that the following conditions are satisfied:

(1) {XiM ,XiM+1, . . . ,XiM+M−1} = {0, 1, . . . ,M − 1} for all i ∈ Z≥0;
(2) Xk+1 ∈ {Xk + 1,Xk − 1} for a one dimensional search space of size n (k ∈ Z≥0).
(3) Xk+1 ∈ {Xk + n,Xk − 1,Xk + 1,Xk − n} for a two dimensional search space of sizem by n

(k ∈ Z≥0);
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This model may apply when a person is driving a car on the road.

Random walk mobility model An entity X that follows a random walk mobility model starts

at a random position and decides its next move uniformly at random from all the positions in its

vicinity.

Strategic jump An entity X that follows this strategy can arbitrarily move to any other position.

In other words, the next position is sampled freshly from an arbitrary distribution and can be

arbitrarily far away from the current position (thus ‘jump’). An attacker, for example, who can fake

his/her location as a means to perform attacks, such as trilateration, could be described using the

random jump model.

Route in street map In this mobility model there is a baseline map that makes some mobility

choices more likely (for instance follow a given street). This adds constraints to the mobility pattern

of X, since for instance driving into a lake is impossible or very unlikely. This pattern is not

deterministic though, there’s a probability distribution that describes the next steps given an initial

position, for instance 1/2 probability of moving north in a street and 1/2 of moving south.

3 PROBLEM STATEMENT
Based on the modeling of search spaces and possible mobility patterns from Section 2, we proceed

to give a formal mathematical description of the problem statement addressed in this work.

3.1 System and Attacker Model
Let Alice (A) be the attacker and Bob (B) be a user whose location is of interest to Alice. Bob uses

an LBS that will disclose Bob’s presence at location Bk to other users that claim to be at the same

location. Bob (and Alice) can only make one location claim per discrete time step k . Each time k ,
Bob will move once (and update his location on the LBS), and Alice will thus be able to perform

one query to the LBS to verify if Bob is at Alice’s claimed location Ak . Alice sends the first query

at time k = 0, and k is the time of the (k + 1)-th query.

The goal of Alice is to minimize the number of queries that she needs to send to LBS to be able

to verify Bob’s location. Conversely, Bob does not have a particular goal except to use the service

privately. He is not even aware of being tracked. Alice on the other hand is assumed to have a priori

information about Bob’s probability distribution obtained from past observations, external sources,

geographic features of a given city or location or a combination thereof. Later in Section 7.3, we will

discuss a real data example, where the attacker can obtain information from historical trajectory

data of a victim.

Consequently, since Alice can cheat about her location, send as many queries as she wants, and

her goal is to find Bob as quickly as possible, her mobility pattern can be arbitrary. Some potential

strategies of the adversary are shown in Figure 1. Note that these strategies are not exhaustive since,

as we will see in the following sections, an optimal strategy might involve jumping two positions

at a time, and this can be arbitrarily complex (2 positions in one directions, then 3 positions in

another directions and so on). On the other hand, we assume an honest user like Bob follows a

realistic mobility pattern where subsequent locations are contiguous to each other.

Finally note that while we use a third party LBS in this system model for simplicity, similar

scenarios could be constructed if Alice and Bob engage in a privacy-preserving proximity protocol

that is initiated by Alice and where the inputs of both of them remain private (e.g., the protocol

discussed in [8]).
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3.2 Problem Statement and Formalization
For a fixed probability p, we would like to calculate the number of steps needed by the attacker

in order to locate Bob with probability at least p. In the following we present the underlying

formalization.

Probabilistic Locations. Consider a search space SM . We posit the mobility model of Bob can be

described by a transition matrix P where each entry of P is a transition probability pi j representing
the probability of Bob moving from location i to location j in one step. Furthermore, we assume

the probability of Bob moving from location i to location j is the same at any step. More precisely:

Pr (Bk = j |Bk−1 = i ) = pi j , ∀k ∈ Z≥1 and i, j ∈ S
M .

Thus, it is straightforward to calculate the probability of Bob being at a particular location after k
steps by simply taking the kth power of the transition matrix.

Let B (k ) (k ∈ Z≥0) be a vector representing the probability of Bob being at each location j

(j ∈ {0, 1, . . . ,M − 1}) after k steps, i.e. B (k )
j = Pr (Bk = j ). We have B (k+1) = B (k )P .

Attacker Strategies. For a fixed attacker strategy A = A0,A1, . . . , we are interested in the

probability of two events: Ek , and Fj . Ek is the event that Alice locates Bob within k steps:

Ek := {∃i ≤ k s.t. Ai = Bi }

Fj is the event that Alice locates Bob exactly at step j:

Fj := {Aj = Bj }.

Problem Statement.We are interested in finding kO,p : the number of queries required by

an optimal attacker strategy to locate Bob with probability of at least p. Formally, we define

kO,p as follows:

kO,p := min

A
kA,p , (2)

with kA,p being the number of steps required by a specific attacker strategy A to locate

Bob with probability 0 ≤ p ≤ 1. We can find that number as follows:

kA,p := min{k : Pr (Ek ) ≥ p}.

Given the above, we can estimate some upper and lower bounds on these values that will be

useful to compare attacker strategies in the following.

Upper Bound for Pr (Ek ). By definition,

Pr (Ek ) = Pr (F0 ∪ F1 · · · ∪ Fk ),

which gives the following upper bound for Pr (Ek ) since the probability of finding Bob at step i is at
most equal to the probability of Bob’s most likely location at that step:

Pr (Ek ) ≤ Pr (F0) + Pr (F1) + · · · + Pr (Fk ) ≤
k∑
i=0

max

j
B (i )
j . (3)

Note that the above upper bound on Pr (Ek ) holds for any attacker strategy A.

Lower Bound on k .We define

klower,p := min



k :

k∑
i=0

max

j
B (i )
j ≥ p



. (4)

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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In view of Equation (3), klower,p ≤ kO,p is a lower bound of kO,p .

In the following we will mostly focus on the case p = 0.5. To simplify the notations, we define

kA := kA,0.5 = min{k : Pr (Ek ) ≥ 0.5},

kO := kO,0.5 = min

A
kA ,

klower := klower,0.5.

Thus if Alice follows strategyA, kA (resp. kA + 1) is the number of steps (resp. number of queries)

needed for Alice to locate Bob with a probability of at least 0.5. kO (resp. kO + 1) is the minimum

number of steps (resp. minimum number of queries) needed for Alice to locate Bob with a probability

of at least 0.5 independently of strategy used. In addition, klower ≤ kO is a lower bound of kO .

4 ATTACKER EFFORT QUANTIFICATION
Next we present the theoretical analysis on the minimal number of steps required by an optimal

attack strategy to locate a particular victim. First, we derive the formula for calculating Pr (Ek ) and
then we consider the case of a victim following a random walk mobility model. In Section 4.1.1,

with a simple example in a one-dimensional search space of size 5, we illustrate how this formula

and the upper bound in (3) can be used to analyze different attacker strategies and get kO,0.5. We

choose a random walk model to give a rigorous mathematical analysis. In more complex moving

patterns, the problem may not have analytical or closed solutions because the transition matrix

is indefinable or needs to be recursively updated. Our mathematical derivation will be presented

for the one-dimensional case only as we can always project two-dimensions to a one-dimensional

space.

4.1 General formula to estimate attacker’s effort
In the following we discuss how to derive an explicit formula to compute the probability to find a

victim with k steps, and thus, how to compute the minimum number of steps k to find a victim

with probability greater than p. This formula assumes that both the mobility pattern and the attack

strategy are known.

Given the transition matrix P and the vector B (0)
of initial position probabilities, B (k ) = B (0)Pk

gives the probabilities of Bob being at each different position after k steps. More precisely, B (k )
j =

Pr (Bk = j ) is the probability of Bob at position j after k steps.

Let P ij1 j2 denote the (j1, j2)−entry of the matrix P i . It gives the probability of Bob going from

position j1 to position j2 in i steps, i.e. for any k ∈ Z≥0,

Pr (Bi+k = j2 |Bk = j1) = P ij1 j2 .

Fixing an attacker strategyA, letAi denote the position of Alice at step i . For any positive integers
i1 < i2, the probability of Alice locating Bob at both steps i1 and i2 is equal to the probability of

Bob being at position Ai1 at step i1 multiplied by the probability of Bob reaching position Ai2 in

i2 − i1 steps, i.e.

Pr

(
Fi1 ∩ Fi2

)
= Pr

(
Bi1 = Ai1 ∩ Bi2 = Ai2

)
(5)

= Pr

(
Bi1 = Ai1

)
Pr

(
Bi2 = Ai2 |Bi1 = Ai1

)
= B

(i1 )
Ai

1

P i2−i1
Ai

1
Ai

2

. (6)
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To get a general formula for Pr (Ek ), we first note

Pr (Ek ) = Pr (F0 ∪ F1 ∪ · · · ∪ Fk )

= Pr ((F0 ∪ F1 ∪ · · · ∪ Fk−1)
c ∩ Fk )

= Pr (F0) + Pr
(
F c
0
∩ F1
)
+ Pr ((F0 ∪ F1)

c ∩ F2)+

· · · + Pr ((F0 ∪ F1 ∪ · · · ∪ Fk−1)
c ∩ Fk )

=
∑

0≤i≤k

Pr ((F0 ∪ F1 ∪ · · · ∪ Fi−1)
c ∩ Fi ), (7)

where F c is the complement of F , i.e., F cj means Alice does not successfully locates Bob at step j.

Our GUAS attacker strategy uses this result for aggregate success computation (see Section 5.2).

From probability theory we can also write

Pr (Ek ) = Pr (F0 ∪ F1 ∪ · · · ∪ Fk ) =
k∑

m=0

(−1)m+1 *.
,

∑
0≤i1< · · ·<im ≤k

Pr

(
Fi1 ∩ · · · ∩ Fim

)+/
-

(8)

By combining Equation 5 with Equation 8, we have the following general formula for Pr (Ek ):

k∑
m=0

B
(m)
Am

*.
,
1 +

k−m∑
ℓ=1

(−1)ℓ
∑

m<i1< · · ·<iℓ ≤k

P i1−m
AmAi

1

. . . P iℓ−iℓ−1
Aiℓ−1Aiℓ

+/
-

= B
(0)
A0

*.
,
1 −

k∑
i=1

P i
A0Ai

+
∑

1≤i1<i2≤k

P i1
A0Ai

1

P i2−i1
Ai

1
Ai

2

− . . .
+/
-

+ B
(1)
A1

*.
,
1 −

k∑
i=2

P i−1
A1Ai

+
∑

2≤i1<i2≤k

P i1−1
A1Ai

1

P i2−i1
Ai

1
Ai

2

− . . .
+/
-
+ · · · + B

(k )
Ak
. (9)

If the attacker strategy is not deterministic, then for one fixed sequence of positionsa0,a1,a2, . . . ,ak ,
Pr (Ek |A0 = a0 ∩ A1 = a1 ∩ · · · ∩ Ak = ak ) is given by

k∑
m=0

B (m)
am

*
,
1 +

k−m∑
ℓ=1

(−1)ℓ
∑

m<i1<i2< · · ·<iℓ ≤k

P i1−mamai
1

P i2−i1ai
1
ai

2

. . . P iℓ−iℓ−1aiℓ−1aiℓ
+/
-
,

and we have the following formula for Pr (Ek )∑
1≤a0,a1, ...,ak ≤n

Pr (A0 = a0 ∩ · · · ∩ Ak = ak ) · Pr (Ek |A0 = a0 ∩ · · · ∩ Ak = ak ) (10)

Note that when the attacker strategy is deterministic, for one sequence of positions a0,a1,a2, . . . ,ak
we have Pr (A0 = a0, . . . ,Ak = ak ) = 1 and we get the formula in (9).

In the following, we will assume Bob follows a random walk strategy that can be represented as

a Markovian process with transition probabilities pi j , consistent with the provisions of the random

walk mobility model in Section 2.2.

4.1.1 Example for linear and strategic attacks. To illustrate our approach to estimate an attacker’s

effort, we consider a one-dimensional search space of size 5. The probability of Bob being at each

particular position of the search space can be calculated using the initial position matrix B (0)
and

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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transition matrix P as follows:

B (0) =

[
1

5

,
1

5

,
1

5

,
1

5

,
1

5

]
, P =



0 1 0 0 0

1

2
0

1

2
0 0

0
1

2
0

1

2
0

0 0
1

2
0

1

2

0 0 0 1 0



.

Furthermore,

B (1) =

[
1

10

,
3

10

,
1

5

,
3

10

,
1

10

]

B (2) =

[
3

20

,
1

5

,
3

10

,
1

5

,
3

20

]

B (3) =

[
1

10

,
3

10

,
1

5

,
3

10

,
1

10

]
= B (1)

B (4) = B (2) .

We are interested in calculating kO = minA kA . By (3), for any attacker,

Pr (E0) ≤
1

5

, Pr (E1) ≤
1

5

+
3

10

=
1

2

.

Thus kO ≥ klower = 1. Next, we compare two different attacker strategies. We use (9) to calculate

Pr (Ek ).
Linear Attacker Consider a linear attacker Al inear , i.e. A0 = 0,A1 = 1,A2 = 2, . . . . Then

Pr (E0) = Pr (F0) =
1

5

,

Pr (E1) = Pr (F0 ∪ F1)

= Pr (F0) + Pr (F1) − Pr (F0 ∩ F1)

= B (0)
0
+ B (1)

1
− B (0)

0
Pr (B1 = 1|B0 = 0)

= B (0)
0
(1 − P01) + B

(1)
1
=

3

10

,

Pr (E2) = B (0)
0
(1 − P01 − P

2

02
+ P01P12)

+ B (1)
1
(1 − P12) + B

(2)
2
=

9

20

,

Pr (E3) = B (0)
0
(1 − P01 − P

2

02
− P3

03
+ P01P12

+ P2

02
P23 + P01P

2

13
− P01P12P23)

+ B (1)
1
(1 − P12 − P

2

13
+ P12P23)

+ B (2)
2
(1 − P23) + B

(3)
3
=

3

5

.

For an attacker following linear mobility model, we need k ≥ 3 to have Pr (Ek ) ≥
1

2
, i.e. kAl inear = 3.

Strategic jump For an attacker who can jump to any location at any time she wishes, one

possible strategy may be to choose Ak =m s.t.

B (k )
m = max{B (k )

i : Fj ∩ Fk = ∅, ∀0 ≤ j ≤ k − 1}

= max{B (k )
i : Pk−j

Aj i
= 0, ∀0 ≤ j ≤ k − 1}.
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We note that sometimes there are multiple choices ofm and sometimes there is no such choice.

Nevertheless, for this particular example, if the attacker chooses the strategy AStrateдic with

A0 = 0,A1 = 3,A2 = 3,A3 = 0, then

Pr (E0) = B (0)
0
=

1

5

,

Pr (E1) = B (0)
0
+ B (1)

3
=

1

2

,

which gives kAStrateдic = 1.

Thus, we have shown for a one-dimensional search space of size 5, kO = 1 and we have given two

different attacker strategies to achieve this value: Al inear and AStrateдic . We note that Strategic

jump is a special case of GUAS presented in Section 5.2 when the attackers knows both B (0)
and P .

When n is much bigger than 5, there are many more different attacker mobility models that can

be considered. The methods used above for calculating kO and manually finding the best attacker

strategy will not be applicable. In the rest of the paper, we will develop upper and lower bounds

on kO as well as approximate the best attacker strategy through theoretical and experimental

approaches.

4.2 Estimating bounds on all attackers
In Section 4.1 we derived a general formula to compute bounds for an arbitrary but fixed

combination of victim and attacker mobility patterns. In this subsection we want to derive a general

result on a victim that is following a random walk in one dimension against an arbitrary attacker.

This will give an intuition on lower and upper bound for general attackers that we will study in

two dimensions as well in the following subsection.

In this section, we derive upper and lower bounds on kO by analyzing the matrices B (k )
. We

show that “for a search space of size n, ⌊ n
3
⌋ − 1 ≤ kO ≤ ⌊

n
2
⌋” (see Corollary 1). To achieve this goal,

we first estimate the values of B (k )
j . For a one-dimensional search space of size n, Bob follows a

transition matrix P with initial position vector B (0)
:

B (0) =

[
1

n
,
1

n
, . . . ,

1

n

]
, P =



0 1 0 . . . 0 0

1

2
0

1

2
. . . 0 0

0
1

2
0 . . . 0 0

...
...
...
. . .

...
...

0 0 0 . . . 0
1

2

0 0 0 . . . 1 0



The probabilities of Bob in each position at step i is given by B (i ) = B (0)P i :

B (1) =

[
1

2n
,
3

2n
,
1

n
, . . . ,

1

n
,
3

2n
,
1

2n

]
,

B (2) =

[
3

4n
,
1

n
,
5

4n
,
1

n
, . . . ,

1

n
,
5

4n
,
1

n
,
3

4n

]
,

B (3) =

[
1

2n
,
11

8n
,
1

n
,
9

8n
,
1

n
, . . . ,

1

n
,
9

8n
,
1

n
,
11

8n
,
1

2n

]
,

B (4) =

[
11

16n
,
1

n
,
5

4n
,
1

n
,
17

16n
,
1

n
, . . . ,

1

n
,
17

16n
,
1

n
,
5

4n
,
1

n
,
11

16n

]
, (11)

We have the following observation:
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Lemma 1. For k ∈ Z≥0,



1

n ≤ B (k )
j ≤

3

2n 1 ≤ j ≤ n − 2
1

2n ≤ B (k )
j ≤

3

4n j = 0,n − 1
.

Proof. See Appendix A. □

The above bounds on B (k )
j helps us to get upper and lower bounds on kO . Next we show a lower

bound of klower , which gives a lower bound for kO .

Proposition 1.

kO ≥ klower ≥ ⌊
n

3

⌋ − 1.

Proof. By Lemma 1, for any k ,

k∑
i=0

max

j
B (i )
j ≤

3

2n
· (k + 1) =

3k + 3

2n
.

If k < ⌊ n
3
⌋ − 1,

∑k
i=0 maxj B

(i )
j <

1

2
. Thus by definition, we must have klower ≥ ⌊

n
3
⌋ − 1. □

By the definition of kO , for any given attacker strategyA, kO ≤ kA . Next, we construct a specific
attacker strategy Ajp and prove an upper bound for kAjp , to obtain an upper bound for kO .

Lemma 2. For any n ≥ 4, there exists a strategy Ajp such that kAjp ≤ ⌊
n
2
⌋.

Proof. First we notice that P ℓ
i j = 0 if j − i > ℓ due to our construction of the random walk P .

(1) Let n ≥ 4 be even, consider the attacker strategy Ajp with the first
n
2
positions given by

A0 = 0,A1 = 2,A2 = 4, . . . ,Am = 2m, . . . ,A n
2
−1 = n − 2. For all 0 ≤ i < j ≤ n

2
− 1,

Aj − Ai = 2(j − i ) > j − i .

Then for 0 ≤ i < j ≤ n
2
− 1,

Pr

(
Fi ∩ Fj

)
= Pr

(
Bi = Ai and Bj = Aj

)
= Pr (Bi = Ai )Pr

(
Bj = Aj |Bi = Ai

)
= BiAi

P j−i
AiAj

= 0.

Together with Lemma 1 we have

Pr

(
E n

2
−1

)
=

n
2
−1∑

i=0

Pr (Fi )

= B (0)
0
+ B (1)

2
+ · · · + B

( n
2
−1)

n−2

≥

n
2
−1∑

i=0

1

n
=

1

n

n

2

=
1

2

.

Hence kAjp ≤
n
2
− 1.
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(2) Let n ≥ 5 be odd, consider the attacker strategy Ajp with the first ⌊ n
2
⌋ + 1 positions given

by A0 = 0,A1 = 2,A2 = 4, . . . ,Am = 2m, . . . ,A ⌊ n
2
⌋ = n − 1. Similarly we can prove

Pr

(
Fi ∩ Fj

)
= 0 for 0 ≤ i < j ≤ ⌊ n

2
⌋. Together with Lemma 1 we have

Pr

(
E ⌊ n

2
⌋

)
=

⌊ n
2
⌋∑

i=0
Pr (Fi ) = B

(0)
0
+ B

(1)
2
+ · · · + B

( ⌊ n
2
⌋)

n−1

≥
1

2n
+

⌊ n
2
⌋−1∑

i=0

1

n
=

1

n

(⌊n
2

⌋
+
1

2

)
=

1

2

,

and hence kAjp ≤ ⌊
n
2
⌋.

□

Recall the notation:

kA = min{k : Pr (Ek ) ≥
1

2

}, kO = min

A
kA

Corollary 1. For a one-dimensional search space of size n, ⌊ n
3
⌋ − 1 ≤ kO ≤ ⌊

n
2
⌋.

We note that the above Corollary agrees with our simulation results in Figure 3 (when α = 1e+13,
which is an almost uniform distribution for B (0)

).

We used the bounds in Lemma 1 to approximate

∑k
i=0 max0≤j≤n−1 B

(i )
j in Proposition 1. We also

derived the lower bound of klower , which then gave lower bounds on kO . From Equation (11),

we can see max0≤j≤n−1 B
(k )
j decreases when k increases, which means the upper bounds on B (k )

j
derived in Lemma 1 can be tightened for larger values of k . Thus we expect the lower bound for kO
in Corollary 1 to be higher than ⌊ n

3
⌋ − 1.

Similarly, the upper bound ⌊ n
2
⌋ for kO was derived through a lower bound on B (k )

j . However, from

Equation (11) we see that B (k )
j can achieve higher values than the lower bounds, which suggests

that the specific attacker strategy Ajp described in Lemma 2, kAjp is strictly smaller than ⌊ n
2
⌋.

These observations motivate the calculations of exact values of

∑k
i=0 max0≤j≤n−1 B

(i )
j and kAjp ,

which yield tighter bounds on kO .

4.3 Computational bounds
In order to have a better understanding of the values kO for different search spaces, and given the

challenges to analytically prove results for arbitrary attackers in two dimensions, we have imple-

mented formula (9) to calculate Pr (Ek ) for different attacker strategies. We have also implemented

the calculation of

∑k
i=0 maxj B

(i )
j in Equation (3) to obtain klower . In the following we present the

evaluation results for two dimensions. The results were obtained by running our algorithms (see

Appendix B) on a virtual machine with 100 GB of RAM and 32 cores running at 2 GHz each.
1

The crucial factor that decides the value of kO is the size of the search space. In Figure 2, we

give a plot of klower /n
2
vs. n, where klower is a lower bound on kO obtained using Algorithm 7 (in

Appendix B) for a two-dimensional search space of size n2. That is, in this part we consider the

search space to be in the shape of a square (i.e.m = n).
A two-dimensional analogue to attacker strategy Ajp in dimension one would be attacker

strategy, denoted byAjp2, where the attacker follows the route (1, 1) → (1, 3) → · · · → (1,n−2) →
(3, 1) → (3, 3) . . . , i.e. A0 = n + 1, A1 = n + 3, . . . ,A n−1

2

= 2n − 2,A n+1
2

= 3n + 1,A n+3
2

=

1
Code is available at https://github.com/nicslabdev/proximityattacks.
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Fig. 2. klower /n
2, where klower is a lower bound of kO for a two-dimensional search space of size n2

Table 1. kAjp2/n, where Ajp2 is the attacker strategy described above

n kAjp2 kAjp2/n
2

4 11 0.6875

5 15 0.6

6 22 0.6111

7 27 0.5510

3n + 2, . . . for n odd and (1, 1) → (1, 3) → · · · → (1,n − 1) → (3, 1) → (3, 3) . . . , i.e. A0 =

n + 1, A1 = n + 3, . . . ,A n
2

= 2n − 1,A n+2
2

= 3n + 1,A n+4
2

= 3n + 2, . . . for n even. In Table 1 we

give the values of kAjp2/n
2
vs. n.

5 PRACTICAL ATTACKER STRATEGIES
In the previous section we derived theoretical bounds for the optimal attacker strategy. The

upper bound provides us with a constructive strategy, which we briefly discuss in this section

and name it the Linear Jumping Strategy (LJS). Unfortunately, the lower bound estimate does not

help to find the optimal strategy. While we could implement an exhaustive search to find optimal

strategies, that approach is impractical and computationally expensive. In particular, for n locations,

we need to evaluate the kA,p for n ⌈
n
2
⌉
different strategies . This is infeasible even for moderate

values of n. Instead, we introduce a (locally) greedy strategy, which is computationally cheaper

and allows us to perform simulations on a larger range of settings. We call it the Greedy Updating
Attack Strategy (GUAS).

In the following we describe these strategies in detail and provide algorithms to compute the

expected effort (i.e., number of queries) an attacker needs to perform to locate a victim using such

strategies.

5.1 Linear Jumping Strategy
An attacker following a linear jumping strategy sequentially selects every second location in the

search space regardless of the initial locations distribution of the victim. In other words, the attacker

does not use information on the victim to guide her moves. Given uniform initial distributions and

a random walk mobility model of the victim, this strategy is expected to meet the upper bound

cost as discussed in the previous section.

The pseudocode that describes how to calculate the effort of the attacker to find the victim with

probability of at least 0.5 is described in Algorithm 1. The runtime of this algorithm is linear in n,
where n is the size of the search space.
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Algorithm 1: Expected effort of Linear Jumping Strategy (LJS)

Result: Number of queries that Alice needs to perform to locate Bob with probability of at

least 0.5.

Input: MAX_QUERIES, initial distribution of Bob B (0)
, transition matrix P

// Initialize number of queries and success probability

success = 0;

i = 1;

B̂ (0) = B (0)
; // Initialize conditional probability vector for Bob

while i < MAX_QUERIES do
Ai = 2 ∗ (i − 1); // Attacker strategy: jump to every second position

// Check if Pr(Ek) ≥ 1/2

success = success + (1 − success ) ∗ B̂ (i−1)
Ai

;

if success ≥ 0.5 then
return i; // Minimal number of steps found

end

// Update Bob’s location probabilities

B̂ (i−1)
Ai
= 0; // Not found thus set to empty

B̂ (i−1) = normalize(B̂ (i−1)
);

B̂ (i ) = B̂ (i−1) · P ; // Bob’s location probability in next step

i = i + 1;

end
return ERROR; // Attacker was unable to locate Bob within MAX_QUERIES

Algorithm 1 receives as input the initial probability distribution of Bob B (0)
together with the

transition matrix P . A limit on the number of queries is also input to prevent the algorithm from

running indefinitely. The attacker is assumed to start at position 0 and, at each step, the algorithm

calculates the success probability Pr(Ek ) based on the probability of Bob being at the same location

as the attacker. In case the probability is at least 0.5, it ends returning the number of queries that

were necessary to reach that value, otherwise the algorithm recalculates Bob’s probability vector

taking into account that the attacker could not find him in the last visited location. The vector B̂ (i )

is normalized to ensure that the sum of its elements is equal to 1.

Note that it is easy to generalize this algorithm so that the attacker starts jumping from an

arbitrary position and not always from position 0. It is also possible to use a parameter to indicate

a success probability threshold other than 0.5.

5.2 Greedy Updating Attack Strategy
An attacker using the greedy updating attack strategy guides her moves (queries) based on estimates

of the victim’s location. In particular, Alice selects to jump to the most likely location of Bob

according to her estimation.

Algorithm 2 presents the pseudocode used to calculate the effort of a GUAS attacker. The

algorithm takes into account that Alice has some assumed initial distribution of Bob’s locations

B̃ (0)
, which may be Bob’s true initial location distribution B (0)

or a different one, to calculate where
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Algorithm 2: Expected effort of Greedy Updating Attack Strategy (GUAS)

Result: Number of queries that Alice needs to perform to locate Bob with probability of at

least 0.5.

Input: MAX_QUERIES, B (0)
, P , assumed initial distribution of Bob B̃ (0)

// Initialize number of queries and success probability

success = 0;

i = 1;

while i < MAX_QUERIES do
Ai = max

j
B̃ (i−1)
j ; // Attacker strategy: maximum likelihood estimate of B

// Check if Pr(Ek) ≥ 1/2

success = success + (1 − success ) ∗ B (i−1)
Ai

;

if success ≥ 0.5 then
return i; // Minimal number of steps found

end

// Update Bob’s location and estimates

B̃ (i−1)
Ai
= 0; // Attacker estimates this position empty

B̃ (i−1)
= normalize(B̃ (i−1)

);

Bi = B (i−1) · P ; // Bob’s actual location probability in next query

B̃i = B̃ (i−1) · P ; // Bob’s estimated location probability in next query

i = i + 1;

end
return ERROR; // Attacker was unable to locate Bob within MAX_QUERIES

Alice jumps. In addition, the true initial distribution B (0)
is used to check the success probability of

Alice based on where she decides to jump.

At each time step i , Alice keeps her current estimate of Bob’s location as B̃ (i )
. Alice uses B̃ (i )

to

guide her decisions and to keep track of locations she found to be empty previously. That means

that B̃ (i )
depends on the actual choices of the attacker, while B (i )

just depends on B (0)
and P .

Alice checks the most likely location of Bob. If Alice succeeds, then we are done; if Alice does not

find Bob, she updates B̃ (i )
by setting the probability of the location checked in the current query

to be 0 and re-normalizing B̃ (i )
. Thus, the following values of B̃ (i+1)

will be computed under the

condition that the victim was not at the location tested in query i and earlier.

The runtime of this algorithm is quadratic in n because for each of the up to ⌈n
2
⌉ queries, we

need to find the minimal value of B̃ (i−1)
, which is of size n.

In Section 7, we evaluate both LJS and GUAS for a random walk transition pattern and for a real

dataset. For the real dataset, we derive a transition matrix that is consistent with the restrictions

imposed by the road topologies.

6 ROADMAP-BASED TOPOLOGIES
In practice, human mobility does not follow a random walk pattern and presents a certain degree

of determinism. This is to a large extent conditioned by the underlying map (e.g., city roads, lakes,

etc.), which results in visiting some particular locations to be highly unlikely to be visited.
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Since we formalize the mobility pattern of the target as a transition matrix P where cell (i, j)
indicates the probability of moving from location i to location j in one step, we can encode the

restrictions imposed by the map into P . Algorithm 3 describes the process of computing the

transition matrix P for a given street map.

The algorithm takes the map represented as a graph G, which is in essence how street maps

are represented in projects like OpenStreetMap,
2
with V being a set of specific points on the earth

surface and E indicating the street connections between every two points. The algorithm also

receives the map bounds B, that is the maximum and minimum coordinate points that define the

map area, and the cell precision cp, which determines the number of cells that will result from

dividing this map area. First, it initializes P as a square matrix with as many rows and columns as

the number of cells resulting from diving the map. Then, for each vertex of the graph, we obtain

all vertexes connected with it by an edge. Finally, the transition matrix is updated with the same

probability for all neighbours. To do so, we need to find the row corresponding tov and the columns

of each neighbor n. This can be done by means of the projection function defined in previous

sections.

Algorithm 3: Compute transition matrix P from a map

Input: Map G (V ,E), map bounds B, cell precision cp

// Initialize transition matix P

[nr ,nc] = discretize_area(B, cp) ; // Divide map into cells

P = zeros(nr ∗ nc,nr ∗ nc ) ; // One row and one column per cell

foreach v ∈ V do
x = cell_proj(v,nc ) ; // Get the row of v in P

neiдhs = adjacencies(v ) ; // Get v’s neighbouring points

foreach n ∈ neiдhs do
y = cell_proj(n,nc ) ; // Get the column of n in P

P[x ,y] = 1/size(neiдhs ) ; // All neighbours are equally likely

end
end
return P

The result of Algorithm 3 is a transition matrix that encodes only information about the streets

and for which all neighbouring points of a particular location are equally likely to be visited from

it. Although the utility of this transition matrix is not optimal, it can be improved by incorporating

other sources of information. For example, there are some areas of the city which are busier, roads

which are more congested, and intersections where turning is more likely.

On the other hand, Algorithm 4 computes a transition matrix P from a trajectory dataset T =
(ID,LON ,LAT ,TS ) consisting of a number of timestamped locations for vehicles/persons with

different identifiers. A set of time-consecutive locations for a given identifier defines a trajectory.

In addition to the trajectory dataset, Algorithm 4 also receives as input a cell precision cp and the

map bounds B for which the transition matrix P is to be generated.

After initialization of the transition matrix P , done as in the previous algorithm, for each identifier

in the trajectory dataset we obtain all visited locations and for each of these locations, we get all the

2
https://www.openstreetmap.org/
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Algorithm 4: Compute transition matrix P from trajectory data

Input: Trajectory dataset T , map bounds B, cell precision cp

// Initialize transition matrix P

[nr ,nc] = discretize_area(B, cp);

P = zeros(nr ∗ nc,nr ∗ nc );

foreach id ∈ T .ID do
L = locations(id,T ) ; // Get all the locations for this id

foreach l ∈ L do
x = cell_proj(l ,nc ) ; // Get the row of l in P

[Vp, f req] = next(l ) ; // Get points visited from l and their frequency

for i = 1, . . . , size(Vp) do
y = cell_proj(Vp[i],nc ) ; // Get column of the visited point in P

P[x ,y] = f req[i]/sum( f req); // Transition’s relative frequency

end
end

end
return P

points that are visited next and how often. This is possible since points are timestamped. Finally,

we update the right positions of P with the relative frequency of the transitions.

Note that the dataset might include trajectories from multiple identifiers and thus the resulting

transition matrix would define the busiest roads or turnings in the area. In case the trajectory

data belongs to a single identifier, the transition matrix would encode the driving habits of that

individual, which can be used to predict future locations of that particular target.

The transition matrix resulting from Algorithm 3 and the one resulting from Algorithm 4 can be

combined to include in a single matrix P information on the road topology as well as information on

user mobility patterns. In this way, the final transition matrix is the result of different information

layers. One obvious benefit of this is that if any of the information layers change, either because

new roads become available or the mobility patterns change (e.g., weekdays or weekends), a new

transition matrix can be generated according to the new situation. Another benefit is that one may

have different individual matrixes and combine them as required for a particular goal.

The algorithm for combining matrices is trivial if the bounds and precision used in both Algo-

rithms 3 and 4 are the same. Such algorithm would consist of adding the matrixes together and

then normalizing the resulting matrix.

7 EVALUATION
In this section we evaluate LJS and GUAS for different initial locations of Bob. First, we explain the

set up for our experiments. Then, we present the results of our strategies for a transition matrix

defining a random walk and for a transition matrix derived from a real trajectory dataset.

7.1 Experiments setup
We consider search spaces in one an two dimensions with variable sizes ranging from 100 to 5000

points. In case we want to simulate a 10 × 10 search space (two dimensions), we project it onto

a one-dimensional search space of 100 points. Unless otherwise stated, in our simulations, we
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also assume that the attacker knows the initial distribution of the victim’s location B (0)
. When the

attacker does not know the distribution of the victim, she will assume a uniform distribution.

Note that in Sect. 4 we developed an analytical framework that allows one to define an arbitrary

distribution for the victim’s initial position. However, in order to gain an intuition on the bounds,

we often chose a uniform distribution under the assumption that the attacker did not have previous

knowledge on the victim and the search space did not favor any particular starting point. This could

be the case if, for example, the search space is a densely populated area and the victim could be

potentially anywhere. In this Section however, we account for knowledge on the initial distribution

by considering a family of Dirichlet distributions with varying parameters.

We run 100 simulations for each of search space size and initial location probability distribution

for B (0)
, which is represented by a Dirichlet distribution with concentration parameter α . For our

simulations we consider the following values of α : 0.001, 0.01, 0.1, 1, 10, 1e+13. A positive α value

of almost zero indicates an initial distribution with very high likelihood in one location, and almost

zero in all others. With increasing α values, B (0)
is closer to being uniformly distributed.

The code for the simulations was written in Python and simulations were performed on a Core

i3-4005U CPU@1.70GHz with 8GB RAM.
3

7.2 RandomWalk Mobility
This section presents the results of using LJS and GUAS against a mobile target that follows a random

walk mobility model, which is represented by a transition matrix P like the one in Section 4.2. We

show simulations results for search spaces of 100, 500, 2000 and 5000 points. A similar trend was

exhibited for other search space sizes within that range.
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Fig. 3. GUAS and LJS results for random walk mobility for different search space sizes with success probability
of 0.5. Assume attacker knows victim’s initial distribution.

The results in Figure 3 represent the effort of the attacker to successfully locate Bob with a

probability of at least 0.5 under various initial distributions for Bob. Note that the results are

normalized with respect to the search space size to make it easier to compare results. Moreover, we

choose a box-plot representation to give a better intuition on the sparsity of the results. The upper

and lower borders of the box represent the upper and lower quartiles, and the bar in the box is the

median. The upper and lower whiskers represent the maximum and minimum number of queries

in all simulations, excluding outliers, which are more than 1.5 times beyond the upper and lower

quartiles.

3
Code is available at https://github.com/nicslabdev/proximityattacks.
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Results and discussion. We observe that with a large concentration parameter α , which leads to

an almost uniform distribution of the initial position, both GUAS and LJS behave similar to the

expected upper bound of an optimal attacker against a random walk victim as discussed in Sect. 4.3.

Interestingly, LJS still performs similar to the upper bound of an optimal attacker even when the

initial distribution is not uniform, which was one of the assumptions in the analysis performed in

4.3. With decreasing concentration parameter value, the initial distribution becomes less uniformly

distributed. Assuming that the attacker is aware of the exact initial distribution, GUAS becomes

more effective for such non-uniform initial distribution. This is true regardless of the size of the

search space, as shown in Figure 3.

7.3 Roadmap-based Mobility
We also performed simulations with trajectory data from the T-Drive dataset released by Mi-

crosoft [22, 23]. The dataset comprises GPS trajectories of 10357 taxis between Feb. 2 and Feb. 8

2008 within the city of Beijing, around 15 million points and a total of trajectories that together add

up to 9 million kilometers. The average sampling interval is around 177 seconds with a distance of

623 meters.

Although it would be interesting to also perform a roadmap-based mobility analysis for other

type of mobility patterns (for instance walking individuals), we believe the T-drive dataset is

representative of a real-life scenario where mobility is constrained by a city’s topology. In contrast

to a dataset where subjects (i.e., cars or persons) have more stable mobility patterns, for instance

driving from home to work, the T-drive dataset has subjects that behave more randomly, given

that they do not chose the same routes day after day. However this randomness is irrelevant from

the point of view of an attacker that has no previous knowledge on a victim’s mobility patterns

beyond the city’s topology.

Using Algorithm 4, defined in Section 6, we build up the transition matrix Ptaxi. This transition
matrix is obtained from trajectory data within the third ring of Beijing. To do so, we establish

suitable map bounds for that area and then discretize it in grid cells of 500 meters × 500 meters,

which corresponds to a lat-long precision unit of around 0.005. This results in 884 different locations.

For each taxi, we check which grid cell the taxi is moving to by reading the data in chronological

order on a daily basis. Whenever there is a transit from, say location (or grid cell) x to y, we record
this transit. After processing and recording all the transits for the first taxi, we can normalize the

resulting matrix and build up a transition matrix only for this taxi. We do this for all the taxis,

aggregate all the transition matrices and then normalize them to arrive at Ptaxi.

Results. We simulated different initial distributions for the victim, and studied the case where

the attacker knows these distributions and when the distributions are unknown and thus need to

be guessed (see Sect. 5). If the attacker is unaware of the initial distributions for the victim, she

assumes a uniform initial distribution. See Figure 4a and 4b for results with success probabilities of

0.5 and 0.8 respectively. Success is determined by how close to uniform is the victim’s distribution.

While for larger values of α the attacker’s guess is close enough to not decrease performance

significantly, if the victim’s initial distribution is more uniform (α ≤ 0.01), the attacker without
knowledge on the initial distribution will perform worse, while the attacker with knowledge on

initial B can leverage this in the GUAS strategy to decrease the required number of guesses.

Comparing performance of GUAS and LJS in Fig. 4a and Fig. 4b, we observe that for a less

structured/dynamic mobility pattern, which for example could be modeled by some highly sparse

transition matrix, GUAS performs better than LJS. Our interpretation of this result is that a realistic

transition matrix leads to a set of locations that are significantly more likely than others. For LJS, it
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Fig. 4. Attack strategies performance on T-Drive dataset for unknown and known initial distributions with
success probabilities of 0.5 and 0.8.

does not matter if the attacker knows the initial distribution since LJS does not utilize knowledge

on the victim.

8 COUNTERMEASURES
The previous section demonstrates the effort required for an attacker following either the LJS or

the GUAS strategy in a real scenario derived from a dataset consisting of spatio-temporal trajectory

data. We showed that an attacker using either strategy is able to consistently locate the victim with

probability 0.5 in a number of steps that is linear with the size of search space, N . More precisely,

an attacker is able to locate a victim in at most
N
2
steps, being more efficient to use GUAS than LJS.

In particular, GUAS requires
N
6
queries while LJS needs more than

3

4
N queries. This means that

using GUAS in our Beijing dataset the attacker could locate a victim with 50% probability in 134

steps, within an area of 0.25 km2
.

In the following we introduce a simple countermeasure that requires very little effort on the side

of the victim and study the effect it has on the effort that the attacker needs to perform in order to

locate the victim.

8.1 Speed Constraint
The main advantage of the GUAS strategy is that, at each step, the adversary can jump to any

arbitrary location of the search space. To reduce this advantage, we impose a limit on the speed at

which any user of the system can move based on some reasonable bounds thereby preventing an

adversary from claiming to be at a very distant location from the current one in the next time step.

This solution can be easily deployed in centralized location-based services but also in decentralized

deployments, as demonstrated by MaxPace [9].

When a speed constraint is implemented by the system, the attacker cannot use the original GUAS

strategy described in Algorithm 2. In this case, the attacker cannot move freely in the search space

and is forced to choose the next position from a limited number of positions in the neighborhood

of her current location thus describing a linear walk – jumping is not allowed. The attacker then

chooses the most likely position of the victim from those in her vicinity (see Figure 5). We refer

to this strategy as constrained GUAS (cGUAS). The procedure for calculating the cost of cGUAS

is basically the same as Algorithm 2 but with a slight change in the attacker strategy. Now the
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Â5

B2
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Fig. 5. Comparison of the number of queries needed to find the target B of an unconstrained attacker A vs.
a constrained attacker ˆA

attacker cannot choose freely from B̃ (i )
but only those B̃ (i )

j such that j is adjacent or close enough

(respecting the speed constraints) to her previous location Ai−1.

As in the previous section, we start by looking at the behaviour of the cGUAS strategy in a

scenario where the victim moves according to a random walk mobility model. We performed 100

simulations for a search space of 100, 500, 2000 and 5000, and a concentration parameter ranging

from 1e+13 to 0.001 (as in previous figures). Assuming the attacker does not know Bob’s initial

distribution, we can let the attacker be at any random location initially. Without loss of generality,

we place attacker at position 5 of the search space. The results are presented as boxplots in Figure 6.
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Fig. 6. GUAS and cGUAS with different step constraints for random walk mobility and success probability of
0.5.

First, it is worth noting that when the concentration parameter α is large, cGUAS performs

similar to the original GUAS and LJS. This makes sense since the attacker can only choose to jump

to locations which are within a two-step distance of her current location and most of these locations

are likely to have a similar probability since a large α represents an initial distribution close to
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uniform. Second, as the initial distribution becomes sparsely distributed and more locations have

very low probabilities, which happens when α approaches 0, it becomes increasingly difficult for

the cGUAS attacker to locate Bob. This is exactly the opposite behaviour when the attacker is

capable of using the unconstrained version of GUAS as the attacker can freely jump to the location

with the highest probability regardless of the distance.

Also note that the variance of attacker’s effort becomes much larger in cGUAS. This is due to the

fact that in some cases, if the attacker is lucky enough, he/she may start at a position close to the

victim and the victim also does not take long strides from the previous location (random walks

tend to stay close to the source). Otherwise, it will purportedly take much longer time and cost

to perform the attack. Even when the attacker knows the victim’s initial distribution, the speed

constraint can impair attacker’s performance. In fact, the attacker can not make the most use of

his/her knowledge on the victim. In other words, imposing a simple constraint on the speed of the

users has a significant impact on security. For example, if we compare data in Figure 3 and Figure 6,

the effort of the adversary has on average increased from 0.001N up to 0.08N in the case of a search

space of size 2000 and a concentration parameter α = 0.001, which indicates that adversaries need

to spend about 80 times more effort to find the target when their choices are constrained.
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Fig. 7. cGUAS performance with step size 2 (left) and step size 50 (right) for known and unknown distribution
and probability of 0.5.

To better understand how different speed constraints affect attacker’s performance, we also vary

the constraint step under the assumption that attacker knows about initial distribution (see Figure 7).
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Again, when the victim displays a fairly random initial location distribution, the constraint steps

do not have much impact. As the initial distribution becomes more informative and the constraint

steps get relaxed, the attacker can make a more effective use of information about the victim and is

able to conduct a more efficient attack. Even so, compared to Figure 3, the cGUAS protocol can

sufficiently limit the attacker’s behaviour.

Since a completely random walk may not be realistic, we also look into the performance of the

proposed countermeasure on the T-Drive dataset. The results shown in Figure 8 indicate that the

attacker’s performance becomes substantially unstable and impaired unless attacker has perfect

knowledge on victim’s initial position, when in this case, the concentration factor does not have as

much of an impact on the strategy and there are only small variations on the performance.
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Fig. 8. GUAS and cGUAS with different step constraints for T-Drive dataset with success probability of 0.5.

Example. To gain an intuition of our derived bounds in a concrete application scenario, consider

the following example. Assume a grid contains N = 2000 squares of size 0.25 km2
and we consider

a simulation were α = 0.001. In this scenario, users of the location proximity service may query the

location of other users every 3 minutes, which allows legitimate users to check whether friends are

nearby at reasonable time intervals. In this setting, an attacker jumping freely on the search space

by using the GUAS strategy would need to query 0.001N = 2 times and is thus expected to wait 3

minutes to locate a victim with more than
1

2
probability. Now, to increase their privacy, users may

choose to set a constraint on the expected number of steps a querying party may travel between

two consecutive queries. In this setting, if set to s steps per query, this means a speed of at most

s ∗ 2 ∗
√
0.5 ∗ 20km/h, given that a querying party will travel at most 2 square diagonals at each

step. For s = 2, this is ca. 56km/h, which is a reasonable maximum speed for a moving vehicle in a

city. An attacker constrained by cGUAS needs in this case 0.08N = 160 steps, which will take ca. 8

hours.

9 RELATEDWORK
An extensive body of research has been devoted to describing and understanding mobility models

for mobile ad hoc and other types of networks, such as vehicular networks [3, 10]. Typically, these

papers describe mobility models where mobile nodes are independent of or dependent on each

other, namely entity mobility models or group mobility models. The goal is usually to study the

behavior of individual entity mobility models and help researchers decide which model is most

suitable. Random mobility models are the models of choice of most authors.

Similarly, other authors have studied the Rendezvous Problem [21], which consists of finding

an optimal strategy for two or more mobile entities who are unaware of each others’ location, to

meet. This problem and some slight variations of it has attracted much attention from the research
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community because of its potential application to many engineering problems like the one we are

considering in this paper. However, as far as we are concerned, this problem remains open [1, 4].

The main difference between rendezvous search problems and the one we are tackling in this paper

is that rather than having two entities trying to find each other, here one of the entities is a victim

that might not even aware of the existence of the attacker trying to find him/her.

Another line of work studies the probability for n independent entities to meet while they all

follow random walk trajectories in dimension two [7, 14]. For n = 2, this is related to the special

case when Alice chooses a random walk strategy. The difference is that we assume the entities take

a step after every fixed length of time interval, while in the aforementioned papers they consider

an entity takes a step after a time interval whose length follows a Poisson distribution.

In the realm of location privacy, the effort an attacker needs to locate a victim has been studied in

different settings [9, 13, 16, 17]. In [9, 13], the focus was on static victim. A particular attacker model

was used against moving target in [9]. Although this attacker model was shown to be optimal for

a static victim, its efficiency as an attacker model for moving victim was not discussed. This is

precisely the focus of our paper.

In [16, 17], the focus is on the quantification of users’ location privacy by analyzing location-

based applications and location-privacy preserving mechanism (LPPM). They assume an obfuscated

trace (obtained by an LPPM) of the victim is available to the attacker and the goal of the attacker is

to find out the real trace [17] or the real location [16] of the victim. In contrast, in this paper the

attacker is only aware of the mobility model of the victim, without any knowledge of the victim’s

trajectory.

10 CONCLUSIONS
In this paper, we have presented a framework to reason about the expected effort of attackers

attempting to locate moving targets using proximity testing. We first provide mathematical analysis

for asymptotic bounds (on the search space) on the best attacker strategies under a random walk

mobility model for the moving victim. We then derive two concrete strategies, and evaluate their

performance over a range of parameters. The LJS strategy is found to work well for random walk

mobility and close to uniform initial distribution of Bob, while the GUAS strategy requires less

queries for less uniform initial distributions of Bob (which are known to the attacker). We then

derive a realistic mobility model from a real dataset consisting of spatio-temporal trajectory data,

and analyze the performance of our strategies. In that setting, we find that the GUAS strategy

consistently requires less than
N
6
queries (for success probability p = 0.5), while LJS requires more

than
3

4
N , where N is the search space size. We have thus shown theoretically and practically that

(using a strategy suitable to the setting), an attacker is able to locate a victim with 50% probability

with at most
N
2
steps. For example, using GUAS in our Beijing dataset the attacker could localize

a victim with 50% probability in 134 queries, with a grid area size of 0.25km2
. If we assume an

allowed query frequency of 3 minutes, this would mean an expected waiting time of over 6 hours

for the attacker. On the other hand, we have shown that a countermeasure that constrains the

speed at which an attacker can move significantly increases the expected location effort. This can

mean up to a 80 times delay in the expected location time on the dataset used for our evaluations.
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A PROOF OF LEMMA 1
Proof. We prove the above claims by mathematical induction. For B (0)

, the claim is true. We

assume it is true for B (k )
, then for B (k+1)

(1) 2 ≤ j ≤ n − 3, B (k+1)
j = 1

2

(
B (k )
j−1 + B

(k )
j+1

)
, by induction hypothesis

1

n
=

1

2

(
1

n
+
1

n

)
≤ B (k+1)

j ≤
1

2

(
3

2n
+

3

2n

)
=

3

2n
.

(2) j = 1,n − 2, B (k+1)
1

= B (k )
0
+ 1

2
B (k )
2

, by induction hypothesis

1

n
=

1

2n
+
1

2

·
1

n
≤ B (k+1)

2
≤

3

4n
+
1

2

·
3

2n
=

3

2n
;

1

n
≤ B (k+1)

n−2 ≤
3

2n
.

(3) j = 0,n − 1, B (k+1)
0

= B (k )
1

1

2
, by induction hypothesis

1

2n
=

1

2

·
1

n
≤ B (k+1)

1
≤

1

2

·
3

2n
=

3

4n
;

1

2n
≤ B (k+1)

n−1 ≤
3

4n
.

□

B ALGORITHMS FOR COMPUTATIONAL BOUNDS IN SECTION 4.3
To calculate the initial position vectors B (0)

and the transition matrices P , we use a matrix data

structure in the numpy library. For dimension one, B (0) =
[
1

n ,
1

n , . . . ,
1

n

]
is a matrix of size 1 by n

and P is a matrix of size n by n that can be obtained from Algorithm 5.

Algorithm 5: Calculation of transition matrix P for random walk in one dimension

Input: size n;
for i = 0, 1, . . . ,n − 1 do

for j = 0, 1, . . . ,n − 1 do
if i + 1 = j or i − 1 = j then

P[i][j] = 1/2;

end
else

P[i][j] = 0;

end
end

end
P[0][1] = 1;

P[n − 1][n − 2] = 1;

return P

For dimension two, we assumem = n. The general case whenm , n can be calculated using

similar methods. B (0) =
[
1

n2
, 1

n2
, . . . , 1

n2

]
is a matrix of size 1 by n2 and P is a matrix of size n2 by

n2 such that P[a][b] = Pr (Bk+1 = b |Bk = a) following the notations for random walk mobility

model in Section 2.2. This can be achieved using Algorithm 6. For each coordinate (i, j ), 0 ≤
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i, j, ≤ n − 1 in the n by n grid, line 4-15 counts how many points out of the four neighbors of

(i, j ) : {(i − 1, j ), (i + 1, j ), (i, j − 1), (i, j + 1)} are also in the grid. And this number is assigned to the

variable counter. The probability of Bob going from (i, j ) to its neighbors in the grid is equally

distributed, which is given by 1/counter.

Algorithm 6: Calculation of transition matrix P for random walk in 2 dimensions

1 Input: size n;
2 for i = 0, 1, . . . ,n − 1 do
3 for j = 0, 1, . . . ,n − 1 do
4 counter= 0;

5 if i ≥ 1 then
6 counter = counter + 1;

7 end
8 if j ≥ 1 then
9 counter = counter +1;

10 end
11 if i ≤ n − 2 then
12 counter = counter +1;

13 end
14 if j ≤ n − 2 then
15 counter = counter +1;

16 end
17 if i ≥ 1 then
18 P[n ∗ i + j][n ∗ (i − 1) + j] =1/counter;

19 end
20 if j ≥ 1 then
21 P[n ∗ i + j][n ∗ i + j − 1] =1/counter;

22 end
23 if i ≤ n − 2 then
24 P[n ∗ i + j][n ∗ (i + 1) + j] =1/counter;

25 end
26 if j ≤ n − 2 then
27 P[n ∗ i + j][n ∗ i + j + 1] =1/counter;

28 end
29 end
30 end
31 return P

B.0.1 Algorithm forklower . Recall from Equation (4) thatklower is a lower bound ofkO . Equation (3)
is used to find the value of klower through Algorithm 7.

max(Btemp) gives the maximum value of the entries in the vector Btemp and loop is a user

specified input. The output k= mint {t :

∑t
i=0 maxj B

(i )
j ≥ 0.5} = klower . For a one-dimensional

search space of size n, following Lemma 2, we can set loop= ⌊ n
2
⌋. For a two-dimensional search

space of size n2, by trial and error, we can set loop= n2.
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Algorithm 7: Algorithm for klower

Input: initial position vector B, transition matrix P , loop;

Btemp = B;

for k in range(loop) do
Probability = Probability + max(Btemp);

if Probability>=0.5 then
return k;

end
Btemp = Btemp*P;

end

B.0.2 Algorithm for Calculating kA . Given matrices B (0)
and P , we calculate two lists Blist and

Plist such that Bist[m] = B (m) = BPm and Plist[m] = Pm using Algorithm 8. In the algorithm,

noofloop is a user specified value which decides the length of the lists Blist and Plist. I is an
identity matrix of the same size as P .

Algorithm 8: Algorithm for calculating Blist and Plist

Input: initial position vector B, transition matrix P , noofloop;

Blist=[];

Plist=[];

Blist.append(B);

Plist.append(I );

form = 1, 2, . . . ,noofloop do
Pm = Plist[m − 1] ∗ P ;

Plist.append(Pm);

Blist.append(B*Pm);

end
return Blist, Plist;

Next, for a given attacker strategyA, represented as a list Alist (Alist[i] = Ai ), the calculation

of kA was implemented using Algorithm 9. Combinations(m,l,k) is the collection of all (l +
1)−combinations of integers betweenm and k in increasing order that begins withm. For example,

Combinations(1,2,4) = [[1, 2, 3], [1, 2, 4], [1, 3, 4]]. loop is a user-specified value equal to the

variable loop for calculating Blist and Plist. Note that to calculate Pr (Ek ), we need both Blist
and Plist to be of length at least k .
As the value of k increases, the time for calculating Combinations(m,l,k) (∀0 ≤ m ≤ k, 1 ≤

l ≤ k−m) increases exponentially. When the size of the search space increases, we need to calculate

for bigger k , thus the calculation of these combinations is a bottle neck of our program. To reduce

the time, we tried to pre-calculate the combinations for different values of k . But the number of

those combinations grows very fast, so that even for k up to 28, we have a pre-computed file with

size more than 1GB. This is why the results in Table 1 are only for small values of n.
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Algorithm 9: Algorithm for calculating kA

Input: Plist, Blist, Alist, k, loop;
for k = 0, 1, . . . , loop − 1 do

Prob = 0;

form = 0, 1, . . . ,k do
for l = 1, 2, . . . ,k −m do

IndexList = Combinations (m, l ,k );

Sum = 0;

for j = 0, 1, . . . ,length(IndexList)−1 do
Product = 1;

for i = 0, 1, , . . . , l − 1 do
a = IndexList[j][i];

b = IndexList[j][i + 1];

Aa = Alist[a];

Ab = Alist[b];

Product = Product ∗ Plist[b − a][Aa,Ab];

end
Sum = Sum + Product ;

end
end
Prob = Prob + Blist[m][Alist[m]] ∗ (1 + (−1)l ∗ Sum);

end
if Prob >= 0.5 then

return k;

end
end
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