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Abstract

Several generic methods exist for achieving CCA-secure public-key en-
cryption schemes from weakly secure cryptosystems, such as the Fujisaki-
Okamoto and REACT transformations. In the context of Proxy Re-
Encryption (PRE), it would be desirable to count on analogous construc-
tions that allow PRE schemes to achieve better security notions. In this
paper, we study the adaptation of these transformations to proxy re-
encryption and find both negative and positive results. On the one hand,
we show why it is not possible to directly integrate these transformations
with weakly-secure PRE schemes due to general obstacles coming from
both the constructions themselves and the security models, and we iden-
tify twelve PRE schemes that exhibit these problems. On the other hand,
we propose an extension of the Fujisaki-Okamoto transformation for PRE,
which achieves a weak form of CCA-security in the random oracle model,
and we describe the sufficient conditions for applying it.

1 Introduction

A coveted goal for any cryptosystem is to satisfy a strong notion of security,
relevant to its security objectives. In the case of Public-Key Encryption (PKE),
indistinguishability against chosen-ciphertext attacks (IND-CCA) is widely re-
garded as the right notion of security [1]. Informally, the IND-CCA notion
describes a security model where any adversary, even with access to a decryp-
tion oracle, is not able to distinguish messages for a given ciphertext.

The same desire to achieve right security notions drives the design of other
kinds of cryptosystems. This paper is devoted to Proxy Re-Encryption (PRE),
a type of Public-Key Encryption (PKE) where, in addition to the usual encryp-
tion and decryption capabilities, a “re-encryption” functionality enables a proxy
entity to transform ciphertexts under the public key of Alice into ciphertexts
decryptable by Bob. For doing so, the proxy must have a re-encryption key
that makes this transformation possible. In addition, the proxy cannot learn
any information about the encrypted messages, under any of the keys.

Similarly to the PKE case, the IND-CCA notion is also considered as the
target security notion for PRE schemes. In addition to the decryption capa-
bilities, this notion has to consider the ability of the adversary to re-encrypt
chosen ciphertexts by means of a re-encryption oracle. However, this added
capability poses an interesting challenge since the possibility of re-encrypting
ciphertexts conflicts with the traditional view of CCA security, which implies
non-malleability of ciphertexts, as pointed out by Canetti and Hohenberger, the
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authors of one of the first CCA-secure PRE scheme [2]. Given the peculiarities
of IND-CCA security in PRE, it is often not easy to devise schemes that achieve
strong security notions. Most CCA-secure PRE schemes usually resort to ad-
ditional constructions such as one-time signatures [2, 3], Schnorr signatures [4]
and non-interactive zero-knowledge proofs [5], which have to be carefully inte-
grated in an ad-hoc manner. Apart from this difficulty, there are also other
factors, such as efficiency and design simplicity, which are usually negatively
impacted in CCA-secure PRE schemes.

In the context of PKE, several generic methods exist to achieve CCA-secure
schemes from weakly secure cryptosystems. Fujisaki and Okamoto proposed
in 1999 [6], and revisited recently in [7], a generic conversion to achieve CCA-
security in the random oracle model from a weakly secure asymmetric cryp-
tosystem and a symmetric encryption scheme. Similar transformations, such as
REACT [8] and GEM [9], have been proposed since then.

Hence, it is natural to wonder whether an analogous transformation can be
constructed for proxy re-encryption schemes. A direct and naive application of
the aforementioned transformations leads, in general, to problems in the security
proofs, and in this paper we show several examples from the literature.

On a positive note, we also describe sufficient conditions that allow to ap-
ply the Fujisaki-Okamoto directly. These conditions include the satisfaction
of a new property of PRE called “perfect key-switching”, which characterizes
schemes where the re-encryption process preserves the original randomness of
ciphertexts, and a weak notion of security called IND-CCA0,1, due to Nuñez
et al. [10], where the adversary only has access to the re-encryption oracle
before the challenge. The schemes resulting from this transformation achieve
IND-CCA2,1 security in the random oracle model, a notion slightly weaker than
full CCA-security. As an illustration, we present an example of a scheme that
satisfies the application conditions and we show the resulting scheme after the
transformation. Finally, in addition to the Fujisaki-Okamoto proposal, we also
outline how the REACT [8] and GEM [9] transformations could be extended
for proxy re-encryption.

Our results have a direct impact on the security of PRE schemes. There are
multitude of applications of proxy re-encryption, ranging from data sharing in
the cloud to key management in sensor networks. Most of these applications
would benefit from more secure schemes, that are, at the same time, easy to
understand and implement.

1.1 Our Contribution

In this paper we present the following results:

• We describe an extension of the Fujisaki-Okamoto transformation to PRE,
and formulate sufficient conditions that allow to use it. These conditions
include a new proxy re-encryption property called perfect key-switching,
which characterizes PRE schemes whose re-encryption procedure does
not affect the original randomness, so the original public key is cleanly
switched to a new one.

• We sketch similar transformations based on REACT and GEM, which,
potentially, could be applicable to a wider class of PRE schemes than the
Fujisaki-Okamoto extension.
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• We describe flaws in twelve PRE schemes that are allegedly “CCA-secure”
caused by a direct use of the Fujisaki-Okamoto transformation and similar
constructions, which are generally not applicable due to the peculiarities
of re-encryption.

1.2 Related work

The Fujisaki-Okamoto transformation, originally proposed in [6] and recently
revisited in [7], was the first generic transformation from weakly secure encryp-
tion schemes to a CCA-secure public key cryptosystem. Later, Okamoto and
Pointcheval described a more efficient construction, called REACT [8], which in
turn inspired Coron et al. to propose GEM [9], a more complex construction,
but that achieves shorter ciphertexts. Although both REACT and GEM are
more efficient than the Fujisaki-Okamoto transformation, they require stronger
assumptions on the underlying public-key scheme (see Section 5).

There are several examples of the application and modification of such trans-
formations for other kinds of cryptosystems. Kitagawa et al. study in [11] the
adaptation of both Fujisaki-Okamoto and REACT to Identity-Based Encryp-
tion, and estimate their reduction costs. Similar works exist in the context of
certificateless public-key encryption [12], and certificated-based encryption [13].
Although these extensions are relevant to our work, the inherent difficulties that
arise from the re-encryption capabilities of PRE pose a challenging problem.

To the best of our knowledge, there is no prior work on generic transfor-
mations for PRE, in the sense of constructions that increase the security of
existing proxy re-encryption schemes. There are, however, a couple of works
that propose generic methods for constructing CCA-secure PRE schemes out
of other kinds of cryptosystems. Shao et al. propose in [14] a generic method
based on a CCA-secure threshold encryption scheme; additionaly they describe
variants to achieve collusion resistance and identity-based PRE. In a posterior
work, Hanaoka et al. present in [15] another generic method to construct CCA-
secure PRE schemes, also based on the use of threshold encryption, together
with a CCA-secure PKE scheme and a strongly unforgeable signature scheme.
However, this latter method requires long keys and ciphertexts. For instance,
a re-encryption key is made of two PKE public keys, one PKE ciphertext, a
threshold encryption share and a signature.

1.3 Organization

The rest of this paper is organized as follows: In Section 2 we formalize proxy
re-encryption syntax and definitions of security. In Section 3 we introduce the
original Fujisaki-Okamoto transformation and present the conditions that allow
to directly apply it to PRE. In Section 4 we show an example of scheme that
permits the application of the transformation and present its result. In Section 5
we discuss other possible generic transformations, based on REACT and GEM.
Finally, Section 6 concludes the paper and future work is outlined.
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2 Preliminaries

In this section we introduce the syntax and security definitions associated to
proxy re-encryption, as well as the original Fujisaki-Okamoto transformation
for public-key encryption.

2.1 Proxy re-encryption syntax and properties

We define the syntax of a proxy re-encryption scheme as follows, based on the
definitions by Canetti and Hohenberger [2] and Ateniese et al. [16]:

Definition 1 (PRE scheme). A proxy re-encryption scheme is a tuple of algo-
rithms (Setup, KeyGen, ReKeyGen, Enc, ReEnc, Dec):

• Setup(λ) → params. On input the security parameter λ, the setup algo-
rithm produces a set of global parameters, publicly known by all parties.

• KeyGen(λ) → (pki, ski). The key generation algorithm outputs a pair of
public and secret keys (pki, ski) for user i.

• ReKeyGen(pki, ski, pkj , skj) → rki→j. On input the pair of public and
secret keys (pki, ski) for user i and the pair of public and secret keys
(pkj , skj) for user j, the re-encryption key generation algorithm outputs a
re-encryption key rki→j.

• Enc(pki,m)→ ci. On input the public key pki and a message m ∈M, the
encryption algorithm outputs a ciphertext ci ∈ C.

• ReEnc(rki→j , ci)→ cj. On input a re-encryption key rki→j and a cipher-
text ci ∈ C, the re-encryption algorithm outputs a second ciphertext cj ∈ C
or the symbol ⊥ indicating ci is invalid.

• Dec(ski, ci)→ m. On input the secret key ski and a ciphertext ci ∈ C, the
decryption algorithm outputs a message m ∈M or the symbol ⊥ indicating
ci is invalid.

The message and ciphertext spaces are denoted by M and C, respectively.
A more general definition of the syntax of PRE schemes was initially pro-

posed by Ateniese et al. [16]. This definition considers sets of algorithms
−−→
Enc

and
−−→
Dec, instead of single encryption and decryption algorithms. This is a

usual choice for several PRE schemes in the literature [16, 3]. Definition 1 can
be considered as a special case of this one.

A PRE scheme is unidirectional if the re-encryption keys only allow the
transformation of ciphertexts in one direction, from delegator to delegatee, while
it is bidirectional otherwise. We say a PRE scheme is single-hop if the ciphertext
resulting from a re-encryption cannot be re-encrypted again, while it is multi-
hop otherwise. Finally, if the secret key skj of the user j is not needed by
the re-encryption key generation algorithm ReKeyGen, then the scheme is non
interactive, since re-encryption keys for user j can be produced without her
involvement.
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2.2 Definitions of security for PRE

Security of PRE schemes mostly follows a game-based approach, where a chal-
lenger and an adversary interact with each other. Normally, the goal of the
latter is to correctly distinguish which message, from two possible options of
her choice, is encrypted by the challenge ciphertext; this is called the indis-
tinguishability (IND) game. The capabilities of the adversary are specified by
means of an attack model, which in PRE is usually either the Chosen Plaintext
Attack (CPA) or the Chosen Ciphertext Attack (CCA) models.

For reasons we will see later, in this work we need a finer-grained definition
of the attack models, so we will make use of the parametric family of attack
models for PRE proposed in [10] by Nuñez et al., which is defined in terms of
the availability of the decryption and re-encryption oracles during the security
game. These attack models are of the form CCAi,j , where indices i, j ∈ {0, 1, 2}
mark the last phase of the security game where the decryption and re-encryption
oracles, respectively, are available to the adversary. For example, CCA2,1 rep-
resents the attack model where the decryption oracle is available until phase
2 (i.e., in both phases of the security game) and the re-encryption oracle only
in phase 1, while CCA0,0 is an attack model where both oracles are not avail-
able (in fact, this latter attack model is equivalent to CPA). From this family
of attack models, we can derive a parametric set of indistinguishability-based
notions of the form IND-CCAi,j , which represents the instantiation of the in-
distinguishability game with the CCAi,j attack model. Figure 1 depicts the
resulting lattice-shaped hierarchy of indistinguishability notions. See [10] for
more details about the definition of the parametric families of attack models
and security notions for PRE.

IND-CCA2,2

IND-CCA2,1

IND-CCA2,0

IND-CCA1,2

IND-CCA1,1

IND-CCA1,0

IND-CCA0,2

IND-CCA0,1

IND-CCA0,0(≡ IND-CPA)

Figure 1: Hierarchy of indistinguishability notions for PRE.

The definition of the indistinguishability game for PRE, parametrized by the
CCAi,j attack model, is as follows.

Definition 2 (IND-CCAi,j security). Let Π=(KeyGen, ReKeyGen, Enc, Dec,
ReEnc) be a proxy re-encryption scheme, A = (A1, A2) a polynomial-time ad-
versary, and Ω1 and Ω2 be the set of available oracles for A1 and A2, respec-
tively. For i, j ∈ {0, 1, 2}, δ ∈ {0, 1}, and λ ∈ N, the indistinguishability game
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is defined by the following experiment

Experiment Exp
IND-CCAi,j
Π,A,δ (λ)

(pk∗, sk∗)
R←− KeyGen(λ); (m0,m1, s)← A1(pk∗);

c∗ ← Enc(pk∗,mδ); d← A2(m0,m1, s, c
∗)

return d

The set of available oracles is defined by indices i, j in the attack model CCAi,j.
Additionally, it is required that adversarial oracle queries satisfy the usual re-
strictions about derivatives of the challenge ciphertext c∗. The advantage of A
is given by

Adv
IND-CCAi,j
Π,A (λ) = |Pr[Exp

IND-CCAi,j
Π,A,1 (λ) = 1]− Pr[Exp

IND-CCAi,j
Π,A,0 (λ) = 1]|

We say that Π is IND-CCAi,j secure if this advantage is negligible.

Note that, for space reasons, we omit here the definition of the PRE oracles
and the concept of derivatives of the challenge. Informally, this concept allows to
filter out those pairs of (pk, c) that are linked to the challenge (pk∗, c∗) through
queries to the re-encryption and re-encryption key generation oracles, and which
would allow trivial attacks from the adversary. See [10] for a detailed description
of the PRE oracles and the concept of derivatives of the challenge.

3 Adapting the Fujisaki-Okamoto Transforma-
tion to PRE

In this section we describe the original Fujisaki-Okamoto transformation and
describe the conditions that allow to apply it correctly to proxy re-encryption.

3.1 The Fujisaki-Okamoto Transformation

Fujisaki and Okamoto proposed in 1999 a generic transformation to achieve
IND-CCA security in the random oracle model from a public key encryption
scheme with one-way security under chosen plaintext attacks (OW-CPA) [6]. In
order to do so, the generic transformation integrates the PKE scheme with an
IND-CPA-secure symmetric scheme and a pair of hash functions. Recently, the
authors presented a revised version [7], which will be the one we consider in this
paper.

The hybrid transformation, which we denote as Hyb, is as follows. Let PKE
be a public-key encryption scheme, Sym a symmetric encryption scheme, and
H and G hash functions. PKE is non-deterministic, so in addition to the public
key and the message, its encryption function takes an additional parameter that
introduces randomness in the ciphertext.

In order to encrypt a message m, the hybrid transformation first sam-
ples randomly a term σ from the message space of PKE. The message m is
then encrypted with Sym using G(σ) as key, which produces the term c =
Sym.Enc(G(σ),m). Next, the σ term is encrypted with PKE, taking H(σ, c) as
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the random coins. The hybrid transformation produces the following tuple as
the encryption of message m:

Hyb.Enc(pk,m) = (PKE.Enc(pk, σ;H(σ, c)), c)

When decrypting a ciphertext, which we will denote by the tuple (e, c), the
hybrid transformation performs the inverse procedures in reverse order: it de-
crypts σ from e, and computes G(σ) in order to extract the decryption key for
c, thus obtaining the original message m. However, an additional validation
step is performed during the decryption. This step involves re-computing the
term e = PKE.Enc(pk, σ;H(σ, c)) of the ciphertext, ensuring this way that the
ciphertext is valid. If this check does not succeed, the ciphertext is rejected.

This very last step is the reason why the Fujisaki-Okamoto transformation
fails if applied as is in PRE: the re-encryption function may change the cipher-
texts in such a way that the validation checking that takes place during the
decryption inevitably fails. In particular, if the alteration produced by the re-
encryption affects the original random coins introduced in the encryption, the
validation check will fail once a ciphertext is re-encrypted. Appendix B shows
how the CCA scheme from Aono et al. [17] is not correct as a consequence of
this issue.

As a solution to this problem, it is interesting to think of PRE schemes
where the re-encryption does not alter the original randomness. In this section
we characterize a property of PRE schemes that captures this notion, called
perfect key-switching, and use it as one of the conditions to successfully apply
the Fujisaki-Okamoto transformation to PRE.

3.2 A New Property of PRE: Perfect Key-Switching

In the previous section we identified that the alteration of the original ran-
domness prevents Fujisaki-Okamoto’s decryption procedure from validating a
re-encrypted ciphertext. We are therefore interested on those schemes where
the original randomness is preserved.

Informally, a PRE scheme satisfies the perfect key-switching property if for all
pairs of public keys pki and pkj , all messages m, and all randomness r then the
re-encrypted ciphertext produced by ReEnc(rki→j ,Enc(pki,m; r)) is exactly the
same than the ciphertext generated by Enc(pkj ,m; r). This informal definition
assumes than in both cases one is using the same encryption function Enc;
however, several schemes are defined with multiple encryption and decryption
functions, as discussed in Section 2.1. The following is a more generic definition,
which takes this latter issue into consideration.

Definition 3 (Perfect Key-Switching). Let Π = (KeyGen,ReKeyGen,
−−→
Enc,

−−→
Dec,ReEnc)

be a PRE scheme, with message space M and random coins space R, and λ
the security parameter. Let us assume that the re-encryption function ReEnc

transforms ciphertexts encrypted by Enck ∈
−−→
Enc into ciphertexts decryptable by

Deck′ ∈
−−→
Dec. We say that Π satisfies the perfect key-switching property if for

all keypairs (pki, ski), (pkj , skj) generated by KeyGen(λ), all m ∈M, all r ∈ R,
and all rki→j = ReKeyGen(pki, ski, pkj , skj), then

ReEnc(rki→j ,Enck(pki,m; r)) = Enck′(pkj ,m; r)
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It can be seen that the key-switching procedure that takes places during
re-encryption is “perfect”, in the sense that it does not affect the random coins
used. Informally, the re-encryption simply “switches” one public key for another.
Examples of this type of scheme are the BBS [18] and CH [2] schemes. It is
easy to check that the former exhibits this property. The BBS scheme, based
on the ElGamal cryptosystem, is constructed over a group G of prime order
q, with generator g. Secret keys are of the form sk = a ∈ Zq, whereas public
keys are pk = ga ∈ G. There is only one type of ciphertexts, which are of the
form (pkr, gr ·m), for a random exponent r. Re-encryption keys are computed

as rki→j =
skj
ski

, so the re-encryption process simply consists on raising the
pkr component of the ciphertext to the re-encryption key. This scheme fulfills
the perfect key-switching property since the re-encryption process gracefully
removes the original public key and substitutes it with the new one, preserving
the original randomness:

ReEnc(rki→j ,Enc(pki,m; r))

= ReEnc(
b

a
, ((ga)r, gr ·m)) = ((gar)

b
a , gr ·m)

= (gbr, gr ·m) = Enc(pkj ,m; r)

Therefore, the original ciphertext (gar, gr · m) is perfectly transformed after
re-encryption into (gbr, gr ·m).

An immediate consequence of the perfect key-switching property is that
it implies proxy invisibility. A PRE scheme is said to be proxy-invisible if
a delegatee is unable to distinguish a ciphertext computed under her public
key from a re-encrypted ciphertext, originally encrypted under another public
key [16]. That is, the proxy is “invisible”, in the sense that the delegatee
cannot discern whether the proxy has transformed the ciphertexts. From this
description, it is clear that perfect key-switching implies proxy invisibility: a
re-encrypted ciphertext has exactly the same form as a ciphertext originally
encrypted with the delegatee’s public key. However, the converse implication
(i.e., proxy invisibility implies perfect key-switching) is not necessarily true. For
example, the third proposal from Ateniese et al. [16] is proxy invisible, but does
not satisfy the perfect key-switching property, since the original randomness is
altered after the re-encryption; in particular, the original random component r
is polluted during the re-encryption with the original secret key a, so the new
randomness becomes r′ = a · r. This does not affect security of the scheme in
any way because the random elements are safely conveyed as exponents (i.e.,
exploiting this would imply solving the discrete logarithm problem), but it is
sufficient for disallowing the reconstruction of a re-encrypted ciphertext from
the original message and randomness, hence breaking the perfect key-switching
property.

Another interesting result is that the perfect key-switching property also im-
plies that the PRE scheme cannot be key-private, a property of PRE schemes
where the proxy cannot learn the identity of the involved users from the re-
encryption key. This property was first defined in [19], where the authors for-
mulated some necessary conditions to achieve key privacy. One of this con-
ditions is that the re-encryption function must be probabilistic. However, it
can be seen that our formulation of perfect key-switching requires deterministic
re-encryption. Therefore, if a PRE scheme satisfies the perfect key-switching
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property, it cannot be key-private.

3.3 Extension of the Fujisaki-Okamoto transformation to
PRE

The intuition behind how the Fujisaki-Okamoto transformation can be extended
to PRE is simple: assuming the underlying PRE scheme satisfies the perfect key-
switching property, then a re-encrypted ciphertext is equivalent to an original
ciphertext created with the same randomness. Therefore, the re-encryption does
not affect the transformation.

3.3.1 The extended transformation

Let PRE be a proxy re-encryption scheme and Sym a symmetric encryption
scheme. Let Mpre, Cpre and Rpre denote the message, ciphertext and ran-
domness spaces of PRE, respectively, while Msym, Csym and Ksym denote the
message, ciphertext and key spaces of Sym. The encryption function in PRE is
non-deterministic, so besides the public key and the message, it takes a param-
eter from Rpre that introduces randomness in the ciphertext. Let H and G be
hash functions, where H : Mpre × Csym → Rpre and G : Mpre → Ksym. We
denote as Hyb to the hybrid scheme that results from applying the extended
Fujisaki-Okamoto transformation, which is generically defined as follows:

• Hyb.Setup(λ) → params′. On input the security parameter λ, the setup
algorithm first computes params← PRE.Setup(λ) and outputs the set of
global parameters params′ = params ∪ {H(·), G(·)}.

• Hyb.KeyGen(λ) → (pki, ski). On input the security parameter λ, the key
generation algorithm outputs (pki, ski) ← PRE.KeyGen(λ), which is the
pair of public and secret keys for user i.

• Hyb.ReKeyGen(pki, ski, pkj , skj) → rki→j . On input the pair of public
and secret keys (pki, ski) for user i and the pair of public and secret keys
(pkj , skj) for user j, the re-encryption key generation algorithm outputs
the re-encryption key rki→j ← PRE.ReKeyGen(pki, ski, pkj , skj).

• Hyb.Enc(pki,m)→ (ei, ci). On input a public key pki and a message m ∈
Msym, the encryption algorithm first samples a random σ ∈ Mpre, and
computes ci ← Sym.Enc(G(σ),m). Next, it computes ei ← PRE.Enc(pki, σ;H(σ, ci)).
Finally, it outputs ciphertext (ei, ci).

• Hyb.ReEnc(rki→j , (ei, ci))→ (ej , cj). On input a re-encryption key rki→j
and a ciphertext (ei, ci), the re-encryption algorithm outputs the cipher-
text (PRE.ReEnc(rki→j , ei), ci).

• Hyb.Dec(ski, (ei, ci)) → m. On input the secret key ski and a ciphertext
(ei, ci), the decryption algorithm first computes σ ← PRE.Dec(ski, ei),
and verifies that σ ∈Mpre; otherwise, it outputs ⊥. Next, it verifies that
ei = PRE.Enc(pki, σ;H(σ, ci)); otherwise, it outputs ⊥. Finally, it outputs
the result of the symmetric decryption algorithm Sym.Dec(G(σ), ci).
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Note that the resulting hybrid PRE scheme requires the public key during
the decryption, since it needs to reconstruct the input ciphertext for validation
purposes. Nevertheless, in order to preserve the generic syntax of PRE schemes,
one could compute the public key from the secret key (if the underlying PRE
scheme allows this possibility) or simply consider the public key as part of the
secret key. This extension could also implement countermeasures against reject
timing attacks, such as those proposed by Galindo et al. [20]; we will, however,
consider them out of the scope of this paper.

3.3.2 Correctness of the transformation

It is necessary to prove that the extended hybrid transformation produces a
correct PRE scheme. We assume that the underlying PRE and symmetric
schemes are correct. Recall that we additionally require that the PRE scheme
satisfies the perfect key-switching property. In PRE, besides the usual PKE
condition for correctness, schemes must verify that re-encrypted ciphertexts are
correctly decrypted, for any message m:

Dec(skj ,ReEnc(rki→j ,Enc(pki,m)) = m

Therefore, for the scheme that results from applying our hybrid transformation,
we must prove that the following equation holds:

Hyb.Dec(skj ,Hyb.ReEnc(rki→j ,Hyb.Enc(pki,m)) = m (1)

First, by definition of the encryption function of the hybrid transformation,
Hyb.Enc(pki,m)) = (ei, ci), for ci = Sym.Enc(G(σ),m) and ei = PRE.Enc(pki, σ;H(σ, ci))).
Then, the left side of Equation 1 can be written as:

Hyb.Dec(skj ,Hyb.ReEnc(rki→j , (ei, ci))

Next, by definition of the re-encryption function of the hybrid transformation,
we have that:

Hyb.ReEnc(rki→j , (ei, ci)) = (PRE.ReEnc(rki→j , ei), ci)

By assumption, the underlying PRE scheme satisfies the property of perfect
key-switching. Then:

PRE.ReEnc(rki→j , ei)

= PRE.ReEnc(rki→j ,PRE.Enc(pki, σ;H(σ, ci)))

= PRE.Enc(pkj , σ;H(σ, ci)) = ej (2)

Therefore, Equation 1 is equivalent to:

Hyb.Dec(skj , (ej , ci)) = m

Finally, we must check that the decryption is correct. By definition of the
decryption algorithm of the hybrid transformation, we first compute σ′ ←
PRE.Dec(skj , ej), and verify that σ′ ∈Mpre. By correctness of the PRE scheme,
we have that σ′ = σ and σ ∈Mpre, so the verification succeeds. Next, we must
verify that ej = PRE.Enc(pkj , σ

′;H(σ′, ci)), which is true since σ′ = σ and the
result of Equation 2. The last step outputs the result of the symmetric decryp-
tion algorithm Sym.Dec(G(σ), ci), which is equal to m, since σ′ = σ and the
symmetric encryption scheme is correct, by assumption. Therefore, Equation 1
holds, and the hybrid transformation is correct.
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3.3.3 Security of the transformation

Although the transformation seems to be rather straightforward, proving its
security is a more elusive matter. The original Fujisaki-Okamoto transformation
for PKE achieves IND-CCA2 security, requiring the underlying PKE scheme
to be only one-way secure under chosen-plaintext attacks (OW-CPA). This is
possible because, in the security proof, the decryption oracle can be constructed
without knowledge of the secret key, using only the random oracle tables.

For PRE, it is also necessary to define a re-encryption oracle. A tempting
strategy, used in the proofs of several PRE schemes, is to do it similarly to
the decryption oracle: on input a re-encryption query (pki, pkj , (ei, ci)), the
simulator searches in the random oracle tables for a tuple (σ, ci, h), such that
ei = PRE.Enc(pki, σ;h). If such tuple is found, then the re-encrypted ciphertext
is (PRE.Enc(pkj , σ;h), ci); otherwise, the oracle cannot respond to the query
and returns ⊥.

This solution seems elegant and simple, but is flawed. If the adversary in-
puts an ill-formed ciphertext where the randomness does not come from the
random oracle H, the oracle rejects the ciphertext, outputting ⊥. However, in
a real execution of the scheme, the re-encryption function is unable to verify
whether the input ciphertext was created using H or not, since σ must be kept
secret during re-encryption. Therefore, the security proof differs at this point
from the real execution. More worryingly still, the adversary can potentially
make an arbitrary number of such queries. If the simulator opts to abort at
this point, then it cannot use the output from the adversary since the probabil-
ity of aborting the simulation could be correlated with the adversary’s queries.
Unfortunately, these proofs cannot be “patched” using techniques like the arti-
ficial aborts from Waters’ IBE proof [21]. The identified problem seems to be
common and appears in several PRE schemes that make use of constructions
inspired in the Fujisaki-Okamoto transformation, rendering their security proofs
invalid [22, 5, 4, 23, 24, 25, 26, 27, 28, 29, 30]. Appendix A analyzes this problem
in detail.

Therefore, since the re-encryption function of our extended transformation
cannot check whether the hash function H was used or not, it is necessary to
construct the re-encryption oracle without relying on the random oracle tables.
Furthermore, since the simulator does not have access to the target secret key
sk∗, it is not possible in general to compute re-encryption keys of the form
rkpk∗→pkj , for any user j.

In order to bypass these problems, we strengthen the requirements on the
underlying PRE scheme: instead of OW-CPA security, we now require IND-
CCA0,1 security. We then construct the security proof of the transformation
as a reduction from the security of the underlying scheme, making use of its
definition of the re-encryption oracle. This also implies that the transformation
cannot achieve IND-CCA2,2 security, but IND-CCA2,1, which is a slightly weaker
notion.

The following theorem conveys our main security result. For simplicity in the
proofs, we have opted for using the one-time pad rather than a generic symmetric
encryption scheme, so the second component of ciphertexts is computed as c =
G(σ)⊕m, instead of c = Sym.Enc(G(σ),m).

Theorem 1 (Security of the transformation). Let Π be a PRE scheme that is
γ-spread [7], fulfills the perfect key-switching property and is IND-CCA0,1-secure.
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Let Π′ be the resulting scheme after applying the Fujisaki-Okamoto transforma-
tion for proxy re-encryption. Then, Π′ is IND-CCA2,1-secure in the random
oracle model.

The proof for Theorem 1 is presented below. It basically consists on a
reduction from the IND-CCA0,1 adversary to the IND-CCA2,1 adversary: if the
underlying scheme is IND-CCA0,1-secure, then the transformed scheme must be
IND-CCA2,1-secure.

Proof. Here we prove that if proxy re-encryption scheme Π is secure in the IND-
CCA0,1 sense, then the scheme Πhyb, which results from applying the Fujisaki-
Okamoto transformation to Π as described in Section 3.3.1, is IND-CCA2,1-secure
in the random oracle model. In order to do so, we show how to use an IND-
CCA2,1 adversary that breaks Πhyb to create an IND-CCA0,1 adversary that
breaks Π.

Let B = (B1,B2) be an IND-CCA2,1 adversary attacking Πhyb; that is, it
wins the IND-CCA2,1 game with non-negligible advantage εhyb. We want to
show that it is possible to construct an adversary A = (A1,A2) attacking Π
that wins the IND-CCA0,1 security game with also non-negligible advantage.
To this end, we follow a strategy similar to Shoup and Gennaro’s proof for
the TDH1 cryptosystem [31]: if the IND-CCA2,1 adversary wins, then he must
have queried any of the random oracles with the same input used to create the
challenge; the simulation is maintained up to this point, but after that, it is
no longer necessary since we already are able of producing the response for the
IND-CCA0,1 adversary.

Adversaries A and B have access to the oracles that correspond to their
respective attack models. In short, B has access to all oracles, except to the
re-encryption oracle in phase 2 (which corresponds to the CCA2,1 attack model),
whereas A only has access to the key generation oracles and the re-encryption
oracle in phase 1 (which corresponds to the CCA0,1 attack model). Note also
that B has access to random oracles H and G. We assume that B makes at
most qdec to the decryption oracle.

Algorithm 1 shows how adversary A can be constructed using B. Basically,
A simulates the view of the IND-CCA2,1 game to B, using his own challenge to
construct B’s challenge. Since he does not know mδ, he randomly chooses mβ

for the rest of the challenge ciphertext. Therefore, half of the times, B’s view is
correct and A uses it for deciding δ.

Consequently, A should simulate the view of B, that is, it should answer
B’s oracle queries, including the random oracles. The latter are simulated by A
so that their output is generated on-demand. This corresponds to the typical
intuition of the random oracle: a function that returns a randomly assigned
output for each possible input, sampled uniformly from its output domain. A
maintains a list of tuples for each random oracle, where each tuple contains the
input and output of a query: LH is the list for oracle H and LG the list for
oracle G. Key generation oracle queries (i.e., Ocorrupt,Ohonest and Orkgen) are
trivially answered by relaying them to A’s oracles.

All that remains is to tackle with decryption and re-encryption queries. Al-
gorithm 2 shows the algorithms that simulate B’s view of the decryption and
re-encryption oracles. Recall that, according to the CCA2,1 attack model, the
decryption oracle is available in both phases, whilst the re-encryption oracle is
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Algorithm A1(pk∗)
(x0, x1, sB) = B1(pk∗)
Sample random m0,m1 ∈Mpre

sA = (x0, x1, sB)
Return (m0,m1, sA)

Algorithm A2(m0,m1, sA, e
∗)

Parse sA as (x0, x1, sB)
Sample random β, µ ∈ {0, 1}
c∗ = xβ ⊕G(mβ)
Execute B2(x0, x1, sB , (e

∗, c∗))
If B2 aborted, then return β
Else, return µ

Algorithm 1: Adversary A

Algorithm OBdec(pki, (e, c))
Search (σ, c, h) ∈ LH ,

such that e = PRE.Enc(pki, σ, h)
If such tuple does not exist, then return ⊥
Return c⊕G(σ)

Algorithm OBreenc(pki, pkj , (e, c))
e′ = OAreenc(pki, pkj , e)
If e′ =⊥, then return ⊥
Else, return (e′, c)

Algorithm 2: Decryption and re-encryption oracles for B
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only available in phase 1. This definition of B’ decryption oracle is essentially
the same than the one found in Fujisaki and Okamoto’s proof [7] and does not
need any secret keys. The perfect key-switching property of the underlying PRE
scheme guarantees that the simulation of this oracle is correct, even when the
input ciphertext is a re-encryption. Note also that it is possible that B submits
a valid ciphertext without having used the random oracles, so it gets wrongfully
rejected. This event is called Bad in Fujisaki and Okamoto’s proof; assuming
that the underlying PRE scheme is γ-spread, the probability of this event is
bound by qdec · 2−γ .

Similarly, B’ re-encryption oracle does not require re-encryption keys, but
relies on A’s re-encryption oracle, which is provided in the IND-CCA0,1 security
game. The simulation of this oracle is perfect. Key generation oracles are also
perfectly simulated, since they depend exclusively on A’s oracles.

The simulation of the random oracles is perfect, until B queries G(mβ) or
H(mβ , ·). If this event occurs, A aborts the simulation and outputs β, following
the strategy mentioned at the beginning. Otherwise, the simulation continues
until B halts, and A outputs a random bit µ.

Assuming that Bad does not occur, it can be seen that when β = δ in
A2, which happens with probability 1

2 , the challenge ciphertext is identically
distributed as the one defined by the security game; in this case, B should win the
game with probability 1

2 + εhyb, and therefore, should query G(mβ) or H(mβ , ·)
with the same probability. Therefore, A wins the game with probability 1

2 +εhyb

too. On the contrary, when β 6= δ, then B does not have any advantage for
distinguishing the challenge, since xβ is information-theoretically hidden, so A
wins the game with probability 1

2 . Therefore, the success probability of A under
this assumption is:

Pr[δ = δ′|¬Bad] =
1

2
· (1

2
+ εhyb) +

1

2
· 1

2
=

1

2
+
εhyb

2

Finally, taking into consideration the probability that Bad occurs, the overall
success probability and advantage of adversary A are, respectively:

Pr[δ = δ′] ≥ Pr[δ = δ′|¬Bad]Pr[¬Bad]

≥ (
1

2
+
εhyb

2
) · (1− qdec · 2−γ)

εpre ≥ εhyb

2
− (1 + εhyb) · qdec

2γ+1

An interesting question is why not aim for IND-CCA2,2 security. The answer
is that the extended transformation, as is, is vulnerable to certain type of attacks
that use the re-encryption oracle after the challenge. Since the re-encryption
function simply re-encrypts the asymmetric part, it cannot verify whether the
symmetric part is valid or not. For example, suppose that the adversary takes
the challenge ciphertext (e∗, c∗), produces (e∗, c∗⊕K) for some value K ∈ Csym,
and asks for the re-encryption of the resulting ciphertext from the target user
to a corrupt one. This query is legal because (e∗, c∗ ⊕K) is, technically, not a
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Table 1: Performance of the transformation

Scheme Original Extended

Encryption tenc tenc + 2 · tH
Re-encryption treenc treenc

Decryption tdec tdec + tenc + 2 · tH

derivative of the challenge ciphertext. Now the adversary only has to decrypt
the response, once he removes the mask K.

As we have discussed before, the difficulty of constructing the re-encryption
oracle in the security proof constrains both the security requirements and ex-
pectations of this transformation. An interesting possibility is to modify the
transformation so as to be able to construct the security proof without these
constraints. To this end, an option is to use some kind of non-interactive zero-
knowledge (NIZK) proof in order to extract the randomness used during en-
cryption, as well as to sign the rest of the ciphertext. However, because of the
rewinding problems that appear in the security proof, which make it run in
exponential time, this is not possible in general. To solve this, Canard et al.
propose in [32] the use of a NIZK proof with online extractor (NIZKOE) as a
way to patch the flawed scheme from Chow et al. [23]. In this paper, however,
we focus only on what it can be achieved without extending the transformation
with new primitives.

3.3.4 Performance of the transformation

Table 1 shows a theoretical comparison of the computational costs of a obtained
scheme after the transformation with respect to the original one. Let tenc,
treenc, and tdec denote the computational cost of the original scheme for the
encryption, re-encryption and decryption operation, respectively. Note that we
are still assuming that the one-time pad is used as the symmetric encryption,
in accordance to the proved transformation. It should be observed that only
the decryption procedure has a perceptible overhead, which depends exclusively
on the cost of the original encryption operation (represented by tenc), since the
cost associated to the hash functions is negligible in practice.

4 Applying the proposed transformation

For illustration purposes, in this section we present a PRE scheme that fulfills
the conditions of our transformation. That is, this scheme satisfies the perfect
key-switching property and is secure in the sense of IND-CCA0,1, assuming the
3-wDBDHI problem [3] is hard. We later apply our extended Fujisaki-Okamoto
transformation to obtain a IND-CCA2,1-secure scheme.

4.1 The original scheme

This scheme is based on a scheme from Ateniese et al. [16] that lacked a security
proof. In order to prove that this scheme is IND-CCA0,1 secure, we borrowed
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some ideas from the RCCA secure scheme from Libert and Vergnaud [3]. The
scheme is as follows:

• Setup(λ): The setup algorithm first determines the cyclic groups G and
GT of order q, with q a prime of λ bits, and a bilinear pairing e, so that
e : G×G→ GT . A set of generators g, u, v ∈ G is chosen randomly, and
Z = e(g, g). A function F : Zq → G is defined as F (t) = ut · v. The global
parameters are represented by the tuple:

params = (G,GT , e, g, Z, u, v, F (·))

• KeyGen(λ): Sample a random xi ∈ Zq, and compute the public and private
key of user i as pki = gxi and ski = xi.

• ReKeyGen(ski, pkj): The re-encryption key from user i to user j is com-
puted as

rki→j = (pkj)
1/ski = gxj/xi

• Enc2(pki,m): Sample random r1, r2 ∈ Zq. The second-level encryption of
m under pki is the tuple CTi = (r1, C0, C1, C2), where

C0 = F (r1)r2 C1 = Zr2 ·m
C2 = (pki)

r2 = gxir2

• Enc1(pki,m): The first-level encryption of m under pki is exactly as the
second-level, except that C2 = e(g, pki)

r2 = Zxir2 .

• ReEnc(rki→j , CTi = (r1, C0, C1, C2)): Check that the condition e(C0, pki) =
e(C2, F (r1)) holds; otherwise, output ⊥. The re-encryption of the second-
level ciphertext CTi is the first-level ciphertext CTj = (r1, C0, C1, C

′
2),

where C ′2 = e(C2, rki→j) = Zxjr2 .

• Dec1(ski, CTi = (r1, C0, C1, C2)): Given a first-level ciphertext CTi, the
original message is computed as

m =
C1

C
1/ski
2

• Dec2(ski, CTi = (r1, C0, C1, C2)): Given a second-level ciphertext CTi,
the original message is computed as

m =
C1

e(g, C2)1/ski

The first important characteristic of this scheme is that it fulfills the perfect
key-switching property, since the original randomness used in second-level ci-
phertexts, namely r1 and r2, is preserved after re-encryption, so a re-encrypted
ciphertext is equal to a first-level ciphertext encrypted with the same random-
ness. Let us express this formally, according to Definition 3. First, note that in
this case the message space M is the cyclic group GT , and the random coins
space R is Zq×Zq, since the encryption function samples two independent ran-
dom values from Zq; For the sake of clarity, let us define r = (r1, r2) so as to
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represent the two random values by a single element. Then, for all messages
m ∈ GT , randomness r ∈ Zq×Zq and public keys pki, pkj generated by KeyGen,
it holds that:

ReEnc(rki→j ,Enc2(pki,m; r)) = Enc1(pkj ,m; r)

It can be seen that this is true since the re-encrypted ciphertext is computed
with the very same operations than the first-level ciphertext, except for element
C2. The C2 component of the first-level encryption under pkj is computed
as C2 = e(g, pkj)

r2 = Zxjr2 , while the corresponding component in the re-
encrypted ciphertext is C ′2 = e((pki)

r2 , rki→j) = e(gxir2 , gxj/xi) = Zxjr2 , which
yields the same result. Therefore, this scheme satisfies the perfect key-switching
property.

In addition, it can be seen that it is also well-spread, since for any message m
there can be q2 ≈ 22λ different ciphertexts: component r1 is sampled randomly
from Zq, and the rest of the components resemble an ElGamal ciphertext, for
random r2 ∈ Zq.

4.2 Proving IND-CCA0,1 security

In this section we prove that the scheme is secure under the IND-CCA0,1 no-
tion, assuming the hardness of the 3-wDBDHI problem. We use an alternative
definition of this hard problem, due to Libert and Vergnaud [3].

Definition 4 (3-wDBDHI problem). Given a tuple (g, ga, ga
2

, g1/a, gb, e(g, g)d),
the 3-weak Decisional Bilinear DH Inversion problem (3-wDBDHI) in (G,GT )
is to decide whether d = b/a2.

The proof consists on a reduction from the 3-wDBDHI problem to the IND-
CCA0,1 security of the scheme. Suppose that the scheme is not IND-CCA0,1

secure, then there is an adversary B that wins the IND-CCA0,1 game with non-
negligible advantage ε, so its success probability is 1

2 +ε. From this adversary, we
can construct an algorithm A that solves the 3-wDBDHI problem with prob-
ability 1

2 + ε
2 − qreenc · 2−λ−1, where qreenc is the number of queries to the

re-encryption oracle made by B.
A receives as input a tuple (g, ga, ga

2

, g1/a, gb, Zd) from the 3-wDBDHI prob-
lem, and uses it to simulate the environment for the adversary B. First, A
samples random r∗1 , α1, α2 ∈ Zq, and sets u = (ga)α1 and v = (ga)−r

∗
1α1(ga

2

)α2 ,

so F (t) = gaα1(t−r∗1 )ga
2α2 . Note that F (r∗1) = ga

2α2 ; we will use this later in
the proof.

The public key of the target user is set as pk∗ = ga
2

. For honest users, A
samples random wi ∈ Zq and sets pki = gawi . For corrupt users, A simply runs
the key generation algorithm and returns the resulting public and private key
pair (pki = gxi , ski = xi).

Re-encryption keys rki→j are generated as follows:

• Honest user to target user: rki→∗ = (ga)1/wi

• Target user to honest user: rk∗→j = (ga)wj

• Honest user to honest user: rki→j = gwj/wi
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• Honest user to corrupt user: rki→j = (g1/a)xj/wi

• Corrupt user to another user: rki→j = (pkj)
1/xi

Since the attack model is CCA0,1, it is only necessary to simulate the re-
encryption oracle in Phase 1 (i.e., before the challenge). It is possible to simulate
correctly all possible re-encryption queries Oreenc(pki, pkj , CTi) using the re-
encryption keys described, except for the case when pki = pk∗ and user j is cor-
rupt. These queries are solved as below, without requiring the corresponding re-
encryption key. Since pki = pk∗, the ciphertext CTi is a tuple (r1, C0, C1, C2) =

(r1, F (r1)r2 ,m ·Zr2 , (pk∗)r2) = (r1, (g
aα1(r1−r∗1 )ga

2α2)r2 ,m ·Zr2 , ga2r2). In order
to compute the re-encryption, the challenger produces the auxiliar value gar2 in
the following way:

gar2 =
C0

Cα2
2

1
(r1−r∗1 )α1

=

(
F (r1)

ga2α2

) r2
(r1−r∗1 )α1

Once A computes gar2 , the re-encryption of C2 (which, as mentioned before,
is the only component of the ciphertext that changes after re-encryption) is as
follows:

C ′2 = e((g1/a)xj , gar2) = Zxjr2

Note that this procedure is correct except for the case then r1 = r∗1 . Since
r∗1 is not disclosed by A in Phase 1, and r1 is sampled randomly, the event
that r1 = r∗1 can happen only with negligible probability 1/q ≈ 2−λ, for each
re-encryption query. We assume that the adversary B can make up to qreenc
queries, so the overall probability of this type of events is qreenc · 2−λ.

The challenge ciphertext is constructed as:

CT ∗ = (r∗1 , (g
b)α2 ,mδ · Zd, gb)

A runs adversary B to obtain the guess δ′ and decides that d = b/a2 when δ = δ′.
Note that when d = b/a2, the challenge ciphertext is a valid encryption of mδ

under pk∗, where the random exponent r2 is defined implicitly as r2 = b/a2.

CT ∗ = (r∗1 , F (r∗1)b/a
2

,mδ · Zb/a
2

, (ga
2

)b/a
2

)

Therefore, in this case B guesses δ correctly with probability 1
2 + ε− qreenc ·2−λ

and A solves the 3-wDBDHI problem with the same probability. On the con-
trary, when d is random, mδ is information-theoretically hidden, so the proba-
bility of B guessing δ correctly is 1

2 . The overall success probability of A is then
1
2 + ε

2 − qreenc · 2
−λ−1.

4.3 A IND-CCA2,1-secure PRE scheme

Since the previous scheme is IND-CCA0,1-secure, satisfies the perfect key-switching
property and is well-spread, then it can be extended for IND-CCA2,1 security
using our transformation. The resulting scheme is very similar, except that now
r1 and r2 are not chosen randomly, but using a hash function H. Recall that
we use the one-time pad as the symmetric encryption scheme. The scheme is
as follows:
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• Setup(λ): The setup algorithm first determines the cyclic groups G and
GT of order q, with q a prime of λ bits, and a bilinear pairing e, so that
e : G×G→ GT . A set of generators g, u, v ∈ G is chosen randomly, and
Z = e(g, g). Let ` be the length of the one-time pad, which depends on the
security parameter λ. Let us also define hash functions H : GT×{0, 1}` →
Zq × Zq and G : GT → {0, 1}`. A function F : Zq → G is defined as
F (t) = ut · v.

The global parameters are represented by the tuple:

params = (G,GT , e, g, Z, u, v, `, F (·), H(·), G(·))

• KeyGen(λ): Sample a random xi ∈ Zq, and compute the public and private
key of user i as pki = gxi and ski = xi.

• ReKeyGen(ski, pkj): The re-encryption key from user i to user j is com-
puted as

rki→j = (pkj)
1/ski = gxj/xi

• Enc2(pki,m): Sample random σ ∈ GT and compute C3 = G(σ)⊕m. Next,
the randomness used for encryption is produced as (r1, r2) = H(σ,C3).
The second-level encryption ofm under pki is the tuple CTi = (r1, C0, C1, C2, C3),
where

C0 = F (r1)r2 C1 = Zr2 · σ
C2 = (pki)

r2 = gxir2

• Enc1(pki,m): The first-level encryption of m under pki is exactly as the
second-level, except that C2 = e(g, pki)

r2 = Zxir2 .

• ReEnc(rki→j , CTi = (r1, C0, C1, C2, C3)): Check that the condition e(C0, pki) =
e(C2, F (r1)) holds; otherwise, output the error symbol⊥. The re-encryption
of the second-level ciphertext CTi is the first-level ciphertext CTj =
(r1, C0, C1, C

′
2, C3), where C ′2 = e(C2, rki→j) = Zxjr2 .

• Dec1(ski, CTi = (r1, C0, C1, C2)): Given a first-level ciphertext CTi, first
decrypt σ as σ = C1

C
1/ski
2

, and use it to extract the original randomness

(r1, r2) = H(σ,C3). Next, check that equations F (r1)r2 = C0, Zr2 · σ =
C1, and e(g, pki)

r2 = C2 hold and return m = G(σ)⊕C3; otherwise, return
⊥.

• Dec2(ski, CTi = (r1, C0, C1, C2)): Given a second-level ciphertext CTi,
first decrypt σ as σ = C1

e(g,C2)1/ski
, and use it to extract the original ran-

domness (r1, r2) = H(σ,C3). Next, check that F (r1)r2 = C0, Zr2 ·σ = C1,
and (pki)

r2 = C2 hold and return m = G(σ)⊕ C3; otherwise, return ⊥.

According to Theorem 1, this scheme is IND-CCA2,1-secure in the random
oracle model.
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5 Towards Other Generic Transformations for
Proxy Re-Encryption

It is worthwhile thinking about other possible generic transformations for achiev-
ing strong security notions in the context of proxy re-encryption. In Section 3,
we have shown how to directly apply the Fujisaki-Okamoto generic transforma-
tion. However, this transformation has two main drawbacks:

• During the decryption procedure it is necessary to encrypt again the ci-
phertext with the PRE scheme to check if it is the same as the one received.
This produces a computational overhead in the decryption, as discussed
in Section 3.3.4.

• The underlying PRE scheme has to satisfy the perfect key-switching prop-
erty. This is not always the case, since often the re-encryption function
leaves “remnants” of the previous public key, which would make the de-
cryption check to fail inevitably.

It is desirable to come up with other transformations that achieve a strong
security notion without requiring the perfect key-switching property and the
overhead produced by re-computing the ciphertext during decryption. The lat-
ter problem is solved in the PKE context by some transformations such as
REACT [8] and GEM [9]. The security of these transformations is based on
including a hash of the ciphertext that acts as a checksum. For example, in
the REACT transformation, the output of the encryption Hyb.Enc(pk,m) is a
ciphertext of the form:

(PKE.Enc(pk, σ)︸ ︷︷ ︸
e

,Sym.Enc(G(σ),m)︸ ︷︷ ︸
c

, H(σ,m, e, c)︸ ︷︷ ︸
h

)

The decryption process is simple. It first deciphers σ from e; next, it extracts
m from c using the key G(σ); and, finally, it verifies that H(σ,m, e, c) = h.

As in the case of the Fujisaki-Okamoto transformation, directly applying
REACT to a PRE scheme would not work in general, since the re-encryption
process invalidates the validity check. This check is based on a hash of rest of
ciphertext, so a re-encrypted ciphertext will not produce the same hash value
h. However, we could modify the transformation so the hash does not include
the component e, which is altered during the re-encryption. Then, ciphertexts
would be of the form:

(PRE.Enc(pk, σ)︸ ︷︷ ︸
e

,Sym.Enc(G(σ),m)︸ ︷︷ ︸
c

, H(σ,m, c)︸ ︷︷ ︸
h

)

It can be seen that the only difference with respect the original transforma-
tion is in the component h. The re-encryption process would be similar to our
Fujisaki-Okamoto extension, re-encrypting the component e with the underlying
PRE scheme:

Hyb.ReEnc(rk, (e, c, h)) = (PRE.ReEnc(rk, e)︸ ︷︷ ︸
e′

, c, h)
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Assuming the PRE scheme is correct, the decryption process will work too.
Decrypting e′ will output σ, so the process remains the same, except for the
checksum h, which now does not consider the e′ term.

The modification we introduced in this transformation can be seen as a
relaxation of the validity check that takes place during the decryption, since
we change it from H(σ,m, e, c) to H(σ,m, c). Dropping the term e from the
checksum implies that we are not concerned anymore with possible alterations
on this part; however, the checksum still contains the original message m, its
encryption c, and the term σ. This prompt us to analyze what alterations are
possible in the term e so that the decryption is still correct.

It is clear that σ cannot be altered, since this would imply not being able
to recover the key for extracting m from c, so the only options are changing
the public key (which is precisely the goal of PRE) or the original random
coins used (which is what happens in PRE schemes that do not satisfy the
perfect key-switching property). Therefore, any ciphertext that decrypts to the
original message would be deemed valid, regardless of being altered (e.g., by
re-encryption).

This idea corresponds precisely to the notion of Replayable CCA (RCCA)
from [33], a relaxation of CCA that can be considered sufficiently secure for
many existing applications, and indeed, is the target security notion for some
PRE schemes, such as the one from Libert and Vergnaud [3]. Note that RCCA,
as opposed to CCA, allows any possible kind of alterations, even those not
related to the re-encryption of ciphertexts, as long as it decrypts to the original
message.

It would appear, then, that a modified REACT transformation could be
defined for PRE, achieving a security notion similar to RCCA. However, some of
the problems mentioned in Section 3.3.3 also arise here: it is still not possible to
perform the validation step during re-encryption, since the hash input contains
information that is hidden during this process, and the construction of the re-
encryption oracle in the security proof cannot be based on the random oracle
tables either. This poses similar challenges to the Fujisaki-Okamoto case when
it comes to proving the security of the transformation.

Moreover, REACT puts additional restrictions on the underlying asymmet-
ric scheme. In particular, it requires the scheme to be one-way secure under
plaintext-checking attacks (OW-PCA), in order to enable the construction of the
decryption oracle in the security proof. Informally, this notion means that the
scheme must not allow the adversary to recover the plaintext from a given ci-
phertext, even if she has access to a plaintext-checking oracle, that is able to tell
whether, for input (m, c), the ciphertext c is an encryption of the plaintext m.
An implication of this requirement is that, when considering a PCA adversary,
the hardness assumption may vary with respect to traditional attack models,
such as CPA. For instance, the ElGamal encryption scheme, which is OW-CPA
secure under the Computational Diffie-Hellman (CDH) assumption, is OW-PCA
secure under the Gap Diffie-Hellman (gap-DH) assumption [8]. The explanation
of this change is that the PCA oracle usually is equivalent to a solver of a hard
decisional problem (e.g., the PCA oracle for ElGamal is equivalent to a DDH
oracle). Therefore, the security of the scheme under OW-PCA must be based
on a hardness assumption that still holds when the adversary has access to an
oracle of some hard decisional problem (i.e., the PCA oracle). Some computa-
tional problems are still hard when one has a solver for the decisional version,
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and this is precisely the essence behind the concept of “gap problems”, defined
by Okamoto and Pointcheval in [34].

In the same way, the extension of REACT to PRE would require the under-
lying PRE schemes to be OW-PCA. This is the case of several PRE schemes. For
instance, it can be shown that the BBS scheme [18] is OW-PCA-secure under
the gap-DH assumption, as ElGamal. However, certain kinds of schemes, such
as those based on the Learning With Errors (LWE) assumption [17, 35, 36, 37],
cannot be proven OW-PCA-secure since the decisional and computational ver-
sion of LWE are equivalent, as pointed out by Peikert in [38].

It is also worth mentioning that, in order to be able to define the re-
encryption oracle, the security proof for this modification of REACT seems to
require to take the form of a reduction to the security of the underlying scheme
under a notion that provides a re-encryption oracle. For the Fujisaki-Okamoto
case, we required IND-CCA0,1 so as to simplify the security proof, but in this
case OW-CCA0,1 is a weaker requirement. Therefore, the underlying scheme
should satisfy the notion of one-wayness under an attack model that combines
PCA and CCA0,1.

The resulting transformation would achieve an intermediate notion between
RCCA and IND-CCA2,1, and may be applicable to a wider class of PRE schemes
than the Fujisaki-Okamoto extension, since it does not require the schemes
to satisfy the perfect key-switching property. However, it is an open issue to
analyze these ad-hoc security definitions in detail, in order to provide a complete
proof of the security of this potential generic transformation for PRE.

Finally, it is worth mentioning that there is at least another generic trans-
formation, to which the same argumentation seems to apply. The GEM trans-
formation [9] is very similar to REACT, but with a more involved construction
that achieves shorter ciphertexts. In GEM, ciphertexts are of the form:

(PKE.Enc(pk, σ)︸ ︷︷ ︸
e

,Sym.Enc(G(σ, e),m)︸ ︷︷ ︸
c

)

where r is a random term, s = F (m, r), and σ = s||(r ⊕ H(s)). In order to
decrypt a ciphertext (e, c), it first deciphers σ from e, and extracts m from c
using the key G(σ, e); next, it parses s||t from σ and computes r = t ⊕ H(s);
and, finally, it verifies whether F (m, r) = s.

Being similar to REACT, the strategy for modifying GEM for proxy re-
encryption would be similar too. The part of the ciphertext produced by the
underlying PRE scheme would not be used as input to the hash function G, so
the re-encryption procedure does not break the validation. Thus, the encryption
is modified for producing ciphertexts of the form:

(PRE.Enc(pk, σ)︸ ︷︷ ︸
e

,Sym.Enc(G(σ),m)︸ ︷︷ ︸
c

)

Therefore, re-encryption is identical to that of the Fujisaki-Okamoto extension:

Hyb.ReEnc(rk, (e, c)) = (PRE.ReEnc(rk, e)︸ ︷︷ ︸
e′

, c)

The arguments regarding the security of this extension of GEM are very similar
to those for the extension of REACT.
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6 Conclusions

In this paper we analyze the integration of generic transformations to proxy
re-encryption and find both negative and positive results. On the one hand, we
first describe why it is not possible to directly integrate known transformations,
such as Fujisaki-Okamoto and REACT, with weakly-secure PRE schemes due
to general obstacles coming from both the constructions themselves and the
security models, and we show twelve PRE schemes that exhibit these problems.
These transformations are artifacts conceived for securing public-key encryption
schemes, and cannot be used as is for proxy re-encryption due to the special
nature of the re-encryption capability. On the other hand, we also show that,
under some conditions that include the satisfaction of a new property of PRE
called “perfect key-switching”, the Fujisaki-Okamoto transformation can be used
to generically bootstrap a weak notion of security (IND-CCA0,1) into a much
stronger notion (IND-CCA2,1), in the random oracle model. However, to achieve
full CCA-security (i.e., IND-CCA2,2), it appears to be necessary to apply ad-
hoc modifications. For illustrating our proposal we present a PRE scheme that
satisfies the conditions for applying the Fujisaki-Okamoto extension and show
the resulting scheme after the transformation.

Other generic transformations for public-key encryption are also discussed
for its application in proxy re-encryption. We show how the REACT and GEM
transformations [8, 9] can be modified to support re-encryptions. Since the
perfect key-switching property is no longer required, these proposals are poten-
tially applicable to a wider class of schemes, which makes them very attractive.
In addition, they are more efficient than the Fujisaki-Okamoto transformation,
since they do not require to reconstruct the ciphertext during decryption. Note,
however, that these transformations seem to require the original scheme to sat-
isfy a combination of OW-PCA and OW-CCA0,1, while achieve an intermediate
notion between Replayable CCA (RCCA) and IND-CCA2,1. It is an open issue
to analyze these security definitions in detail, in order to provide a complete
proof of the security of these constructions. This is left as future work.

Other future lines of research include working towards concrete estimations
of the obtained security level of the extended Fujisaki-Okamoto transformation.
Finally, all the transformations discussed here are defined for the random oracle
model. It is an open problem to devise generic transformations that are valid
in the standard model.
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[9] Jean-Sébastien Coron, Helena Handschuh, Marc Joye, Pascal Paillier,
David Pointcheval, and Christophe Tymen. GEM: A generic chosen-
ciphertext secure encryption method. In Topics in Cryptology—CT-RSA
2002, pages 263–276. Springer, 2002.
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Appendices

A A Frequent Error in CCA-security Proofs in
the Random Oracle model

In Section 3.3.3, we discussed the problems that arise in the security proof
when generic transformations are directly applied in PRE, in particular when
the re-encryption oracle is based on the random oracle tables. This solution
is incorrect, as the security proof differs from the real execution for certain re-
encryption queries, and this behavior can be forced arbitrarily by the adversary.

We surveyed the literature of CCA-secure PRE schemes in the random oracle
model, looking for instances of this problem. Our study yielded eleven schemes
[22, 5, 4, 23, 24, 25, 26, 27, 28, 29, 30], although this list might not be exhaustive.

Although these PRE schemes have different characteristics, such as being
bidirectional [4], conditional [22] or identity-based [29], all of them share the
same intrinsic problem that arises from a wrong integration of the Fujisaki-
Okamoto transformation or other related techniques. It is important to note
that this problem was first identified by Canard et al. in [32], but restricted to
the analysis of scheme from Chow et al. [23].

The problem is based on two different issues. First, in the encryption func-
tion, secret values are used as input to a hash function to produce the ran-
domness needed for encryption. For instance, in the original Fujisaki-Okamoto
transformation [6], the session key σ and the original message m are used as
this input: it is clear that m should not be disclosed during re-encryption; in
the same manner, neither σ should be revealed, since this could be used to
decrypt the message. However, this also means that in a real execution of the
re-encryption function, it is not possible to verify that the hash function has
been used correctly (i.e., (σ,m) was used as input to H).

Second, in the CCA attack model in PRE, queries of the form (pk∗, pkj , ĉ),
where user j is corrupt and ĉ is not a derivative of the challenge, are legitimate
and must be answered correctly. This requirement can be inferred from usual
security models for CCA in proxy re-encryption, such as [2, 10], and in fact,
represents a critical, yet often overlooked, point in most CCA security proofs. In
particular, the simulation of these queries in the security proofs of the identified
schemes relies on examining the random oracle tables, which contain the input
and output of previous random oracle queries, as generally the challenger does
not have access to the target secret key sk∗, which is necessary for generating
the corresponding re-encryption key.

Taking both issues into consideration, let us suppose that the adversary
creates an ill-formed ciphertext ĉ under the target public key pk∗, where the
randomness r is not derived from H(σ,m), but chosen randomly. Next, the
adversary calls the re-encryption oracle with the input (pk∗, pkj , ĉ), for some
corrupt user j. Note that this query is legal, since it is not related to the
challenge ciphertext (in fact, it can occur in phase 1), and the simulator must
answer it correctly since the adversary can check whether its decryption results
in the same original message. The re-encryption strategy based on the random
oracle tables does not work in this case, since the adversary did not use the
random oracle, so the challenger cannot respond to this type of queries. The
security proofs in the identified schemes opt to return ⊥, indicating that the
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ciphertext is invalid. However, this approach differs from the real execution,
where the re-encryption function is unable to check whether the random oracle
was used or not (i.e., that the ciphertext is valid or not), since the input to the
random oracle should be hidden from the proxy; hence, the re-encryption will
work normally. At this point, security proofs differ from the real execution with
an arbitrary probability, since the adversary can force this behavior trivially.
Consequently, these security proofs are invalid.

Let us illustrate this problem by analyzing one of the identified schemes.
The PRE scheme from Weng et al. [4, 39] is bidirectional, single-hop, interactive
and is allegedly CCA-secure in the random oracle model. Although this scheme
does not use the Fujisaki-Okamoto transformation, it integrates a variation of
the Hashed ElGamal scheme. Still, the same error in the security proof applies,
since the randomness is generated from a value that must be kept hidden from
the proxy (i.e., the original message m), which implies it can only be correctly
verified during decryption, and not during re-encryption. The following is a
slightly simplified version of the scheme:

• Setup(λ): The setup algorithm first determines the cyclic group G of order
q, with q a prime of λ bits. A generator g ∈ G is chosen randomly. The
message space is M = {0, 1}n, where n is polynomial in the security
parameter λ. It is also required a set of hash functions H1, H2 and H3,
where H1 : {0, 1}n ×G → Zq, H2 : G → {0, 1}n and H3 : G2 × {0, 1}n →
Zq. The global parameters are represented by the tuple:

params = (q,G, g,H1, H2, H3)

• KeyGen(λ): Sample a random xi ∈ Zq, and compute the public and private
key of user i as pki = gxi and ski = xi.

• ReKeyGen(ski, skj): The re-encryption key from user i to user j is com-
puted as rki→j = skj/ski.

• Enc(pki,m): First, compute r = H1(m, pki). Next, sample random u ∈
Zq, and compute D = (pki)

u, E = (pki)
r, F = H2(gr) ⊕ m, and s =

u+r ·H3(D,E, F ) mod q. The ciphertext is the tuple CTi = (D,E, F, s).

• ReEnc(rki→j , CTi = (D,E, F, s)): First, check that the condition (pki)
s =

D·EH3(D,E,F ) holds; otherwise, output ⊥. The re-encryption of ciphertext
CTi is the tuple CTj = (pki, E

′, F ), where E′ = Erki→j = (pkj)
r.

• Dec1(sk, CT = (pki, E
′, F )): Given a first-level ciphertext CT , the original

message is computed as m = F ⊕H2((E′)1/sk). Finally, check that E′ =
pkH1(m,pki) holds and return m; otherwise, return ⊥.

• Dec2(sk, CT = (D,E, F, s)): Given a second-level ciphertext CT , first
check that the condition pks = D ·EH3(D,E,F ) holds; otherwise, output ⊥.
The original message is computed as m = F ⊕H2(E1/sk). Finally, check
that E = pkH1(m,pk) holds and return m; otherwise, return ⊥.

Note that the check that is made during re-encryption is unable to verify
whether r = H1(m, pki). For instance, if the value r is chosen randomly, the re-
encryption still works normally. Therefore, the security proof should also behave
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in the same way, but we will see below that this is not the case. Algorithm 3
shows the definition of the re-encryption oracle given in the security proof of
this scheme.

Algorithm Oreenc(pki, pkj , CTi = (D,E, F, s))

If (pki)
s 6= D · EH3(D,E,F ) return ⊥

If i and j are both honest or corrupt

Compute E′ = Exj/xi

Else
Search tuple (m, pki, r) ∈ LH1 , such that (pki)

r = E
If such tuple exists, then compute E′ = (pkj)

r

Else return ⊥
Return CTj = (pki, E

′, F )

Algorithm 3: Re-encryption oracle from Weng et al.’s security proof [4]

It can be seen that when users i and j are both honest or corrupt, the re-
encryption oracle simply computes the re-encryption keys; otherwise, it resorts
to examining LH1 , the random oracle table for H1.

However, as pointed out previously, this oracle is unable to correctly answer
queries of the form (pk∗, pkj , ĉ), where ĉ is an ill-formed ciphertext under the
target public key pk∗ whose randomness r is not derived from H1(m, pk∗). In
this case, the target user is honest, by definition, whereas user j is corrupt, so
the re-encryption oracle resorts to the random oracle table LH1 , which does not
contain any tuple of the form (m, pk∗, r), and returns ⊥. This behavior, which
can occur arbitrarily, deviates from the real-world execution of the re-encryption
function, where no ciphertext is rejected when r 6= H1(m, pk∗).

B Another example of wrong usage of the trans-
formation

In addition to the problems in the security proofs presented in the previous Ap-
pendix, we describe here a scheme where the Fujisaki-Okamoto transformation
is incorrectly applied. In [17], Aono et al. proposed a lattice-based encryption
scheme which is proven CPA-secure in the standard model. Then, on top of this
scheme, they construct a “CCA-secure” version in the random oracle model, us-
ing the generic conversion from Fujisaki and Okamoto [6]. However, this version
is flawed because decryption will always fail for re-encrypted ciphertexts, break-
ing the correctness of the scheme.

B.1 The PRE scheme from Aono et al.

In this subsection we describe the scheme from Aono et al. This scheme is based
upon a lattice cryptosystem from Lindner and Peikert [40], whose hardness relies
on the Learning With Errors (LWE) problem [41]. Some details are omitted for
clarity; we refer the interested reader to [17] and [40] for a complete description
of the scheme.

Let n be the security parameter, q a prime number, and l a fixed message
length. Set k = log q. Let the randomly generated matrix A ∈ Zn×lq be publicly
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known. Let Dn1×n2 be a gaussian noise distribution over Zn1×n2 . Auxiliary
function Power2 : Zn×lq → Znk×lq is defined as

Power2(X) =


X
2X

...
2k−1X


while function Bits : Z1×n

q → {0, 1}1×nk produces a bit representation of the

elements of input vector v, such that Bits(v) · Power2(X) = v · X ∈ Z1×l
q .

Details about noise distribution D and functions Power2(·) and Bits(·) are
omitted here, but can be found on [17, 40].

The scheme is as follows:

• KeyGen(n): Sample R,S ← Dn×l. The public key is pk = P = R−AS ∈
Zn×lq , while the secret key is sk = S ∈ Zn×l.

• Enc(pk = P,m ∈ {0, 1}l): Sample gaussian noise vectors f1, f2 from D1×n,
and f3 from D1×l. Encode the message m ∈ {0, 1}l to m · b q2c ∈ Z1×l

q .

Output the ciphertext e = (e1, e2) ∈ Z1×(n+l)
q , where

e1 = f1A+ f2

e2 = f1P + f3 +m · bq
2
c

• Dec(sk = S, e = (e1, e2)): Compute m̄ = e1S+e2 ∈ Z1×l
q . Let (m̄1, ..., m̄l)

be the individual elements of m̄. Output the decrypted message m =
(m1, ...,ml), where mi = 0 if m̄i ∈ [−b q4c, b

q
4c) ⊂ Zq, and mi = 1 other-

wise.

• ReKeyGen(ski = Si, pkj = Pj , skj = Sj): Sample X ∈ Znk×nq from the

uniform distribution and E from Dnk×l. Output the re-encryption key
rki→j = (Pj , Q), where

Q =

[
X −XSj + E + Power2(Si)
0 I

]
• ReEnc(rki→j = (Pj , Q), e = (e1, e2)): Sample gaussian noise vectors g1, g2

from D1×n, and g3 from D1×l. Compute

g1[A|Pj ] + [g2|g3] + [Bits(e1)|e2] ·Q ∈ Z1×(n+l)
q

and parse the result as [e′1|e′2], where e′1 ∈ Z1×n
q and e′2 ∈ Z1×l

q . Output
the re-encrypted ciphertext e′ = (e′1, e

′
2). It can be seen that

e′1 = g1A+ g2 +Bits(e1)X

e′2 = g1Pj + g3 +Bits(e1)(E −XSj) + e1Si + e2
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B.2 Description of the flaw

The flaw is based on the fact that a direct application of the Fujisaki-Okamoto
conversion does not work in general for proxy re-encryption, since the validity
check during the decryption fails for re-encrypted ciphertexts when the random-
ness is altered. In the definition of their CCA scheme, they only consider the
validity of decryption in the case of original ciphertexts. However, when one
considers re-encrypted ciphertexts, it can be seen that the validity check during
the decryption always fails.

Let us consider the CCA-secure version of the scheme, after applying directly
the Fujisaki-Okamoto transformation, and let us define a scenario with two
users i and j, with public keys Pi and Pj , respectively. A ciphertext originally
encrypted for user i is a tuple (e1, e2, c) where:

e1 = f1A+ f2

e2 = f1Pi + f3 + σ · bq
2
c

c = Sym.Enc(G(σ),m)

The terms (e1, e2) are the encryption of σ with the PRE scheme, where
the term c is the symmetric encryption of the original message, with key G(σ).
Thus, the original random coins in this case are the noise vectors (f1, f2, f3),
which by the definition of the transformation, are computed from H(σ, c). In
the random oracle model, if this query to H has not been done previously,
H produces a random output and records the tuple (σ, c, f1, f2, f3) for future
queries.

Now lets consider that this ciphertext, originally intended for user i, is re-
encrypted for some user j. Let g1, g2, g3 be the random vectors introduced by
the re-encryption function, X,E random matrices defined by user j during the
interactive process for generating re-encryption keys and Si, Sj the secret keys
of users i and j. The transformation only re-encrypts the terms (e1, e2), so the
result is a tuple (e′1, e

′
2, c) of the form:

e′1 = g1A+ g2 +Bits(e1)X

e′2 = g1Pj + g3 +Bits(e1)(E −XSj) + e1Si + e2

c = Sym.Enc(G(σ),m)

Now user j decrypts this ciphertext. Recall that the Fujisaki-Okamoto con-
version dictates that the output of the asymmetric encryption must be re-
constructed, using the same inputs. By the correctness of the original PRE
scheme, she correctly receives σ. However, the output of H(σ, c) must be again
(f1, f2, f3), by the definition of the random oracle. When trying to reconstruct
(e′1, e

′
2) she would obtain ê′1 = f1A + f2, ê′2 = f1Pj + f3 + σ · b q2c, and the

validation would fail since (ê′1, ê
′
2) 6= (e′1, e

′
2). Therefore, the decryption of re-

encrypted ciphertexts will always fail.
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