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Abstract—Among Big Data technologies, Hadoop stands
out for its capacity to store and process large-scale
datasets. However, although Hadoop was not designed
with security in mind, it is widely used by plenty of
organizations, some of which have strong data protection
requirements. Traditional access control solutions are not
enough, and cryptographic solutions must be put in place
to protect sensitive information. In this paper, we describe
a cryptographically-enforced access control system for
Hadoop, based on proxy re-encryption. Our proposed
solution fits in well with the outsourcing of Big Data
processing to the cloud, since information can be stored
in encrypted form in external servers in the cloud and
processed only if access has been delegated. Experimental
results show that the overhead produced by our solution is
manageable, which makes it suitable for some applications.

I. INTRODUCTION

Big Data implies the use of vast amounts of data that
makes processing and maintenance virtually impossible
from the traditional perspective of information manage-
ment. Apart from these inherent difficulties, the use of
Big Data faces also security and privacy challenges,
since in some cases the information stored is sensitive
or personal data. These repositories of unprotected and
sensitive information are a magnet for malicious agents
(insiders and outsiders), which can make a profit by
selling or exploiting this data. In most cases, compa-
nies and organizations store these repositories in clear,
since security is delegated to access control enforcement
layers, which are implemented on top of the actual data
stores. Nevertheless, the truth is that although enforce-
ment mechanisms that control access to data exist, some
technical staff, such as system administrators, are often
able to bypass these traditional access control systems
and read data at will, e.g., directly in clear on the file
system. Therefore, it is of paramount importance to rely
on stronger safeguards such as the use of cryptography,
as recently noted by the Cloud Security Alliance in [1]:
“[...] sensitive data must be protected through the use of
cryptography and granular access control”.

Within the Big Data community, Apache Hadoop
[2] stands out as the most prominent framework for
processing big datasets. Apache Hadoop is a framework
that enables the storing and processing of large-scale
datasets by clusters of machines. The strategy of Hadoop
is to divide the workload into parts and spreading them
throughout the cluster. However, even though Hadoop
was not designed with security in mind, it is widely used
by organizations that have strong security requirements
regarding data protection.

In this paper, we propose a delegated access solution
for Hadoop, which uses proxy re-encryption to construct
a cryptographically-enforced access control system. The
goal of our proposal is to enable Hadoop to achieve
data protection while preserving its capacity to process
massive amounts of information. This way organizations
can securely leverage the value of Big Data for their
business, in compliance with security and privacy reg-
ulations. Experimental results show that the overhead
produced by our solution is manageable, which makes it
suitable for some applications.

In order to illustrate the relevance of our proposal, we
provide a motivation scenario where a delegated access
solution for Hadoop would be extremely useful. Consider
the rise of Big Data Analytics, which represents a new
opportunity for organizations to transform the way they
market services and products through the analysis of
massive amounts of data. However, small and medium
size companies are not often capable of acquiring and
maintaining the necessary infrastructure for running Big
Data Analytics on-premise. As it has already happened
for multitude of services, the Cloud paradigm represents
a natural solution to this problem. The idea of providing
Big Data Analytics as a Service [3], [4], [5] is a very
appealing solution for small organizations, so they can
count on on-demand high-end clusters for analysing
massive amounts of data. This idea makes even more
sense nowadays, since a lot of organizations are already
operating using cloud services, and therefore, it is more
sensible to perform analytics where the data is located
(i.e., the cloud). Nevertheless, the adoption of the cloud
paradigm does not come at no price. There are several




risks, such as the ones that stem for a multi-tenant
environment. Jobs and data from different tenants are
then kept together under the same cluster in the cloud,
which could be unsafe when one considers the weak
security measures provided by Hadoop. The use of
encryption for protecting data at rest can decrease the
risks associated to data disclosures in such scenario. Our
proposed solution fits in well with the outsourcing of Big
Data processing to the cloud, since information can be
stored in encrypted form in external servers in the cloud
and processed only if access has been delegated.

II. THE HADOOP FRAMEWORK

Hadoop is a framework for processing massive
amounts of data in a large-scale, distributed way. Hadoop
adopts the MapReduce programming paradigm, which
permits to spread the workload across a cluster of ma-
chines, usually hundreds or thousands. In Hadoop, all the
operations or tasks are executed by nodes in the cluster.
There are two kinds of active elements in Hadoop: (i)
the JobTracker, which distributes the workload across the
cluster by assigning individual tasks to worker nodes and
is in charge of its coordination, and (ii) the TaskTrackers,
which simply execute the tasks they are assigned.

In the MapReduce paradigm, each portion of the
workload must be independent from the others, in order
to leverage the potential of massive parallelization. For
this reason, a MapReduce job is designed to be executed
in two phases, Map and Reduce. In the Map phase,
the input data is splitted and processed parallely by the
cluster. For each data split, the JobTracker assigns a
Map task to a TaskTracker that has an available slot
(a single TaskTracker can handle several tasks). The
output of each Map task is a list of key-value pairs.
Roughly speaking, each individual data record in a split
is used for producing a key-value pair during this phase.
Next, this intermediate data is partitioned and sorted with
respect to the key, and stored locally. For each partition,
the JobTracker assigns a Reduce task to an available
TaskTracker. Now the Reduce tasks have to fetch the
intermediate data generated in the previous phase; for
this reason, this part represents the main communication
bottleneck in a MapReduce job. Once intermediate data
is retrieved, each Reduce task sorts and merges all his
partitions, and the Reduce operation is executed. Finally,
the data is combined into one or a few outputs.

The Hadoop framework also defines a special filesys-
tem designed for achieving fault-tolerance and high
throughput for large-scale processing, called Hadoop
Distributed File System (HDFS); however, Hadoop can
be used with other data sources. In HDFS, files are split
in large blocks of a determined size (default size is

64MB), which are replicated and randomly distributed
across the cluster of machines. One of the most promi-
nent characteristics of Hadoop is that it leverages data
locality for reducing communication overhead. In order
to do so, Hadoop exploits the topology of the cluster
by assigning tasks to nodes that are close to the input
data, preferably local to it. Another important aspect is
the way it provides fault-tolerance. In the event of task
failure, Hadoop handles the failure automatically by re-
assigning the task to a different node, taking advantage
of the multiple copies of each block.

Hadoop clusters usually store huge amounts of data
from different sources, owners and degrees of sensitivity.
However, because of its nature, Hadoop can be con-
sidered as a multi-tenant service and several jobs from
different users can be executed at the same time on the
cluster. Also, in the case of HDFS, data is distributed
evenly through the cluster, so it is possible that one
node stores and process data from different tenants at
the same time, which can also introduce security threats,
such as accessing to intermediate output of other tenants,
to concurrent tasks of other jobs or to HDFS blocks on
a node through the local filesystem [6]. Some of these
problems could be mitigated using a cryptographically-
enforced access control approach, such as our proposal.

ITI. PROXY RE-ENCRYPTION

Our proposal uses proxy re-encryption, a special kind
of cryptographic scheme that enables the construction
of our access delegation system. In this section, we
explain what is proxy re-encryption and how it is used
for fulfiling our purposes.

From a high-level viewpoint, a proxy re-encryption
scheme is an asymmetric encryption scheme that permits
a proxy to transform ciphertexts under Alice’s public
key into ciphertexts decryptable by Bob’s secret key.
In order to do this, the proxy is given a re-encryption
key rka_,p, which makes this process possible. So,
besides defining traditional encryption and decryption
functions, a proxy re-encryption scheme also defines a
re-encryption function for executing the transformation.

Proxy re-encryption can be seen as a way to ac-
complish access delegation; thus, one of the immediate
applications of proxy re-encryption is the construction
of access control systems, as already shown in one of
the first proposed and most well-known schemes [7]. A
cryptographically-enforced access control system using
proxy re-encryption can be constructed as follows. Let
us assume a scenario with three entities: (i) Alice, the
data owner, with public and private keys pk4 and ska4;
(i1) Bob, with public and private keys pkp and skp; and



(iii) the proxy entity, which permits access through re-
encryption. The data to be protected is encrypted with
a fresh symmetric encryption key, the data key, and this
key is in turn encrypted using the proxy re-encryption
scheme and the public key of the data owner pk, in
order to create an encrypted lockbox. Encrypted data,
together with its associated lockbox, can now be stored
in an untrusted repository, even publicly accessible. This
process can be made with differents levels of granularity
for the data (file-level, block-level, record-level, etc.).
Note also that the generation of encryption data can be
done by any entity that knows the public key of Alice.
Now, the data owner Alice, can generate re-encryption
keys for authorized entities and pass them to the proxy
entity. In this case, the re-encryption key k4, p can be
seen as an access delegation token that the owner of the
data creates in order to enable Bob access to his data.
Each time that Bob wants to access encrypted data, he
has to ask the proxy for the re-encryption of the lockbox,
so he can decrypt it using his private key skp.

We will borrow this idea for constructing a
cryptographically-enforced access control scheme for
Hadoop. There are plenty of proxy re-encryption
schemes that could be used to this end; however, most
proxy re-encryption schemes use pairing-based cryptog-
raphy, which makes them very costly in terms of com-
putation, and hence, less suitable for high-requirement
environments like ours, where efficiency is paramount.
In this proposal, we will use a scheme from Weng et
al [8], which is proven CCA-secure, and unlike most of
others proxy re-encryption schemes, it is not based in
costly bilinear pairing operations.

Another useful property of this scheme is that it is
transitive, which means that anyone knowing rk4_,p
and rkp_c can derive rks_.c. This follows from the
fact that in this scheme rkq_p = skp - sk:;‘l, SO
rkasc = rkasp - rkp—c. This property will allow
us to derive re-encryption keys from a single “master”
re-encryption key generated by the data owner. This is
explained in more detail in Section IV-B.

IV. RE-ENCRYPTION-BASED DELEGATED ACCESS
SYSTEM FOR HADOOP

In this section, we describe a cryptographically-
enforced access control system for Hadoop, based in
proxy re-encryption. By using it, the data is stored in
encrypted form and the owner can delegate access rights
to the computing cluster for processing. In our proposal,
the data lifecycle is composed of three phases:

1) Production phase: during this phase, data is gener-

ated by different data sources, and stored encrypted
under the owner’s public key for later processing.

2) Delegation phase: in this phase, the data owner
produces the necessary master re-encryption key
for initiating the delegation process; once this
phase concludes, the data owner does not need to
participate again.

3) Consumption phase: This phase occurs each time a
user of the Hadoop cluster submits a job; is in this
phase where encrypted data is read by the worker
nodes of the cluster. At the beginning of this phase,
re-encryption keys for each job are generated.

A. Production phase

This phase comprises the generation of the data by
different sources and its storage in encrypted form. We
assume a scenario where for each dataset, there are
multiple data sources and only one dataset owner. In our
proposal, we establish that data of each owner is stored
encrypted using his public key pkpo. One advantage
of using here a public key cryptosystem is that input
data can be generated from disparate sources and still be
protected from its origin, without requiring to agree on a
common secret key. Let us assume that a data producer
(which can be either the dataset owner himself or an
external source) stores a file into a cluster with HDFS,
and this file is splitted in N blocks (b1, ...,bn). Recall
that, when a job is submitted to the cluster, Hadoop first
splits input data and then assigns a Map task for each
split. In the most common case, Hadoop is implemented
using HDFS as the underlying filesystem, so each split
will usually match a HDFS block. From now on, we
will assume then that data is encrypted on a block-by-
block basis since this is the more efficient approach,
although our solution could be adapted to other levels
of granularity and other filesystems.

For each data block b;, the data producer generates a
fresh symmetric key r; that is used for encapsulating the
data through a symmetric encryption scheme E*Y™, such
as AES. Encrypted data is then of the form E;Y™(b;).
The data key 7; is in turn encapsulated using the encryp-
tion function EP"® of the proxy re-encryption scheme
with the public key of the dataset owner, pkpo, obtaining
an encrypted lockbox E};" (r;). Thus, for each block
b;, we obtain a pair of the form (EX* (r;); EX/™ (b;)),
which is the data that is finally stored.

B. Delegation phase

The goal of this phase is that the dataset owner
produces a master re-encryption key mrkpo to allow the
delegation of access to the encrypted data. This master
re-encryption key is used to derive re-encryption keys in
the next phase. The delegation phase is done only once



for each computing cluster and involves the interaction
of three entities: (ii) Dataset Owner (DO), with a pair
of public and secret keys (pkpo,skpo), the former
used to encrypted generated data for consumption; (ii)
Delegation Manager (DM), with keys (pkpas, skpar)s
and which belongs to the security domain of the data
owner, so it is assumed trusted by him; and (iii) Re-
Encryption Key Generation Center (RKGC), which is
local to the cluster and is responsible for generating
all the re-encryption keys needed for access delegation
during the consumption phase.

In order to create the master re-encryption key
mrkpo, which is actually mrkpo = rkpo—pm =
skpn - skl_)}), these three entities follow a simple three-
party protocol, so no secret keys are shared, as depicted
in Figure 1. The value ¢ used during this protocol is
simply a random value that is used to blind the secret
key. At the end of this protocol, the RKGC possesses
the master re-encryption key mrkpo that later will be
used for generating the rest of re-encryption keys in the
consumption phase, making use of the transitive property
of the proxy re-encryption scheme.
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Fig. 1. Delegation protocol

C. Consumption phase

This phase is performed each time a user submits a
job to the Hadoop cluster. First, a pair of public and
private keys for the TaskTrackers is initialized in this
step; these keys will be used later during the encryption
and decryption process. For simplicity, we assume that
a common pair of public and private keys (pkrr, skrr)
is shared by all the TaskTrackers; however, each Task-
Tracker could have a different pair if necessary and the
process would be the same. Next, re-encryption keys for
each TaskTracker are generated, in our case only one,
as we assumed only one pair of public and secret keys.
In this step, the Delegation Manager, the Re-Encryption
Key Generation Center, the JobTracker and one of the
TaskTrackers with public key pkrr interact in order to
generate the re-encryption key rkpo_srr, as depicted in
Figure 2; in this case, u is the random blinding value.

The final output is a re-encryption key rkpo_rr held
by the JobTracker, who will be the one performing re-
encryptions. This process could be repeated in case that
more TaskTrackers’ keys are in place.
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Fig. 2. Re-Encryption Key Generation protocol

Now that re-encryption keys have been generated, the
JobTracker determines the input set, which is specified
by the job configuration, in order to find the number of
input splits. Recall that the number of map tasks depends
on the number of input splits. Following Hadoop’s data
locality principle in order to save network bandwith, the
JobTracker will select a set of TaskTrackers that are close
to the input data in terms of network proximity, and will
send the task requests to this set of TaskTrackers. Be-
fore each TaskTracker being able to do any processing,
encrypted blocks must be deciphered. In order to do so,
each TaskTracker needs to request the re-encryption of
the encrypted lockbox for each block to the JobTracker.
When the re-encryption is done, the JobTracker sends
back the re-encrypted lockbox, which is next deciphered
by the TaskTracker for extracting the symmetric key
of the content. Once the block is decrypted, data is
ready for being extracted by the TaskTracker. The map
process now continues in the same way than in regular
Hadoop: each TaskTracker invokes the map function
for each record in the input split, producing a set of
key-value pairs. This intermediate data is sorted and
partitioned with respect to the key and stored in local
files, one for each reducer. These intermediate files are
also encrypted, but this time with the public key of
the Reducer TaskTrackers. Since we assume that all
TaskTrackers share the same pair, this key will be pkr7;
however, a different set of keys could be used.

When the map task finishes, its TaskTracker notifies
the JobTracker about the completion, and once all the
TaskTracker complete their map tasks, the JobTracker
will select a set of TaskTrackers for performing the
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Reduce tasks. Each reduce task will first read the in-
termediate output files remotely and decrypt them using
their secret key skrr. Now that the intermediate files are
in clear, they sort and merge the output files and execute
the reduce function, which produces an aggregated value
for each key; the results are written in one output file per
reduce task. The final output can be encrypted using the
public key of the client; for simplicity, we can assume
that the client in this case is the data owner, so the public
key is pkpo. Finally, output files are stored in HDFS.
The full procedure is depicted in Figure 3.

V. EXPERIMENTAL RESULTS

For our experiments, we have executed the main part
of the consumption phase of a job, where the processing
of the data occurs. From the Hadoop perspective, the
other phases are offline processes, since are not related
with Hadoop’s flow. Our experiments are executed in a
virtualized environment on a rack of IBM BladeCenter
HS23 servers connected through 10 gigabit Ethernet,
running VMware ESXi 5.1.0. Each of the blade servers
is equipped with two quad-core Intel(R) Xeon(R) CPU
E5-2680 @ 2.70GHz. We set up a cluster of 17 VMs
(the master node, which contains the JobTracker and the
NameNode, and 16 slave nodes, each of them holding
a TaskTracker and a DataNode). Each of the VMs in
this environment is provided with two logical cores and
4 GB of RAM, running a modified version of Hadoop
1.2.1 that implements a prototype of our proposal. As
for the cryptographic details, the proxy re-encryption
scheme is implemented using elliptic curve cryptography
over a prime field. In particular, we implemented the
proxy re-encryption scheme from Weng et al. using the

NIST P-256 curve, which provides 128 bits of security
and is therefore appropriate for encapsulating 128 bits
symmetric keys [9]. With respect to the symmetric
encryption algorithm we chose AES-128-CBC. We will
also make use of the built-in support for AES included
in some Intel processors through the AES-NI instruction
set.

The experiment consisted on the execution of one of
the sample programs included in Hadoop, the Word-
Count benchmark, a simple application that counts the
occurence of words over a set of files. In the case of our
experiment, the job input was a set of 1800 encrypted
files of 64 MB each; in total, the input contains 28.8
billions of words and occupies aproximately 112.5 GB.
The size of each input file is sligthly below 64 MB, in
order to fit HDFS blocks.

We executed two runs over the same input: the first
one using a clean version of Hadoop and the second
one using a modified version with a prototype of our
proposal. The total running time of the experiment was
1932.09 and 1960.74 seconds, respectively. That is, a
difference of 28.74 seconds, which represents a relative
overhead of 1.49% for this experiment. Table I shows the
measured time cost associated to the main cryptographic
operations of our solution.

The most critical part of the execution is at the be-
ginning of each Map task, when for each encrypted split
the TaskTracker asks for the corresponding re-encrypted
lockbox to the JobTracker, decrypts it and performs a
symmetric decryption of the data block. The duration of
this process is more or less constant, as it mostly depends
on the size of the encrypted data block. Thus, relative
overhead will depend drastically on the duration of the
map phase. On the one hand, if the map phase is very



TABLE 1
TIME COST FOR THE MAIN CRYPTOGRAPHIC OPERATIONS

Operation Time (ms)
Block Encryption (AES-128, 64 MB) 214.62
Block Decryption (AES-128, 64 MB) 116.81
Lockbox Encryption (PRE scheme) 17.84
Lockbox Re-Encryption (PRE scheme) 17.59
Lockbox Decryption (PRE scheme) 11.66

intensive, then the overhead introduced by our solution
will be relative small, in comparison with the processing
of the input splits. On the other hand, if the map phase is
light, then the overhead will be very significant. In the
case of our experiment, where the processing of input
splits in each map task takes approximately 34 seconds,
the overhead introduced by our solution is very small,
as the duration of the cryptographic operations is within
the order of milliseconds.

VI. RELATED WORK

The integration of encryption technologies in Hadoop
is a topic that is being explored recently. Park and Lee
present in [10] a modification of the Hadoop architecture
in order to integrate symmetric encryption in HDFS.
They also perform an experimental evaluation of their
solution and claim that the overhead is less than 7%.
However, as they only consider the use of symmetric
encryption, the secret keys used for encrypting have to
be shared with the computing nodes. In a similar work,
Lin et al [11] show the impact of integrating RSA and
pairing-based encryption on HDFS. In their experiments,
performance is affected by between 20% and 180%.
In other related areas, such as cloud computing, the
use of cryptography for enforcing access control and
protecting data confidentiality is a hot topic [12]. In
particular, the use of proxy re-encryption for constructing
cryptographically-enforced access control systems has
already been explored in other works [7], [13].

VII. CONCLUSIONS

In this paper we address the problem of how to
integrate data confidentiality and massive processing in
the Big Data scenario; widely accepted solutions, such as
Hadoop, do not offer the proper means to protect data at
rest. Security issues are even more worrisome in multi-
tenant environments, such as when Hadoop is executed
in the cloud and provided as a service. For these reasons,
there is an imperative need for technical safeguards using
cryptography, beyond simple access control layers.

We propose a cryptographically-enforced access con-
trol system for Hadoop, based on proxy re-encryption.

In our solution, stored data is always encrypted and
encryption keys do not need to be shared between
different data sources. Nevertheless, the use of proxy
re-encryption allows stored data to be re-encrypted into
ciphered data that the cluster nodes can decrypt with their
own keys when a job is submitted. In order to permit this,
the data owner has to first grant access rights (in the form
of decryption capabilities) to the Hadoop cluster.
Experimental results show that the overhead produced
by the encryption and decryption operations is manage-
able, so our proposal is suitable for some applications.
In particular, the main insight we extract from this ex-
periment is that our proposal will fit well in applications
with an intensive map phase, since then the overhead
introduced by the use of cryptography will be reduced.
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