
Escrowed Decryption Protocols for Lawful Interception of

Encrypted Data

David Nuñez, Isaac Agudo, and Javier Lopez

Network, Information and Computer Security Laboratory (NICS Lab)

Universidad de Málaga, Spain

{dnunez,isaac,jlm}@lcc.uma.es

Abstract

Escrowed decryption schemes are public-key encryption schemes with an escrowed decryption
functionality that allows authorities to decrypt encrypted messages under investigation, following a
protocol that involves a set of trusted entities called custodians; only if custodians collaborate, the
requesting authority is capable of decrypting encrypted data. This type of cryptosystems represents
an interesting trade-off to the privacy vs. surveillance dichotomy. In this paper, we propose two
escrowed decryption schemes where we use proxy re-encryption to build the escrowed decryption
capability, so that custodians re-encrypt ciphertexts, in a distributed way, upon request from an
escrow authority, and the re-encrypted ciphertexts can be opened only by the escrow authority. Our
first scheme, called EDS, follows an all-or-nothing approach, which means that escrow decryption
only works when all custodians collaborate. Our second scheme, called TEDS, supports a threshold
number of custodians for the escrow decryption operation. We propose definitions of semantic security
with respect to the authorities, custodians and external entities, and prove the security of our schemes,
under standard pairing-based hardness assumptions. Finally, we present theoretical and experimental
analysis of performance of both schemes, which shows that they are applicable to real-world scenarios.

1 Introduction

There is a growing debate nowadays around the dichotomy between data confidentiality and law en-
forcement investigations in digital communication networks, such as the Internet. On one side of this
discussion, governments and law enforcement agencies (LEAs) are concerned with the alleged impunity
that is derived from the use of private and confidential communications. This has motivated the proposal
of surveillance mechanisms as a means to detect and prevent illegal activities (e.g., child pornography)
and national security threats (e.g., terrorism). There is no doubt that the abstract goal of protecting
citizens from these dangers is noble; the same cannot be said of all the actual methods to achieve this.
Contrary to this view, a large part of the society, which includes private citizens and corporations, see
these claims as a threat to their rights to privacy and confidentiality. Relatively recent examples of this
are the controversy produced by the US’ Investigatory Powers Act 2016 [1] and the dispute betwee FBI
and Apple [2]. There is an intense, on-going debate nowadays regarding whether mechanisms for breaking
confidentiality of communications are a legitimate method to fight the mentioned threats.

One of the most immediate concerns is the perceived lack of accountability from the government and
LEAs; in other words, if such mechanisms were available, there is no hindrance for the government and
LEAs to use it as an effective means for mass surveillance. According to a document exposed by the
Washington Post [3], a working group of the US government delivered an internal document containing a
list of principles with respect to the use of encryption, and its relation with industry and law enforcement.
Of particular interest are the following principles: “2. No unilateral government access. Approaches
should not provide “golden keys” to government or allow government to access information without the
assistance of a third party. 3. Technologically-enforced limits. To the extent possible, approaches should
rely on technology, rather than procedural protections, to enforce constraints on government access”.

The inclusion of independent third parties as necessary parts of “government access”, enforced by
technological means, seems like a plausible trade-off in the dichotomy between data confidentiality and

1

D. Nuñez, I. Agudo, and J. Lopez, “Escrowed decryption protocols for lawful interception of encrypted data”, IET Information Security, vol. 13,
pp. 498 – 507, 2019.
NICS Lab. Publications: https://www.nics.uma.es/publications



law enforcement investigations. Aligned with the aforementioned principles, [4] proposed a protocol
for Accountable Escrowed Encryption, which, on the one hand, allows escrow authorities (a term that
subsumes government and LEAs) to decrypt encrypted messages under investigation, but on the other
hand, enables to hold them accountable. Their proposal consists on a special encryption scheme that
has a built-in escrowed decryption capability. In order to use this capability, escrow authorities have to
follow a protocol involving a set of trusted entities called custodians; only if all custodians collaborate,
the requesting escrow authority is capable of decrypting the encrypted message. A core principle of this
solution is that it does not require key escrow (i.e., a “backdoor” in the encryption scheme for extracting
users’ private key); instead, only the decryption capability is escrowed, on a case-by-case basis. Another
interesting aspect of this proposal is that the custodians are in a position of providing accountability by
informing citizens of the number of escrow requests; this is implemented by recording such information on
a public log, facilitating the society to react through democratic procedures (e.g., demanding “less/more
decryption” from escrow authorities). The authors argue that, this way, a balance between societal
security and individual privacy can be achieved.

In this paper we propose an alternative construction for the Accountable Escrowed Encryption scheme
by [4]. Our proposal solves several problems from the original scheme, related to security and efficiency.
The proposed construction is similar in essence but borrows techniques from Proxy Re-Encryption [5] in
order to build the escrowed decryption capability. That is, the trusted custodians re-encrypt ciphertexts,
in a distributed way, upon request from the escrow authority, and the re-encrypted ciphertexts can be
opened by the escrow authority.

We note that lawful interception is not the only suitable application of the proposed systems. For
example, these systems can also be used to implement data recovery in corporate scenarios, where data is
encrypted with public keys belonging to users of the system, and under special circumstances, it can be
delegated to authorized escrow agents (e.g., internal auditor, system administrator, etc) in a controlled
manner. However, lawful interception scenarios seem much more illustrative and their demand is more
pressing, and therefore, in the rest of the article we will focus on this use case.

1.1 Contributions

In this paper we make the following contributions:

• Motivated by the need of a trade-off between confidentiality and lawful interception, we present
a high-level definition of escrowed decryption schemes, building upon the work of [4], and provide
a comprehensive description of actors, interactions, syntax and trust assumptions for this type of
schemes.

• We define two security notions for realizing semantic security in escrowed decryption schemes: one
with respect to the escrow authority (IND-EA-CPA), and another with respect to the custodians
(IND-CUST-CPA).

• We propose the Escrowed Decryption Scheme (EDS) cryptosystem, which uses proxy re-encryption
techniques to instantiate the escrowed decryption capability. We show that EDS is secure under
the previous notions assuming the hardness of the SXDH problem.

• We propose a threshold variant of EDS, called Threshold EDS (or TEDS), which is also secure
under the previous notions assuming the hardness of the SXDH problem.

• We analyze the performance of EDS and TEDS, both from the theoretical and experimental points
of view.

1.2 Organization

The rest of this paper is organized as follows: In Section 2, we present related state of the art, and in
Section 3, we briefly summarize some cryptographic concepts that will be used later. In Section 4, we de-
scribe in detail the escrowed decryption system, including actors and their interaction, trust assumptions,
design goals, and other formalizations. In Section 5, we present a first proposal of escrowed decryption
system, named EDS, including an analysis of correctness and security, and in Section 6, we propose a
threshold variation, called TEDS. In Section 7, we analyze the computational costs of our proposals and
describe the experimental results from a prototype implementation. Finally, Section 8 concludes the
paper and future work is outlined.

2



2 Related Work

As described in the introduction, our proposal is inspired by the work of [4], and intended to solve some
of its problems. One of them is that a collusion of custodians can potentially decrypt any message if
they have access to a full ciphertext. That is, one have to make the assumption that the custodians
are trusted for not doing this. In our proposal, the custodians are never able to see the underlying
message, even if they have access to the whole ciphertext. Another problem of the original scheme is
the efficiency of the solution. The protocol for escrow decryption in the original proposal is composed of
2 synchronous rounds, and each round involves all custodians; that is, the escrow authority has to first
engage all custodians in a first round of interactions (ideally in parallel), and only when all of them have
responded, it can continue with a second round of interactions. The reason behind this characteristic is
that the escrow authority has to make some intermediate computations that are required for the second
round, and it needs all the responses from the first round to do this. In our proposal, we reduce the
escrow decryption protocol to a single round.

There are other related proposals in the literature, starting from the seminal works of [6], [7], and [8],
all of them oriented towards key escrow (i.e., recovery the secret key of a user). [9] describe protocols
to enhance accountability in case of mandated law enforcement access to stored data. However, one of
the initial premises of these protocols is that the original data source stores the target information in
the clear (e.g., a telecommunications carrier storing metadata about incoming/outgoing phone calls). In
addition, users are left out from their proposal. [10] present a group signature scheme that allows to
reveal the identity of a sender to authorities, in a covert, yet accountable way. Note that this work is
focused on signatures and privacy of the sender, rather than encryption and confidentiality of messages.

Regarding the intersection of proxy re-encryption and distributed/threshold re-encryption, we should
note the work of [11] in the context of certificateless proxy re-encryption, where they define a distributed
re-encryption process based on Shamir’s secret sharing. There are also other related proposals, such as
[12, 13, 14], but in all of them the decryption key is distributed among several entities, rather than the
re-encryption capability, which makes them closer to the key escrow literature, rather than to the concept
of escrowed decryption.

3 Preliminaries

This section introduces some cryptographic basic concepts that will be used during the paper. First, we
introduce bilinear pairings, which are used in our proposed schemes, as well as some associated hardness
assumptions. Next, we briefly describe the concepts of proxy re-encryption and secret sharing, since we
use ideas from both types of cryptosystems.

3.1 Bilinear pairings and hardness assumptions

Let G1,G2 and GT be cyclic groups of prime order q. A bilinear pairing is a map e : G1 × G2 → GT

satisfying the following properties:

• Bilinearity: For all a, b ∈ Zq, g1 ∈ G1 and g2 ∈ G2, it holds that e(g
a
1 , g

b
2) = e(g1, g2)

ab.

• Non-degeneracy: For all g1 ∈ G1 and g2 ∈ G2, it holds that e(g1, g2) ̸= 1.

• Computability: There is an efficient algorithm that computes e.

Depending on the characteristics of the groups, there are essentially three types of pairings [15]:

• Type-1 pairings: G1 = G2.

• Type-2 pairings: G1 ̸= G2 and there is an efficiently computable homomorphism ϕ : G2 → G1.

• Type-3 pairings: G1 ̸= G2 and there is no efficiently computable homomorphism between G2 and
G1.

Type-1 pairings are said symmetric (since G1 and G2 are the same group), and Type-2 and Type-3
pairings are asymmetric. It is advisable to design cryptographic schemes and protocols using Type-3
pairings, since they achieve the best trade-off between security and efficiency [15, 16], although there
have been some recent proposals that allow to design protocols in a Type-1 setting and to automatically
translate them to Type-3 [17, 18]. For simplicity in the design process, we directly use Type-3 pairings.
The following is a common hardness assumption for this type of pairings:

3



Definition 1 (The External Diffie-Hellman assumption (XDH) [19]). Let G1 and G2 be pairing groups
of order q. Given a tuple (g, ga, gb, gc) ∈ G4

1, where a, b, c ∈ Zq, the XDH assumption holds if it is not
computationally feasible to decide whether gc = gab. In other words, the DDH problem in G1 is hard.

When, in addition to assuming that the DDH is hard in G1, we consider the DDH hard in G2, then
it is called the Symmetric External Diffie-Hellman assumption.

Definition 2 (The Symmetric External Diffie-Hellman assumption (XDH) [20]). Let G1 and G2 be
pairing groups. The SXDH assumption holds if the DDH problem is hard in both G1 and G2.

3.2 Proxy Re-Encryption

From a high-level viewpoint, proxy re-encryption is a type of public-key encryption that enables a proxy
to transform ciphertexts under Alice’s public key into ciphertexts decryptable by Bob’s secret key. This
transformation is performed by a proxy entity using a re-encryption key generated by Alice, without
revealing to the proxy any information about the underlying message. There are multiple proxy re-
encryption proposals in the literature (see [21] for an overview), being the most prominent the ones by
[22] and [5].

3.3 Shamir’s Secret Sharing

Let us assume that a dealer wants to share a secret s ∈ Zq among n participants, so that it can be
reconstructed with t “shares”. The dealer first samples random coefficients f1, f2, ..., ft−1 ∈ Zq and
defines a polynomial f(x) ∈ Zq[x], so that:

f(x) = s+ f1x+ f2x
2 + ...+ ft−1x

t−1

Now, for each participant i ∈ {1, ..., N}, the dealer sends the share f(i). It can be seen that the secret
shared by the dealer can be obtained as f(0). Using Lagrange’s polynomial interpolation, the secret can
be reconstructed from any set of t shares. Let I ⊆ {1, ..., N} be a set of t indices. Reconstruction of the
shared secret can be done as follows:

s =
∑
i∈I

f(i) · λi, where λi =
∏

j∈I/{i}

j

j − i
(1)

This cryptosystem is due to [23] and provides information-theoretic security of the secret (that is,
with less than t shares, all possible values in Zq are equally probable, so an adversary has no information
in this case).

4 System model

This section is devoted to the definition of what constitutes an escrowed decryption scheme. First, we
present a general overview of such schemes, their actors and interactions, as well as the corresponding
trust assumptions. Second, we describe their design goals. Third, we provide a formal definition and
syntax for our proposed cryptosystems. Finally, we propose security models that cover some of the
previous design goals from a cryptographic point of view.

4.1 Overview

The ultimate goal of an escrowed decryption scheme is to provide technical means to a legitimate entity
to decipher encrypted messages, but only with the collaboration of other independent, trusted third-
parties that can limit the process. Similarly to [4], we consider four main types of actors in an escrowed
decryption system, which are the following:

• Users, which are entities that want public and private keys to engage in encrypted communications
with others.

• Certification Authority (CA), which is in charge of providing certified public keys to users, and
ensuring that the escrowed decryption capabilities are guaranteed. These capabilities are embodied
by a set of escrow shares, which are cryptographic material intended for the custodians that enables
them to assist in escrow decryption.

4



Escrow sharesKey generation request

Certified public key

Alice Certification
Authority

(CA) Custodians

Escrow 
Authority

(EA)

Escrow decryption

Accountability log

Public and private 
keys of Alice Public and private 

keys of EA

Figure 1: High-level view of actors and interactions in an escrowed decryption system

• Custodians are trusted entities that participate in an escrowed decryption procedure, using an
escrow share. Custodians may (or may not) positively respond to access requests from escrow
authorities on a case-by-case basis, depending on legal or technical motives. Optionally, custodians
may record in a public accountability log any escrow decryption request received from escrow
authorities.

• Escrow Authority (EA), which is an entity that wants to access to information that is encrypted
and that interacts with a set of custodians to perform an escrowed decryption of such information.
We assume that the EA has a pair of public and private keys. For simplicity, we will assume
only one escrow authority in the system. Examples of escrow authorities are governments or Law
Enforcement Agencies (LEAs) in criminal investigation scenarios, or internal auditors in a corporate
environment.

Figure 1 depicts a high-level view of the actors that participate in an escrowed decryption system, as
well as their interactions.

4.2 Trust assumptions

The protocol has the following trust assumptions:

• The Escrow Authority is assumed to eavesdrop and intercept any communication between users of
the system.

• The custodians are assumed to be honest-but-curious, which means they behave correctly, in ac-
cordance to the expectations, but at the same time, they are interested in learning the underlying
information.

• The Certification Authority is also honest-but-curious. In our proposed schemes, it can potentially
replace the role of the custodians, and for this reasons, we require it to be an honest actor. However,
it may attempt to gain knowledge about the messages and should not be able to do so.

• Collusions of Escrow Authority and Custodians are not considered, since they trivially allow to
decrypt communications. In fact, a legitimate escrowed decryption procedure is basically a col-
laboration between the escrow authority and the custodians, which makes collusions of escrow
authorities and custodians no different from regular, legitimate interactions. Since the CA can po-
tentially replace the custodians (as discussed in the previous item), collusions of escrow authority
and CA are also not permitted.

4.3 Design goals

We set the following design goals, which will be used later for the security analysis:

5



1. No key escrow: The system should not include a “backdoor” that allows extracting users’ private
key. Instead, only the decryption capability is escrowed, on a case-by-case basis.

2. Escrow authorities must not be able to learn any information from an encrypted message without
the participation of the required custodians.

3. Custodians must not learn any underlying information from the encrypted messages during the
escrowed decryption process.

4. It should not be possible to impersonate an escrow authority. In other words, only legitimate escrow
authorities can successfully decrypt intercepted messages, with collaboration of the custodians.

5. Custodians are in a position of providing accountability by publicly informing of the identity of
affected users and/or number of escrow decryption requests. We consider this goal as optional,
since it may not be cryptographically enforced by the encryption scheme.

4.4 Formal definition

The idea behind our proposed schemes is to base the escrowed decryption protocol on a “shared” re-
encryption process by the custodians, in a way reminiscent to the decryption procedure of a threshold
encryption scheme [24]; that is, our solution ensures that the escrow authority is able to decrypt cipher-
texts intended for suspicious users as long as he engages the collaboration of all the escrow custodians.

Formally, we define a new type of cryptosystem that consists of a public-key encryption scheme with
an added escrowed decryption capability, which we construct using proxy re-encryption techniques. In
order to use this capability, escrow authorities have to follow a protocol involving a set of custodians, and
only if all of them collaborate, the requesting escrow authority is capable of decrypting the encrypted
message. The following is the generic syntax of this new cryptosystem:

• Setup(1k)→ pp. On input the security parameter 1k, the setup algorithm outputs the set of global
parameters pp, which includes the public and private key of the escrow authority (pkEA, skEA).

• KeyGen(pkEA) → (pk, sk, {κi}ni=1). On input the escrow authority’s public key pkEA, the key
generation algorithm outputs the public and private key of user U , (pk, sk), and a set of escrow
shares, {κi}ni=1.

• Enc(pk,m) → CT . On input a public key pk and a message m, the encryption algorithm outputs
ciphertext CT .

• Dec(sk, CT ) → m. On input the secret key sk and a ciphertext CT , the decryption algorithm
outputs the original message m.

• ShareReEnc(κi, CT )→ ρi. On input an escrow share κi and a ciphertext CT , this algorithm outputs
the re-encryption share ρi.

• Comb(skEA, CT, {ρi}ni=1)→ m. On input the escrow authority’s secret key skEA, a ciphertext CT ,
and a set of re-encryption shares {ρi}ni=1, the combination algorithm outputs the original message
m.

4.5 Security model

We consider security against three types of adversaries, namely the escrow authority, the custodians, and
external entities:

4.5.1 Security against the escrow authority

As usual in most encryption schemes, it is necessary to provide a formal assurance of security, at least
based on an indistinguishability notion. Here we target indistinguishability against chosen-plaintext
attacks (IND-CPA), although adapted to our proposed cryptosystem, in particular with respect to the
escrow authority. Apart from the usual characteristics of the IND-CPA game in public-key encryption,
we also allow the adversary to know the secret key of the escrow authority (EA), which is equivalent to
consider the escrow authority as the adversary. Informally, this means that the EA should not be able
to distinguish messages based on their encryption. We named this security notion as IND-EA-CPA, and

6



IND-EA-CPA Game

Simulator Adversary

(pp, pkEA, skEA)← Setup()

(pk∗, sk∗)← KeyGen(pkEA)

pk∗, pkEA, skEA

Choose m0,m1

m0,m1

δ←$ {0, 1}
CT ∗ ← Enc(pk∗,mδ)

CT ∗

Guess δ′

δ′

Figure 2: Description of the IND-EA-CPA Game

IND-CUST-CPA Game

Simulator Adversary

(pp, pkEA, skEA)← Setup()

(pk∗, sk∗, {κi}Ni=1)← KeyGen(pkEA)

pk∗, pkEA, {κi}Ni=1

Choose m0,m1

m0,m1

δ←$ {0, 1}
CT ∗ ← Enc(pk∗,mδ)

CT ∗

Guess δ′

δ′

Figure 3: Description of the IND-CUST-CPA Game

the associated game is represented in Figure 2. The basic operation of this game is the following: given
a user’s public key, an adversary chooses two messages and asks for a challenge ciphertext, which is the
encryption of one of these messages under the user’s public key; satisfaction of this security notion implies
that the adversary should not be able to distinguish which message is encrypted (or more accurately, his
advantage with respect to random guessing should be negligible), even if he knows the secret key of the
escrow authority. It can be seen that this security notion covers the second design goal (see Section 4.3).

Although we use techniques from proxy re-encryption in our proposed cryptosystems, we stress that
we are not targeting here a security notion suitable for PRE, since this is not a PRE scheme. In particular,
it is only possible to “re-encrypt” to the escrow authority, not to any other regular user. For the same
reason, and given that in this security model the adversary knows the secret key of the escrow authority,
we cannot give him also the escrow shares (which are equivalent to re-encryption keys, in PRE terms),
since this would make the game trivial (i.e., that is, the adversary could use the escrow shares to re-
encrypt ciphertexts, and the secret key of the escrow authority to decrypt it). We also note that, since
we are targeting a CPA model, there is no need to describe any oracle.

4.5.2 Security against the custodians

The other security notion we target is IND-CPA with respect to the custodians, which can be seen as
symmetric to the first one. In particular, we allow the adversary to know all the escrow shares, which
is equivalent to consider the custodians as the adversary. We named this security notion as IND-CUST-
CPA, and the associated game is represented in Figure 3. Analogously to the previous game, we cannot
provide the adversary with the secret key of the escrow authority, since this would make the game trivial.
This security notion covers the third design goal (see Section 4.3).

4.5.3 Security against external adversaries

We consider that this adversary has no additional knowledge apart from public information. Therefore,
in this case, we are dealing with the traditional IND-CPA security notion. It can be shown that it is
strictly weaker than the previous notions (that is, satisfaction of any of them implies satisfaction of this
notion, since the adversary has less information in the latter case). For this reason, we will not consider
it explicitly in our security analysis. This security notion covers the fourth design goal (see Section 4.3).

5 Escrowed Decryption Scheme (EDS)

In this section we formally describe our proposed Escrowed Decryption Scheme (EDS), as well as prove
its correctness and analyze its security under the models described before.

From the point of the of the design of the cryptographic scheme, we base our solution on a proxy
re-encryption scheme (in particular, the one by [5]). Roughly, we implement the escrowed decryption
process as a re-encryption of a ciphertext, so that it can be decrypted by the escrow authority. There
are, however, two main modifications with respect the scheme of Ateniese et al.:

7



• Re-encryption is split among several entities (i.e., the custodians). The re-encryption key is split

into N shares, so rk =
N∏
i=1

rki. Then, for the decryption of re-encrypted ciphertexts, we make use

of the multiplicative homomorphic properties of the scheme. Informally:

ReEnc(rk, CT ) =

N∏
i=1

ReEnc(rki, CT )

In our scheme, these shares are called escrow shares and represented by κi.

• The original scheme from Ateniese et al. allows to encrypt ciphertexts that are not re-encryptable
(called “first-level ciphertexts”), which can be used to bypass our re-encryption-based escrow. We
get rid of this functionality by modifying the key generation in such a way that users’ public key
cannot be used to create first-level ciphertexts.

5.1 Description of the scheme

Our scheme is defined as follows. Note that although in the generic syntax above we described functions,
our solution requires some of them to be implemented as two-party protocols. In particular, key generation
is jointly performed by the user and the CA, while escrow decryption requires individual interaction of
the escrow authority with all the custodians.

Setup. Let e : G1 × G2 → GT be a type-3 pairing, g a generator of G1, h a generator of G2, with
G1, G2 and GT of order q, and Z = e(g, h). The public key of the escrow authority is pkEA = ha,
and the corresponding secret key skEA = a, with a ∈ Zq sampled uniformly at random. This public
key is certified by the CA in the traditional way. Let N > 0 be the number of custodians. The public
parameters of the system are the elements of the tuple pp = (e,G1,G2,GT , q, g, h, Z, pkEA, N)

U CA

u, β ← Z∗
q

κ̃i ∈ G2, for 2 ≤ i ≤ N

κ̃1 = (pkEA)
β/u ·

(
N∏
i=2

κ̃i

)−1

gu, gβ , {κ̃i}Ni=1

−−−−−−−−−−−−−−−→ Verify Equation 3
s, γ ← Z∗

q

pk = ((gu)s, e((gβ)sγ , h))
κi = (κ̃i)

γ , for i ≤ i ≤ N
pk, hγ

←−−−−−−−−−−−−−−−
sk = (hγ)β/u = hv/u

Figure 4: Key Generation subprotocol

Key Generation. The user U first selects random secrets u, β ∈ Zq, and computes gu and gβ . Let C
be the set of indices of the custodians; for simplicity, we can assume that C = {1, ..., N}. Now, he chooses
random κ̃i ∈ G2, for 2 ≤ i ≤ N , and computes κ̃1 as follows:

κ̃1 = (pkEA)
β/u ·

(
N∏
i=2

κ̃i

)−1

These elements κ̃i are partial escrow shares, and it can be seen that they satisfy the relation:

N∏
i=1

κ̃i = haβ/u (2)

8



Next, he sends (gu, gβ , {κ̃i}Ni=1) to CA for certification. CA verifies that the input received is valid
by checking that the following equation holds:

e(gu,

N∏
i=1

κ̃i) = e(gβ , pkEA) (3)

Next, CA chooses random s, γ ∈ Zq and computes the public key of user U as follows:

pk = ((gu)s, e((gβ)sγ , h)) = (gsu, Zsv)

It can be seen that this implicitly defines v = β · γ, without the user knowing γ and the CA knowing β.
This public key is then signed and certified by the CA, in the traditional way of public-key infrastructure.
Now, the CA concludes the generation of the set of escrow shares, by computing κi = (κ̃i)

γ for each
custodian. Note that the following relation between escrow shares and the escrow authority’s public key
holds:

N∏
i=1

κi = (

N∏
i=1

κ̃i)
γ = (haβ/u)γ = hav/u = (pkEA)

v/u (4)

The CA sends each escrow share to each of the N custodians through a secure channel. Finally,
CA returns (pk, hγ) to user U , who sets sk = (hγ)β/u = hv/u. Figure 4 shows the interactions of this
subprotocol.

Encryption. Any entity can encrypt message m ∈ GT into a ciphertext under user U ’s public key
pk = (gsu, Zsv) by choosing a random r ∈ Zq and outputting the tuple:

CT = ((gsu)r, (Zsv)r ·m) = (gsur, Zsvr ·m)

Decryption. User U can decrypt a ciphertext CT = (CT1, CT2) = (gsur, Zsvr ·m) using his secret
key sk = hv/u as follows:

m =
CT2

e(CT1, sk)

EA Ci

CT = (CT1, CT2)

For each custodian Ci ∈ C:
CT1

−−−−−−−−−−→
ρi = ShareReEnc(κi, CT1)

ρi
←−−−−−−−−−−

m = Comb(skEA, CT, {ρi}Ni=1)

Figure 5: Escrowed Decryption subprotocol

Escrowed decryption. This subprotocol is basically the combination of the ShareReEnc and Comb
algorithms, as seen in Figure 5, where the ShareReEnc algorithm is performed by the custodians and
the Comb algorithm is done by the escrow authority. When the escrow authority wants to decrypt a
ciphertext CT = (CT1, CT2) = (gsur, Zsvr · m) that is encrypted under user U ’s public key, they give
CT1 = gsur to each custodian, and obtain as response the re-encryption share ρi, computed as follows:

ρi = ShareReEnc(CT1, κi) = e(gsur, κi)

Note that although we defined the syntax of ShareReEnc such that it takes the whole ciphertext
as input, in our proposed scheme only the first component is necessary, which allows to save some
bandwidth. After getting the re-encryption shares from all custodians, denoted by the set {ρi}Ni=1, the
escrow authority executes the combination algorithm Comb to decrypt the ciphertext and obtain the
original message m. In our proposal, this algorithm is defined as follows:

Comb(skEA, CT, {ρi}Ni=1) =
CT2

(
N∏
i=1

ρi)1/skEA

9



5.2 Correctness

The correctness of our proposal is demonstrated by showing the consistency of the key generation, de-
cryption, and escrowed decryption procedures:

Key Generation The goal of this procedure is to produce correct public keys and escrow shares,
through a protocol between the user and the CA. Correctness is ensured by Equation 3, which checks
that the relation between the inputs provided by the user (i.e., (gu, gβ , {κ̃i}Ni=1)) and the public key of
escrow authority (pkEA) is valid. The value of gu and gβ is inherently arbitrary (since the user chooses
both u and β at random), so the only place where an inconsistency may occur is in the κ̃i elements. It
can be seen that the only way to pass the CA validity check (Equation 3) is that Equation 2 holds. As
long as the user provides inputs following this latter relation, the correctness of key generation is ensured;
otherwise, it is detected by the CA with the validity check.

More formally, it can be seen that Equation 3 holds when the escrow shares are consistent with gu,
gβ and pkEA:

e(gu,

N∏
i=1

κ̃i) = e(gu, haβ/u)

= e(g, h)aβ

= e(gβ , ha) = e(gβ , pkEA)

Decryption Let CT = (CT1, CT2) = (gsur, Zsvr ·m) be a ciphertext encrypted under user U ’s public
key. It can be seen that the regular decryption procedure works since:

Dec(sk, CT ) =
CT2

e(CT1, sk)
=

Zsvr ·m
e(gsur, hv/u)

= m

Escrowed Decryption Assuming the Key Generation subprotocol is correct (which is ensured by the
CA), then the escrowed decryption procedure is also correct, as long as the custodians respond correctly
to the queries from the escrow authority (which are assumed honest-but-curious in our system). Recall
that when the escrow authority wants to decrypt a ciphertext CT , he gives CT1 to each custodian in C,
and obtains the re-encryption share ρi = ShareReEnc(CT1, κi) = e(gsur, κi) in response. In the next step,
the escrow authority combines all the re-encryption shares ρi, so that:

N∏
i=1

ρi =

N∏
i=1

e(gsur, κi)

Thus, by the bilinear property of the pairing:

N∏
i=1

ρi = e(gsur,

N∏
i=1

κi)

Next, since the Key Generation subprotocol ensures that
N∏
i=1

κi = hav/u (see Equation 4), then:

N∏
i=1

ρi = e(gsur, hav/u) = Zsavr

Finally, in the combination algorithm, the escrow authority uses this value to decrypt the ciphertext:

Comb(skEA, CT, {ρi}Ni=1) =
Zsvr ·m
(Zsavr)1/a

= m

5.3 Security analysis

In order to evaluate to security of our proposal, we prove that it complies with the notions described in
Section 4.5:

10



5.3.1 Security against the escrow authority

Theorem 1 (EDS is IND-EA-CPA-secure). If the DDH problem in G1 is hard, then the EDS cryptosys-
tem is secure under the IND-EA-CPA notion.

Proof. The strategy in this proof is to embed an instance of the G1-DDH tuple in the IND-EA-CPA game
(in particular, into the user’s public key and the challenge ciphertext), which constitutes a reduction from
the DDH problem in G1 to the IND-EA-CPA security of our cryptosystem.

Let us assume that there is an adversary B that wins the IND-EA-CPA game with non-negligible
advantage ε. Then, we can use B to construct an algorithm A that solves the DDH problem in G1

with the non-negligible advantage. A receives a DDH tuple (g, gu, gr, gd) ∈ G4
1, and his goal is to decide

whether d = u · r; he uses this tuple to simulate the environment for the adversary B.
First, A simulates the output of the setup. Let e : G1 ×G2 → GT be a type-3 pairing, g a generator

of G1, h a generator of G2, with G1, G2 and GT of order q, and Z = e(g, h). A samples random a ∈ Zq,
sets the escrow authority’s public and private keys (pkEA, skEA) = (ha, a), and publishes the global
parameters pp = (e,G1,G2,GT , q, g, h, Z, pkEA, N), as usual.

The next step is simulating the output of key generation subprotocol for the target user, that is,
producing pk∗. A samples random s, β, γ ∈ Zq, and sets the public key of the target user as pk∗ =
((gu)s, Zsβγ) = (gsu, Zsv), which is a valid public key, but with the value gu from the DDH tuple
embeded. Now A gives B the tuple (pk∗, pkEA, skEA), as defined in the IND-EA-CPA game. Note that
A does not release to B the user’s secret values and the escrow shares, since any of these keys would allow
to corrupt the target user and would make B win the game trivially.

Once the adversary provides the messages m0 and m1, A takes a random δ ∈ {0, 1}, and constructs
the challenge ciphertext using the values gd and gr from the DDH tuple as follows:

CT ∗ = ((gd)s,mδ · e(gr, h)sβγ) = (gsd,mδ · Zsvr)

A uses adversary B to obtain the guess δ′ and decides that d = u ·r when δ = δ′. Note that when d = u ·r,
the challenge ciphertext is a valid encryption of mδ under pk∗:

CT ∗ = ((gus)r,mδ · (Zsv)r)

Therefore, in this case A solves the DDH problem in G1 with non-negligible advantage ε, since by initial
assumption, B guesses δ correctly with the same advantage. On the contrary, when d is random, mδ is
information-theoretically hidden, so the advantage of B is 0. Thus, the overall success probability of A
is 1

2 + ε
2 , and therefore, A wins the IND-EA-CPA game with non-negligible advantage ε

2 .

5.3.2 Security against the custodians

Theorem 2 (EDS is IND-CUST-CPA-secure). If the DDH problem in G2 is hard, then the EDS cryp-
tosystem is secure under the IND-CUST-CPA notion.

Proof. The strategy in this proof is similar than in the previous case, but using a DDH tuple in G2, and
embedding it into the target user’s public key and the escrow shares. Let us assume that there is an
adversary B that wins the IND-CUST-CPA game with non-negligible advantage ε. Then, we can use B to
construct an algorithm A that solves the DDH problem in G2 with non-negligible advantage.
A receives a DDH tuple (h, ha, hv, hd) ∈ G4

2, and his goal is to decide whether d = a · v; he uses this
tuple to simulate the environment for the adversary B.

First, A simulates the output of the setup. Let e : G1 ×G2 → GT be a type-3 pairing, g a generator
of G1, h a generator of G2, with G1, G2 and GT of order q, and Z = e(g, h). A sets the escrow
authority’s public key as pkEA = ha, based on the input DDH tuple, and publishes the global parameters
pp = (e,G1,G2,GT , q, g, h, Z, pkEA, N), as usual. Hence, A does not know the secret key of the escrow
authority.

The next step is simulating the output of the key generation subprotocol; in this case, A releases to B
the public key of the target user pk∗ and the escrow shares κi of all the custodians. In order to do this,
A samples random s, u ∈ Zq, and sets the public key of the target as pk∗ = (gsu, e(g, hv)s) = (gsu, Zsv),
taking hv from the DDH tuple. As for the escrow shares, he chooses random κi ∈ G2, for 2 ≤ i ≤ N ,
and, taking hd from the DDH tuple, computes κ1 as follows:

κ1 = (hd)1/u ·

(
N∏
i=2

κi

)−1

11



Once the adversary provides the messages m0 and m1, A takes a random δ ∈ {0, 1}, samples random
r ∈ Zq, and constructs the challenge ciphertext as described in the scheme:

CT ∗ = ((gsu)r,mδ · (Zsv)r) = (gsur,mδ · Zsvr)

A runs adversary B to obtain the guess δ′ and decides that d = a · v when δ = δ′. Note that when
d = a ·v, the escrow shares of the custodians are valid, and they are capable of re-encrypting the challenge
ciphertext into valid re-encryption shares (although the adversary cannot retrieve the underlying message
through combination since he does not know the escrow authority secret key). By our initial assumption,
B guesses δ correctly with non-negligible advantage ε, and hence, A solves the DDH problem in G2 with
the same advantage. On the contrary, when d is random, mδ is information-theoretically hidden, so
the advantage of B is 0. Thus, the overall success probability of A is 1

2 + ε
2 , and therefore, A wins the

IND-CUST-CPA game with non-negligible advantage ε
2 .

As a consequence of the previous two theorems, if we assume that the DDH problem is hard in both
G1 and G2, that is, the SXDH assumption (see Section 3.1), then the EDS cryptosystem satisfies both
the IND-EA-CPA and IND-CUST-CPA security notions.

6 Extension: Threshold Escrowed Decryption Scheme (TEDS)

An interesting enhancement over the proposed scheme is to construct a threshold variant. The escrow
decryption capability of the previous scheme is all-or-nothing: all the corresponding custodians have to
collaborate; otherwise, the escrow decryption protocol is incomplete and the escrow authority cannot
retrieve the original message. However, in some situations, it could be interesting to tolerate that some
custodians do not participate in the escrow decryption protocol, for example, in the event of a technical
failure that prevents a custodian from performing re-encryptions.

In this section, we describe how to modify our original proposal to support a (t,N)-threshold escrowed
decryption functionality. The idea is basically to share the user’s secret value β/u between several escrow
shares using Shamir’s secret sharing in the exponent. Shamir’s secret sharing guarantees that the secret is
information-theoretically hidden if less than t shares of the secret are known, as described in Section 3.3.
In our TEDS variant, this implies that if less than t custodians participate in the escrow decryption
protocol, the escrow authority has zero information regarding the underlying message.

This extension only affects the Key Generation and the Escrow Decryption protocols of the previous
proposal, which means that Encryption and Decryption remain the same. For this reason, we only need
to describe the Key Generation and the Escrow Decryption protocols.

6.1 Description of the scheme

Key Generation. As in the basic scheme, the user U first selects random secrets u, β ∈ Zq, and
computes gu and gβ . Next, he samples random coefficients f1, f2, ..., ft−1 ∈ Zq and defines the polynomial
f(x) ∈ Zq[x], so that:

f(x) = β/u+ f1x+ f2x
2 + ...+ ft−1x

t−1

That is, f(0) = β/u. Now, let C be the set of indices of the custodians selected by U that will receive a
partial escrow share κ̃i. For simplicity, we can assume that C = {1, ..., N}. Each partial escrow share κ̃i

is generated as follows:
κ̃i = (pkEA)

f(i)

In this case, the “shared secret” among custodians is (pkEA)
f(0) = (ha)β/u. In the same fashion as

Shamir’s secret sharing, it can be seen that using Lagrange’s polynomial interpolation the secret haβ/u

can be reconstructed from any set of t partial escrow shares. Let I ⊆ C be a set of t indices. Reconstruction
of the shared secret can be done as follows:∏

i∈I
κ̃λi
i = haβ/u, where λi =

∏
j∈I/{i}

j

j − i
(5)

The user sends (gu, gβ , {κ̃i}Ni=1) to CA for certification, as in the original scheme. Now, the CA
must ensure that the input is valid, and more importantly, that reconstruction can be achieved with any
subset of t shares. A simple, brute-force approach is to reconstruct the shared secret with the

(
n
t

)
possible

12



subsets of t shares out of n, and to verify first that the result is always the same, and, second, that the
following equation holds:

e(gu,
∏
i∈I

κ̃λi
i ) = e(gβ , pkEA) (6)

The number
(
n
t

)
of possible subsets can grow rapidly with n, so we describe in the Appendix an

alternative non-exhaustive approach to check the validity of the shares. Instead of checking all possible
subsets, the CA uses Lagrange’s interpolating polynomial to check that the coefficients of the polynomial
generated by the user are consistent with a polynomial of degree t − 1 (that is, it can be reconstructed
with t shares). However, we note that in a real deployment, n will probably be a low value (e.g., 5-8
custodians), so the brute-force approach suffices. The rest of the Key Generation protocol remains the
same than in the previous scheme.

Escrow decryption. The first part of escrow decryption (i.e., the re-encryption share function)
remains the same. Therefore, when the escrow authority asks custodian Ci, which has escrow share κi,
for the re-encryption of a ciphertext CT = (CT1, CT2), the custodian computes:

ρi = ShareReEnc(CT1, κi) = e(gsur, κi)

After getting the re-encryption shares from t custodians (whose indices are contained in the set I), the
escrow authority executes the combination algorithm Comb to decrypt the ciphertext. In our proposal,
this algorithm is defined as follows:

Comb(skEA, CT, {ρi}i∈I) =
CT2

(
∏
i∈I

ρλi
i )1/skEA

6.2 Correctness

Since the public and private keys, and encryption and decryption functions remain the same, we only
need to show the correctness of the key generation and escrow decryption procedures.

6.2.1 Key Generation

The arguments for correctness of the key generation procedure are very similar to those in the original
scheme (see Section 5.2). The only difference is that reconstruction of the secret can be done with a
subset of t shares, as opposed to the original scheme, which required all the shares; however, in both
cases the reconstructed secret has the same form (i.e., haβ/u), whose validity is checked with a pairing
equation (Equation 6 in this scheme, and Equation 3 in the original).

6.2.2 Escrow Decryption

With respect to the escrow decryption procedure, first we note that the following relation holds from
Equation 5: ∏

i∈I
κλi
i = (

∏
i∈I

κ̃λi
i )γ = (haβ/u)γ = hav/u

During the Combination algorithm, the escrow authority computes the term
∏
i∈I

ρλi
i . By the bilinear

property of the pairing, and the previous equation, it can be observed that the following holds:∏
i∈I

ρλi
i =

∏
i∈I

e(gsur, κλi
i )

= e(gsur,
∏
i∈I

κλi
i )

= e(gsur, hav/u) = Zsavr

13



Therefore, the Combination algorithm correctly retrieves the original message, since:

Comb(skEA, CT, {ρi}i∈I) =
CT2

(
∏
i∈I

ρλi
i )1/skEA

=
Zsvr ·m
(Zsavr)1/a

= m

6.3 Security analysis

The changes introduced in this variant with respect to the original are minor, and have almost no impact
in the satisfaction of the security notions described in Section 4.5.

6.3.1 Security against the escrow authority

Theorem 3 (TEDS is IND-EA-CPA-secure). If the DDH problem in G1 is hard, then the TEDS cryp-
tosystem is secure under the IND-EA-CPA notion.

The public keys, secret keys, and Encryption and Decryption procedures are the same than in the
previous scheme. In addition, the IND-EA-CPA notion does not allow the adversary to know the encryp-
tion shares, which are one of the few main differences between the TEDS and EDS schemes. Therefore,
the same security analysis provided in Section 5.3 is applicable here.

6.3.2 Security against the custodians

Theorem 4 (TEDS is IND-CUST-CPA-secure). If the DDH problem in G2 is hard, then the TEDS
cryptosystem is secure under the IND-CUST-CPA notion.

The proof for Theorem 2 is applicable here with few changes. In this case, the security notion requires
to release the escrow shares to the adversary. However, in the aforementioned proof the simulator has
the knowledge necessary to correctly construct escrow shares, since he samples the secret u for the target
user (as opposed to the previous proof, where the simulator does not know u). The changes in the proof
are that now the simulator defines a secret polynomial f(x) as in the scheme, but with f(0) = 1/u. He
computes escrow shares as κi = (hd)f(i). This ensures that reconstruction of the secret is possible, since
for all sets I of t escrow shares, it holds that:∏

i∈I
κλi
i =

∏
i∈I

(hd)λif(i) = (hd)1/u

It can be observed that when d = a · v, then escrow shares (and the reconstructed secret) is correct as
described in the scheme, so the adversary can perform re-encryptions of ciphertexts, just as custodians
can. The rest of the proof remains the same.

7 Performance

In this section we present theoretical and experimental analysis of the performance of the proposed
schemes. For the theoretical part, we analyze computational costs in terms of the main operations per-
formed, which in this case are the exponentiation and the pairing. Since we are dealing with asymmetric
pairings, which implies three different groups, the computational costs of exponentiations of group el-
ements are identified separately; hence, for a fixed set of parameters, we denote as Cp to the cost of
a pairing operation, Ce1 to an exponentiation in G1, Ce2 to an exponentiation in G2, and CeT to an
exponentiation in GT . We ignore other minor costs, such as multiplications and inversions. Note, how-
ever, that in our solutions, the number of multiplications depends mainly on the number of custodians
(denoted by N); we can safely assume that a realistic implementation will involve only a reduced number
of custodians. For the TEDS scheme, an additional parameter t denotes the threshold in use.

The computation costs of both EDS and TEDS are shown in Table 1. It can be seen that the most
common operations in both schemes have a moderate cost (e.g., encryption costs two exponentiations,
while decryption one pairing), which is acceptable for most scenarios. One aspect that is important to
mention is that, for the TEDS scheme, the costs associated to the Key Generation in the CA side include
the brute-force verification procedure, which accounts for the

(
n
t

)
t exponentiations in G2. However, this

14



Table 1: Computational costs of selected PRE schemes

Algorithm EDS TEDS

Key Generation (User) 2Ce1 + 2Ce2 2Ce1 + (N + 1)Ce2

Key Generation (CA) 3Cp + 2Ce1 + (N + 1)Ce2 3Cp + 2Ce1 + (
(
n
t

)
t+N + 1)Ce2

Encryption Ce1 + CeT Ce1 + CeT

Decryption Cp Cp

Escrow Decryption (Custodian) Cp Cp

Escrow Decryption (Escrow Agent) CeT t CeT

figure can be substituted by N(N − t + 1) exponentiations if the validation procedure presented in the
Appendix is used. This latter procedure is more efficient for larger values of N (roughly, >10), although
such values does not seem suitable for realistic applications.

With regards to the experimental analysis, we implemented a prototype of both schemes in C++
using the MIRACL SDK library [25] in order to make a quantitative assessment of their performance
of our proposal. We selected the default Barreto-Naehrig (BN) curve provided by the library, which is
suitable for asymmetric parings and that achieves 128 bits of security [26]. With regard to the execution
environment, the tests were performed in a laptop with an Intel Core 2 Duo processor @ 2.66 GHz and
8 GB of RAM. Experiments were executed 100 times and we took the average for each operation.

Table 2: Experimental performance in ms. of the EDS and TEDS schemes
(N = 4, t = 3)

Operation EDS TEDS

Key Generation (User) 0.536 1.129

Key Generation (CA) 42.674 44.961

Encryption* 0.612 0.603

Decryption* 14.176 14.587

Escrow Decryption (Custodian)* 14.118 14.438

Escrow Decryption (Escrow Agent) 0.587 1.782

Table 2 shows the results of our experiments, assuming 4 custodians (N = 4) and a threshold of 3 in
the case of TEDS (t = 3). It can be seen that the operation that has the biggest cost is Key Generation
in the CA side. This is something expected, since the CA has to bear the burden of checking the validity
of the partial escrow shares that come form the user side; however, this process is only performed once
per user, and it is reasonable to assume that the CA is prepared to assume such load. We make an
important remark here: while this operation seems relatively costly, the rest of operations are much
less expensive, and furthermore, their cost is constant irrespective of the number of custodians (except
for user’s key generation in the TEDS scheme, which also depends on this number). In particular, the
timing of the encryption and decryption operations (which will be the most used functions in a real
setting) only depend on the size of the pairing groups. We also note that operations marked with * are
actually identical between EDS and TEDS, and hence, the small variations between them depend only
on experimental factors.

Finally, we remark that it is possible to further optimize some of the computations such as exploiting
the fact that most pairing operations have a fixed argument (e.g., [27] achieves a speed-up around 30%),
and the use of multiexponentiations and multipairings.

15



8 Conclusions

In this paper we present two escrowed decryption schemes, which are public-key encryption schemes that
allow an escrow authority to decrypt messages; the core characteristic of an escrowed decryption scheme
is that this decryption is done without escrowing users’ secret keys, but only the decryption capability, and
that it requires the participation of third-party entities called custodians. In other words, the decryption
capability is “escrowed” to the custodians.

In our proposed schemes we construct the escrow decryption capability using techniques from proxy
re-encryption. The basic idea is to use the conventional PKE-based functions of the PRE scheme (i.e.,
encryption and decryption) as a regular PKE scheme, and to use the re-encryption function to define the
escrowed decryption capability. Our solution, inspired by the Accountable Escrow Encryption scheme
from [4], solves some of the problems that arise in said scheme, such as removing the possibility of a
collusion of custodians, as well as halves communication costs, since the escrow decryption procedure
only takes one round of queries to the custodians (instead of two in the original scheme).

We also propose a security model for escrowed decryption schemes, which considers security against
three types of adversaries, namely the escrow authority, the custodians, and external entities. All of these
models are based on the traditional indistinguishability notion (IND), although extended to our particular
setting. Additionally, in this paper we focus only in indistinguishability against chosen-plaintext attacks
(IND-CPA).

As future work, it is necessary to further formalize the security notions of this new cryptosystem.
In particular, it is interesting to define an equivalent of CCA-security on this context, and to propose
a solution that satisfies this notion. Another line of research is to reduce the trust requirements of the
scheme, in particular with respect to the CA. In order to solve this, a possible extension is that the
custodians have also a private key, so that the CA cannot do anything with the escrow shares.

Acknowledgments

This work was partly supported by the Spanish Ministry of Economy and Competitiveness through
the projects SMOG (TIN2016-79095-C2-1-R) and PRECISE (TIN2014-54427-JIN). The first author is
supported by a grant from the National Cybersecurity Institute (INCIBE).

References

[1] Wikipedia, “Investigatory Powers Act 2016 — Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/w/index.php?title=Investigatory%20Powers%20Act%202016&

oldid=751118773, 2016. [Online; accessed 24-November-2016].

[2] Wikipedia, “FBI–Apple encryption dispute — Wikipedia, the free encyclopedia.” http:

//en.wikipedia.org/w/index.php?title=FBI%E2%80%93Apple%20encryption%20dispute&

oldid=750915931, 2016. [Online; accessed 24-November-2016].

[3] The Washington Post, “Obama administration’s draft paper on technical options for the encryption
debate.” http://t.co/YKtD9VEKSf, 2015. [Online; accessed 28-March-2017].

[4] J. Liu, M. D. Ryan, and L. Chen, “Balancing societal security and individual privacy: Accountable
escrow system,” in Computer Security Foundations Symposium (CSF), 2014 IEEE 27th, pp. 427–440,
IEEE, 2014.

[5] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-encryption schemes with
applications to secure distributed storage,” ACM Transactions on Information and System Security,
vol. 9, no. 1, pp. 1–30, 2006.

[6] S. Micali, “Fair public-key cryptosystems,” in Annual International Cryptology Conference, pp. 113–
138, Springer, 1992.

[7] Y. Frankel and M. Yung, “Escrow encryption systems visited: attacks, analysis and designs,” in
Annual International Cryptology Conference, pp. 222–235, Springer, 1995.

[8] J. Kilian and T. Leighton, “Fair cryptosystems, revisited,” in Annual International Cryptology Con-
ference, pp. 208–221, Springer, 1995.

16

http://en.wikipedia.org/w/index.php?title=Investigatory%20Powers%20Act%202016&oldid=751118773
http://en.wikipedia.org/w/index.php?title=Investigatory%20Powers%20Act%202016&oldid=751118773
http://en.wikipedia.org/w/index.php?title=FBI%E2%80%93Apple%20encryption%20dispute&oldid=750915931
http://en.wikipedia.org/w/index.php?title=FBI%E2%80%93Apple%20encryption%20dispute&oldid=750915931
http://en.wikipedia.org/w/index.php?title=FBI%E2%80%93Apple%20encryption%20dispute&oldid=750915931
http://t.co/YKtD9VEKSf


[9] J. Kroll, E. Felten, and D. Boneh, “Secure protocols for accountable warrant execution,” See
http://www. cs. princeton. edu/felten/warrant-paper. pdf, 2014.

[10] M. Kohlweiss and I. Miers, “Accountable metadata-hiding escrow: A group signature case study,”
Proceedings on Privacy Enhancing Technologies, vol. 2015, no. 2, pp. 206–221, 2015.

[11] L. Xu, X. Wu, and X. Zhang, “Cl-pre: a certificateless proxy re-encryption scheme for secure data
sharing with public cloud,” in Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, pp. 87–88, ACM, 2012.

[12] M. Jakobsson, “On quorum controlled asymmetric proxy re-encryption,” in International Workshop
on Public Key Cryptography, pp. 112–121, Springer, 1999.

[13] H.-Y. Lin and W.-G. Tzeng, “A secure erasure code-based cloud storage system with secure data
forwarding,” Parallel and Distributed Systems, IEEE Transactions on, vol. 23, no. 6, pp. 995–1003,
2012.

[14] H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen, “Towards end-to-end secure content storage and
delivery with public cloud,” in Proceedings of the second ACM conference on Data and Application
Security and Privacy, pp. 257–266, ACM, 2012.

[15] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptographers,” Discrete Applied
Mathematics, vol. 156, no. 16, pp. 3113–3121, 2008.

[16] M. S. Kiraz and O. Uzunkol, “Still wrong use of pairings in cryptography.” Cryptology ePrint
Archive, Report 2016/223, 2016. http://eprint.iacr.org/.

[17] J. A. Akinyele, C. Garman, and S. Hohenberger, “Automating fast and secure translations from type-
i to type-iii pairing schemes,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1370–1381, ACM, 2015.

[18] M. Abe, F. Hoshino, and M. Ohkubo, “Design in type-i, run in type-iii: Fast and scalable bilinear-
type conversion using integer programming,” in Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Pro-
ceedings, Part III, pp. 387–415, 2016.

[19] G. Ateniese, J. Camenisch, and B. De Medeiros, “Untraceable rfid tags via insubvertible encryption,”
in Proceedings of the 12th ACM conference on Computer and communications security, pp. 92–101,
ACM, 2005.

[20] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros, “Practical group signatures without
random oracles.,” IACR Cryptology ePrint Archive, vol. 2005, p. 385, 2005.

[21] D. Nuñez, I. Agudo, and J. Lopez, “Proxy re-encryption: Analysis of constructions and its application
to secure access delegation,” Journal of Network and Computer Applications, vol. 87, pp. 193–209,
2017.

[22] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy cryptography,”
Advances in Cryptology—EUROCRYPT’98, pp. 127–144, 1998.

[23] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, pp. 612–613, Nov. 1979.

[24] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against chosen ciphertext attack,”
Journal of Cryptology, vol. 15, no. 2, pp. 75–96, 2002.

[25] MIRACL, “MIRACL Crypto SDK.” https://milagro.apache.org/.

[26] D. F. Aranha, P. S. Barreto, P. Longa, and J. E. Ricardini, “The realm of the pairings,” in Selected
Areas in Cryptography–SAC 2013, pp. 3–25, Springer, 2013.

[27] C. Costello and D. Stebila, “Fixed argument pairings,” in International Conference on Cryptology
and Information Security in Latin America, pp. 92–108, Springer, 2010.

17

http://eprint.iacr.org/
https://milagro.apache.org/


Appendix

It is necessary to ensure that the set of N partial escrow shares κ̃i provided by the user is correct, that is,
that it allows reconstruction of the shared secret that later will enable the escrow decryption process. The
problem is that reconstruction must succeed with any subset of t escrow shares, since this is a threshold
cryptosystem.

Since the parameter N is fixed in advance, and the escrow shares are generated using an index i as
input (that is, the input to the polynomial is not an arbitrary value), then the Lagrange basis polynomials
can be defined in advance as shown in the next Equation, which produces polynomials of degree N − 1
with known coefficients ℓi,j :

ℓi(x) =

N∏
j=1
j ̸=i

x− j

i− j
=

N−1∑
j=0

ℓi,j · xj

Coefficients ℓi,j only depend on the choice of N , and hence, are the same for all users in the system
once parameter N has been established. It can be shown that the Lagrange interpolating polynomial can
be equivalently expressed as:

p(x) =

N−1∑
j=0

xj · (
N∑
i=1

ℓi,j · f(i)) (7)

Note however that in our scheme the polynomial is hidden in the exponent. Thus, for a fixed j in

Equation 7, the term
N∑
i=1

ℓi,j · f(i) must be the coefficient of the reconstructed polynomial. Knowing this,

we can use the ℓi,j coefficients to check whether a coefficient of the reconstructed polynomial is 0 or not,
by using the following auxiliary function:

CheckCoefficient(j) =
N∏
i=1

(κ̃i)
ℓi,j

Since the polynomial is in the exponent, then if the coefficient is 0, the result will be 1, irrespective
of the basis of the exponentiation. Otherwise (i.e., a non-zero coefficient), the result is an arbitrary value
other than 1. Knowing this, one have to verify that the following conditions hold:

∀j ∈ {t,N − 1} CheckCoefficient(j)
?
= 1

j = t− 1 CheckCoefficient(j)
?

̸= 1

18


	Introduction
	Contributions
	Organization

	Related Work
	Preliminaries
	Bilinear pairings and hardness assumptions
	Proxy Re-Encryption
	Shamir's Secret Sharing

	System model
	Overview
	Trust assumptions
	Design goals
	Formal definition
	Security model
	Security against the escrow authority
	Security against the custodians
	Security against external adversaries


	Escrowed Decryption Scheme (EDS)
	Description of the scheme
	Correctness
	Security analysis
	Security against the escrow authority
	Security against the custodians


	Extension: Threshold Escrowed Decryption Scheme (TEDS)
	Description of the scheme
	Correctness
	Key Generation
	Escrow Decryption

	Security analysis
	Security against the escrow authority
	Security against the custodians


	Performance
	Conclusions

