
IET Information Security

Research Article

Escrowed decryption protocols for lawful
interception of encrypted data

ISSN 1751-8709
Received on 12th March 2018
Revised 25th February 2019
Accepted on 4th March 2019
doi: 10.1049/iet-ifs.2018.5082
www.ietdl.org

David Nuñez1, Isaac Agudo1 , Javier Lopez1

1Network, Information and Computer Security Laboratory (NICS Lab), Universidad de Málaga, Spain
 E-mail: isaac@lcc.uma.es

Abstract: Escrowed decryption schemes (EDSs) are public-key encryption schemes with an escrowed decryption functionality
that allows authorities to decrypt encrypted messages under investigation, following a protocol that involves a set of trusted
entities called ‘custodians’; only if custodians collaborate, the requesting authority is capable of decrypting encrypted data. This
type of cryptosystem represents an interesting trade-off to privacy versus surveillance dichotomy. In this study, the authors
propose two EDSs where they use proxy re-encryption to build the escrowed decryption capability, so that custodians re-encrypt
ciphertexts, in a distributed way, upon request from an escrow authority, and the re-encrypted ciphertexts can be opened only by
the escrow authority. Their first scheme, called EDS, follows an all-or-nothing approach, which means that escrow decryption
only works when all custodians collaborate. Their second scheme, called threshold EDS, supports a threshold number of
custodians for the escrow decryption operation. They propose definitions of semantic security with respect to the authorities,
custodians and external entities, and prove the security of their schemes, under standard pairing-based hardness assumptions.
Finally, they present a theoretical and experimental analysis of the performance of both schemes, which show that they are
applicable to real-world scenarios.

1 Introduction
There is a growing debate nowadays around the dichotomy
between data confidentiality and law enforcement investigations in
digital communication networks, such as the Internet. On the one
side of this discussion, governments and law enforcement agencies
(LEAs) are concerned with the alleged impunity that is derived
from the use of private and confidential communications. This has
motivated the proposal of surveillance mechanisms as a means to
detect and prevent illegal activities (e.g. child pornography) and
national security threats (e.g. terrorism). There is no doubt that the
abstract goal of protecting citizens from these dangers is noble; the
same cannot be said of all the actual methods to achieve this.
Contrary to this view, a large part of the society, which includes
private citizens and corporations, see these claims as a threat to
their rights to privacy and confidentiality. Relatively recent
examples of this are the controversy produced by the UK’
Investigatory Powers Act 2016 [1] and the dispute between Federal
Bureau of Investigation and Apple [2]. There is an intense, on-
going debate nowadays regarding whether mechanisms for
breaking the confidentiality of communications are a legitimate
method to fight the mentioned threats.

One of the most immediate concerns is the perceived lack of
accountability from the government and LEAs; in other words, if
such mechanisms were available, there is no hindrance for the
government and LEAs to use it as an effective means for mass
surveillance. According to a document exposed by the Washington
Post [3], a working group of the US government delivered an
internal document containing a list of principles with respect to the
use of encryption, and its relation with industry and law
enforcement. Of particular interest are the following principles: ‘2.
No unilateral government access. Approaches should not provide
‘golden keys’ to government or allow the government to access
information without the assistance of a third party. 3.
Technologically-enforced limits. To the extent possible, approaches
should rely on technology, rather than procedural protections, to
enforce constraints on government access’.

The inclusion of independent third parties as necessary parts of
‘government access’, enforced by technological means, seems like
a plausible trade-off in the dichotomy between data confidentiality
and law enforcement investigations. Aligned with the

aforementioned principles, Liu et al. [4] proposed a protocol for
accountable escrowed encryption, which, on the one hand, allows
escrow authorities (a term that subsumes government and LEAs) to
decrypt encrypted messages under investigation, but on the other
hand, enables to hold them accountable. Their proposal consists of
a special encryption scheme that has a built-in escrowed decryption
capability. In order to use this capability, escrow authorities have to
follow a protocol involving a set of trusted entities called
custodians; only if all custodians collaborate, the requesting escrow
authority (EA) is capable of decrypting the encrypted message. A
core principle of this solution is that it does not require key escrow
(i.e. a ‘backdoor’ in the encryption scheme for extracting users’
private key); instead, only the decryption capability is escrowed, on
a case-by-case basis. Another interesting aspect of this proposal is
that the custodians are in a position of providing accountability by
informing citizens of the number of escrow requests; this is
implemented by recording such information on a public log,
facilitating the society to react through democratic procedures (e.g.
demanding ‘less/more decryption’ from escrow authorities). The
authors argue that this way, a balance between societal security and
individual privacy can be achieved.

In this study, we propose an alternative construction for the
accountable escrowed encryption scheme by Liu et al. [4]. Our
proposal solves several problems from the original scheme, related
to security and efficiency. The proposed construction is similar in
essence but borrows techniques from proxy re-encryption [5] in
order to build the escrowed decryption capability, i.e. the trusted
custodians re-encrypt ciphertexts (CTs), in a distributed way, upon
request from the EA, and the re-encrypted CTs can be opened by
the EA.

We note that lawful interception is not the only suitable
application of the proposed systems. For example, these systems
can also be used to implement data recovery in corporate scenarios,
where data is encrypted with public keys belonging to users of the
system, and under special circumstances, it can be delegated to
authorised escrow agents (e.g. internal auditor, system
administrator etc.) in a controlled manner. However, lawful
interception scenarios seem much more illustrative and their
demand is more pressing, and therefore, in the rest of the study, we
will focus on this use case.

IET Inf. Secur.
© The Institution of Engineering and Technology 2019

1

D. Nuñez, I. Agudo, and J. Lopez, “Escrowed decryption protocols for lawful interception of encrypted data”, IET Information Security, vol. 13,
pp. 498 – 507, 2019.
NICS Lab. Publications: https://www.nics.uma.es/publications

1.1 Contributions

In this study, we make the following contributions:

• Motivated by the need of a trade-off between confidentiality and
lawful interception, we present a high-level definition of
escrowed decryption schemes (EDSs), building upon the work
of Liu et al. [4], and provide a comprehensive description of
actors, interactions, syntax and trust assumptions for this type of
scheme.

• We define two security notions for realising semantic security in
EDSs: one with respect to the EA (IND-EA-CPA), and another
with respect to the custodians (IND-CUST-CPA).

• We propose the EDS cryptosystem, which uses proxy re-
encryption techniques to instantiate the escrowed decryption
capability. We show that EDS is secure under the previous
notions assuming the hardness of the symmetric external Diffie–
Hellman (SXDH) problem.

• We propose a threshold variant of EDS, called threshold EDS
(TEDS), which is also secure under the previous notions
assuming the hardness of the SXDH problem.

• We analyse the performance of EDS and TEDS, both from the
theoretical and experimental points of view.

1.2 Organisation

The rest of this paper is organised as follows: in Section 2, we
present related state-of-the-art, and in Section 3, we briefly
summarise some cryptographic concepts that will be used later. In
Section 4, we describe in detail the escrowed decryption system,
including actors and their interaction, trust assumptions, design
goals, and other formalisations. In Section 5, we present the first
proposal of escrowed decryption system, named EDS***,
including an analysis of correctness and security, and in Section 6,
we propose a threshold variation, called TEDS. In Section 7, we
analyse the computational costs of our proposals and describe the
experimental results from a prototype implementation. Finally,
Section 8 concludes the paper and future work is outlined.

2 Related work
As described in the introduction, our proposal is inspired by the
work of Liu et al. [4] and intended to solve some of its problems.
One of the characteristics of this scheme is that collusion of
custodians can potentially decrypt any message if they have access
to a full CT, i.e. one has to make the assumption that the custodians
are trusted for not doing this. In our proposal, the custodians are
never able to see the underlying message, even if they have access
to the whole CT. Note that we do not consider collusions of the EA
with the custodians to be different than lawful interactions; see
Section 4.2 for a more thorough discussion of our trust
assumptions.

Another problem of the original scheme is the efficiency of the
solution. The protocol for escrow decryption in the original
proposal is composed of two synchronous rounds, and each round
involves all custodians; i.e. the EA has to first engage all
custodians in the first round of interactions (ideally in parallel), and
only when all of them have responded, it can continue with the
second round of interactions. The reason behind this characteristic
is that the EA has to make some intermediate computations that are
required for the second round, and it needs all the responses from
the first round to do this. In our proposal, we reduce the escrow
decryption protocol to a single round.

There are other related proposals in the literature, starting from
the seminal works of Micali [6], Frankel and Yung [7], and Kilian
and Leighton [8], all of them oriented towards key escrow (i.e.
recovering the secret key of a user), while in ours what is escrowed
is the decryption capability. Kroll et al. [9] describe protocols to
enhance accountability in case of mandated law enforcement
access to stored data. However, one of the initial premises of these
protocols is that the original data source stores the target
information in the clear (e.g. a telecommunications carrier storing
metadata about incoming/outgoing phone calls); in addition, users
are left out from their proposal. Kohlweiss and Miers [10] present a

group signature scheme that allows revealing the identity of a
sender to authorities, in a covert, yet accountable way. Note that
this work is focused on signatures and privacy of the sender, rather
than encryption and confidentiality of messages.

Regarding the intersection of proxy re-encryption and
distributed/threshold re-encryption, we should note the work of Xu
et al. [11] in the context of certificate-less proxy re-encryption,
where they define a distributed re-encryption process based on
Shamir's secret sharing. There are also other related proposals,
such as [12–14], but in all of them, the decryption key is
distributed among several entities, rather than the re-encryption
capability, which makes them closer to the key escrow literature,
rather than to the concept of escrowed decryption.

3 Preliminaries
This section introduces some cryptographic basic concepts that will
be used in the study. First, we introduce bilinear pairings, which
are used in our proposed schemes, as well as some associated
hardness assumptions. Next, we briefly describe the concepts of
proxy re-encryption and secret sharing, since we use ideas from
both types of cryptosystems.

3.1 Bilinear pairings and hardness assumptions

Let G1, G2 and GT be cyclic groups of prime order q. A bilinear
pairing is a map e:G1 × G2 → GT satisfying the following
properties:

• Bilinearity: For all a, b ∈q, g1 ∈ G1 and g2 ∈ G2, it holds that
e(g1

a, g2
b) = e(g1, g2)ab.

• Non-degeneracy: For all g1 ∈ G1 and g2 ∈ G2, it holds that
e(g1, g2) ≠ 1.

• Computability: There is an efficient algorithm that computes e.

Depending on the characteristics of the groups, there are essentially
three types of pairings [15]:

• Type-1 pairings: G1 = G2.
• Type-2 pairings: G1 ≠ G2 and there is an efficiently computable

homomorphism ϕ:G2 → G1.
• Type-3 pairings: G1 ≠ G2 and there is no efficiently computable

homomorphism between G2 and G1.

Type-1 pairings are said symmetric (since G1 and G2 are the same
group), and Type-2 and Type-3 pairings are asymmetric. It is
advisable to design cryptographic schemes and protocols using
Type-3 pairings, since they achieve the best trade-off between
security and efficiency [15, 16], although there have been some
recent proposals that allow to design protocols in a Type-1 setting
and to automatically translate them to Type-3 [17, 18]. For
simplicity in the design process, we directly use Type-3 pairings.
The following is a common hardness assumption for this type of
pairing:
 

Definition 1: (the external Diffie–Hellman assumption (XDH)
[19]): Let G1 and G2 be pairing groups of order q. Given a tuple
(g, ga, gb, gc) ∈ G1

4, where a, b, c ∈ ℤq, the XDH assumption holds
if it is not computationally feasible to decide whether gc = gab. In
other words, the decisional Diffie–Hellman (DDH) problem in G1
is hard.

When, in addition to assuming that the DDH is hard in G1, we
consider the DDH hard in G2, then it is called the symmetric
external Diffie–Hellman assumption.
 

Definition 2: (the symmetric XDH [20]): Let G1 and G2 be
pairing groups. The SXDH assumption holds if the DDH problem
is hard in both G1 and G2.

2 IET Inf. Secur.
© The Institution of Engineering and Technology 2019

3.2 Proxy re-encryption

From a high-level viewpoint, proxy re-encryption is a type of
public-key encryption (PKE) that enables a proxy to transform CTs
under Alice's public key into CTs decryptable by Bob's secret key.
This transformation is performed by a proxy entity using a re-
encryption key generated by Alice, without revealing to the proxy
any information about the underlying message. There are multiple
proxy re-encryption proposals in the literature (see Nuñez et al.
[21] for an overview), being the most prominent ones by Blaze et
al. [22] and Ateniese et al. [5].

3.3 Shamir's secret sharing

Let us assume that a dealer wants to share a secret s ∈ ℤq among n
participants so that it can be reconstructed with t ‘shares’. The
dealer first samples random coefficients f 1, f 2, . . . , f t − 1 ∈ ℤq and
defines a polynomial f (x) ∈ ℤq[x], so that

f (x) = s + f 1x + f 2x
2 + ⋯ + f t − 1xt − 1 .

Now, for each participant i ∈ {1, . . . , N}, the dealer sends the
share f (i). It can be seen that the secret shared by the dealer can be
obtained as f (0). Using Lagrange's polynomial interpolation, the
secret can be reconstructed from any set of t shares. Let
ℐ ⊆ {1, . . . , N} be a set of t indices. Reconstruction of the shared
secret can be done as follows:

s = ∑
i ∈ ℐ

f (i) ⋅ λi, whereλi = ∏
j ∈ ℐ/{i}

j
j − i . (1)

This cryptosystem is due to Shamir [23] and provides information-
theoretic security of the secret (i.e. with less than t shares, all
possible values in ℤq are equally probable, so an adversary has no
information in this case).

4 System model
This section is devoted to the definition of what constitutes an
EDS. First, we present a general overview of such schemes, their
actors and interactions, as well as the corresponding trust
assumptions. Second, we describe their design goals. Third, we
provide a formal definition and syntax for our proposed
cryptosystems. Finally, we propose security models that cover
some of the previous design goals from a cryptographic point of
view.

4.1 Overview

The ultimate goal of an EDS is to provide technical means to a
legitimate entity to decipher encrypted messages, but only with the
collaboration of other independent, trusted third-parties that can
limit the process. Similarly to [4], we consider four main types of
actors in an escrowed decryption system, which are the following:

• Users, which are entities that want public and private keys to
engage in encrypted communications with others.

• Certification authority (CA), which is in charge of providing
certified public keys to users, and ensuring that the escrowed
decryption capabilities are guaranteed. These capabilities are
embodied by a set of escrow shares, which are cryptographic
material intended for the custodians that enables them to assist
in escrow decryption.

• Custodians are trusted entities that participate in an escrowed
decryption procedure, using an escrow share. Custodians may or
may not positively respond to access requests from escrow
authorities on a case-by-case basis, depending on legal or
technical motives. Optionally, custodians may record in a public
accountability log any escrow decryption request received from
escrow authorities.

• EA, which is an entity that wants access to information that is
encrypted and that interacts with a set of custodians to perform
an escrowed decryption of such information. We assume that the
EA has a pair of public and private keys. For simplicity, we will
assume only one EA in the system. Examples of escrow
authorities are governments or LEAs in criminal investigation
scenarios or internal auditors in a corporate environment.

Fig. 1 depicts a high-level view of the actors that participate in an
escrowed decryption system, as well as their interactions.

4.2 Trust assumptions

The protocol has the following trust assumptions:

• The EA is assumed to eavesdrop and intercept any
communication between users of the system.

• The custodians are assumed to be honest-but-curious, which
means they behave correctly, in accordance with the
expectations, but at the same time, they are interested in learning
the underlying information.

• The CA is also honest-but-curious. In our proposed schemes, it
can potentially replace the role of the custodians, and for this
reason, we require it to be an honest actor, in the sense that it
will not try to cheat or corrupt the established protocols.

Fig. 1  High-level view of actors and interactions in an escrowed decryption system

IET Inf. Secur.
© The Institution of Engineering and Technology 2019

3

However, it may attempt to gain knowledge about the messages
and should not be able to do so.

• Collusions of EA and custodians are not considered since they
trivially allow decrypting communications. In fact, a legitimate
escrowed decryption procedure is basically a collaboration
between the EA and the custodians, which makes collusions of
escrow authorities and custodians no different from regular,
legitimate interactions. Since the CA can potentially replace the
custodians (as discussed in the previous item), collusions of EA
and CA are also not considered as they potentially can decrypt
communications. Any use case that considers using the
escrowed decryption system proposed in this study must deploy
measures to avoid this type of collusion.

4.3 Design goals

We set the following design goals, which will be used later for the
security analysis:

i. No key escrow: The system should not include a ‘backdoor’
that allows extracting users’ private key. Instead, only the
decryption capability is escrowed, on a case-by-case basis.

ii. Escrow authorities must not be able to learn any information
from an encrypted message without the participation of the
required custodians.

iii. Custodians must not learn any underlying information from the
encrypted messages during the escrowed decryption process.

iv. It should not be possible to impersonate an EA. In other words,
only legitimate escrow authorities can successfully decrypt
intercepted messages, with a collaboration of the custodians.

v. Custodians are in a position of providing accountability by
publicly informing of the identity of affected users and/or a
number of escrow decryption requests. We consider this goal
as optional, since it may not be cryptographically enforced by
the encryption scheme.

4.4 Formal definition

The idea behind our proposed schemes is to base the escrowed
decryption protocol on a ‘shared’ re-encryption process by the
custodians, in a way reminiscent to the decryption procedure of a
threshold encryption scheme [24]; i.e. our solution ensures that the
EA is able to decrypt CTs intended for suspicious users as long as
he engages the collaboration of all the escrow custodians.

Formally, we define a new type of cryptosystem that consists of
a PKE scheme with an added escrowed decryption capability,
which we construct using proxy re-encryption techniques. In order
to use this capability, escrow authorities have to follow a protocol
involving a set of custodians, and only if all of them collaborate,
the requesting EA is capable of decrypting the encrypted message.
The following is the generic syntax of this new cryptosystem:

• Setup(1k) → pp. On input the security parameter 1k, the setup
algorithm outputs the set of global parameters pp, which
includes the public and private key of the EA (pkEA, skEA).

• KeyGen(pkEA) → (pk, sk, {κi}i = 1
n). On input the EA's public key

pkEA, the key generation algorithm outputs the public and
private key of user U, (pk, sk), and a set of escrow shares,
{κi}i = 1

n .
• Enc(pk, m) → CT. On input a public key pk and a message m,

the encryption algorithm outputs CT.
• Dec(sk, CT) → m. On input the secret key sk and a CT, the

decryption algorithm outputs the original message m.
• ShareReEnc(κi, CT) → ρi. On input an escrow share κi and a

CT, this algorithm outputs the re-encryption share ρi.
• Comb(skEA, CT, {ρi}i = 1

n) → m. On input the EA's secret key
skEA, a CT, and a set of re-encryption shares {ρi}i = 1

n , the
combination algorithm outputs the original message m.

4.5 Security model

We consider security against three types of adversaries, namely the
EA, the custodians, and external entities.

4.5.1 Security against the EA: As usual, in most encryption
schemes, it is necessary to provide a formal assurance of security,
at least based on an indistinguishability notion (IND). Here we
target IND against chosen-plaintext attacks (IND-CPA), although
adapted to our proposed cryptosystem, in particular with respect to
the EA. Apart from the usual characteristics of the IND-CPA game
in PKE, we also allow the adversary to know the secret key of the
EA, which is equivalent to consider the EA as the adversary.
Informally, this means that the EA should not be able to distinguish
messages based on their encryption. We named this security notion
as IND-EA-CPA, and the associated game is represented in Fig. 2.
The basic operation of this game is the following: given a user's
public key, an adversary chooses two messages and asks for a
challenge CT, which is the encryption of one of these messages
under the user's public key; satisfaction of this security notion
implies that the adversary should not be able to distinguish which
message is encrypted (or more accurately, his advantage with
respect to random guessing should be negligible), even if he knows
the secret key of the EA. It can be seen that this security notion
covers the second design goal (see Section 4.3).

Although we use techniques from proxy re-encryption in our
proposed cryptosystems, we stress that we are not targeting here a
security notion suitable for proxy re-encryption (PRE), since this is
not a PRE scheme. In particular, it is only possible to ‘re-encrypt’
to the EA, not to any other regular user. For the same reason, and
given that in this security model the adversary knows the secret key
of the EA, we cannot give him also the escrow shares (which are
equivalent to re-encryption keys, in PRE terms), since this would
make the game trivial (i.e. the adversary could use the escrow
shares to re-encrypt CTs, and the secret key of the EA to decrypt
it). We also note that, since we are targeting a CPA model, there is
no need to describe any oracle.

4.5.2 Security against the custodians: The other security notion
we target is IND-CPA with respect to the custodians, which can be
seen as symmetric to the first one. In particular, we allow the
adversary to know all the escrow shares, which is equivalent to
consider the custodians as the adversary. We named this security
notion as IND-CUST-CPA, and the associated game is represented
in Fig. 3. Analogously to the previous game, we cannot provide the
adversary with the secret key of the EA, since this would make the
game trivial. This security notion covers the third design goal (see
Section 4.3).

Fig. 2  Description of the IND-EA-CPA game

4 IET Inf. Secur.
© The Institution of Engineering and Technology 2019

4.5.3 Security against external adversaries: We consider that
this adversary has no additional knowledge apart from public
information. Therefore, in this case, we are dealing with the
traditional IND-CPA security notion. It can be shown that it is
strictly weaker than the previous notions (i.e. satisfaction of any of
them implies satisfaction of this notion since the adversary has less
information in the latter case). For this reason, we will not consider
it explicitly in our security analysis. This security notion covers the
fourth design goal (see Section 4.3).

5 Escrowed decryption scheme (EDS)
In this section, we formally describe our proposed EDS, as well as
prove its correctness and analyse its security under the models
described before.

From the point of the design of the cryptographic scheme, we
base our solution on a proxy re-encryption scheme (in particular,
the one by Ateniese et al. [5]). Roughly, we implement the
escrowed decryption process as a re-encryption of a CT, so that it
can be decrypted by the EA. There are, however, two main
modifications with respect to the scheme of Ateniese et al. [5]:

• Re-encryption is split among several entities (i.e. the
custodians). The re-encryption key is split into N shares, so
rk = ∏i = 1

N rki. Then, for the decryption of re-encrypted CTs, we
make use of the multiplicative homomorphic properties of the
scheme. Informally

ReEnc(rk, CT) = ∏
i = 1

N
ReEnc(rki, CT) .

In our scheme, these shares are called escrow shares and
represented by κi.

• The original scheme from Ateniese et al. allows encrypting CTs
that are not re-encryptable (called ‘first-level CTs’), which can
be used to bypass our re-encryption-based escrow. We get rid of
this functionality by modifying the key generation in such a way
that users’ public key cannot be used to create first-level CTs.

5.1 Description of the scheme

Our scheme is defined as follows. Note that although in the generic
syntax above we described functions, our solution requires some of
them to be implemented as two-party protocols. In particular, key
generation is jointly performed by the user and the CA, while
escrow decryption requires individual interaction of the EA with all
the custodians.

Setup. Let e:G1 × G2 → GT be a type-3 pairing, g a generator of
G1, h a generator of G2, with G1, G2 and GT of order q, and

Z = e(g, h). The public key of the EA is pkEA = ha, and the
corresponding secret key skEA = a, with a ∈ ℤq sampled uniformly
at random. This public key is certified by the CA in the traditional
way. Let N > 0 be the number of custodians. The public
parameters of the system are the elements of the tuple
pp = (e, G1, G2, GT, q, g, h, Z, pkEA, N)Key generation. The user U
first selects random secrets u, β ∈ ℤq and computes gu and gβ. Let
C be the set of indices of the custodians; for simplicity, we can
assume that C = {1, . . . , N}. Now, he chooses random κ i ∈ G2,
for 2 ≤ i ≤ N, and computes κ1 as follows:

κ1 = (pkEA)β /u ⋅ ∏
i = 2

N
κi

−1

.

These elements κ i are partial escrow shares, and it can be seen that
they satisfy the relation:

∏
i = 1

N
κ i = haβ /u . (2)

Next, he sends (gu, gβ, {κ i}i = 1
N) to CA for certification. CA verifies

that the input received is valid by checking that the following
equation holds:

e gu, ∏
i = 1

N
κ i = e(gβ, pkEA) . (3)

Next, CA chooses random s, γ ∈ ℤq and computes the public key
of user U as follows:

pk = ((gu)s, e((gβ)sγ, h)) = (gsu, Zsv) .

It can be seen that this implicitly defines v = β ⋅ γ, without the user
knowing γ and the CA knowing β. This public key is then signed
and certified by the CA, in the traditional way of public-key
infrastructure. Now, the CA concludes the generation of the set of
escrow shares, by computing κi = (κ i)γ for each custodian. Note
that the following relation between escrow shares and the EA's
public key holds:

∏
i = 1

N
κi = (∏

i = 1

N
κ i)γ = (haβ /u)γ = hav/u = (pkEA)v/u (4)

The CA sends each escrow share to each of the N custodians
through a secure channel. Finally, CA returns (pk, hγ) to user U,
who sets sk = (hγ)β /u = hv/u. Fig. 4 shows the interactions of this
sub-protocol.

Encryption. Any entity can encrypt message m ∈ GT into a CT
under user U’s public key pk = (gsu, Zsv) by choosing a random
r ∈ ℤq and outputting the tuple

CT = ((gsu)r, (Zsv)r ⋅ m) = (gsur, Zsvr ⋅ m) .

Decryption. User U can decrypt a CT
CT = (CT1, CT2) = (gsur, Zsvr ⋅ m) using his secret key sk = hv/u as
follows:

m = CT2

e(CT1, sk) .

Escrowed decryption. This sub-protocol is basically the
combination of the ShareReEnc and Comb algorithms, as seen in
Fig. 5, where the ShareReEnc algorithm is performed by the
custodians and the Comb algorithm is done by the EA. When the
EA wants to decrypt a CT CT = (CT1, CT2) = (gsur, Zsvr ⋅ m), i.e.
encrypted under user U’s public key, they give CT1 = gsur to each

Fig. 3  Description of the IND-CUST-CPA game

IET Inf. Secur.
© The Institution of Engineering and Technology 2019

5

custodian, and obtain as a response the re-encryption share ρi,
computed as follows:

ρi = ShareReEnc(CT1, κi) = e(gsur, κi) .

Note that although we defined the syntax of ShareReEnc such
that it takes the whole CT as input, in our proposed scheme only
the first component is necessary, which allows saving some
bandwidth. After getting the re-encryption shares from all
custodians, denoted by the set {ρi}i = 1

N , the EA executes the
combination algorithm Comb to decrypt the CT and obtain the
original message m. In our proposal, this algorithm is defined as
follows:

Comb(skEA, CT, {ρi}i = 1
N) = CT2

(∏i = 1
N ρi)

1/skEA
.

5.2 Correctness

The correctness of our proposal is demonstrated by showing the
consistency of the key generation, decryption, and escrowed
decryption procedures:

Key generation: The goal of this procedure is to produce correct
public keys and escrow shares, through a protocol between the user
and the CA. Correctness is ensured by (3), which checks that the
relation between the inputs provided by the user (i.e.
(gu, gβ, {κ i}i = 1

N)) and the public key of EA (pkEA) is valid. The
value of gu and gβ is inherently arbitrary (since the user chooses
both u and β at random), so the only place where an inconsistency
may occur is in the κ i elements. It can be seen that the only way to
pass the CA validity check (3) is that (2) holds. As long as the user
provides inputs following this latter relation, the correctness of key
generation is ensured; otherwise, it is detected by the CA with the
validity check.

More formally, it can be seen that (3) holds when the escrow
shares are consistent with gu, gβ and pkEA:

e gu, ∏
i = 1

N
κ i = e(gu, haβ /u)

= e(g, h)aβ

= e(gβ, ha) = e(gβ, pkEA) .

Decryption: Let CT = (CT1, CT2) = (gsur, Zsvr ⋅ m) be a CT
encrypted under user U’s public key. It can be seen that the regular
decryption procedure works since

Dec(sk, CT) = CT2

e(CT1, sk) = Zsvr ⋅ m
e(gsur, hv/u)

= m .

Escrowed decryption: Assuming the key generation sub-protocol is
correct (which is ensured by the CA), then the escrowed decryption
procedure is also correct, as long as the custodians respond
correctly to the queries from the EA (which are assumed honest-
but-curious in our system). Recall that when the EA wants to
decrypt a CT, he gives CT1 to each custodian in C, and obtains the
re-encryption share ρi = ShareReEnc(CT1, κi) = e(gsur, κi) in
response. In the next step, the EA combines all the re-encryption
shares ρi, so that

∏
i = 1

N
ρi = ∏

i = 1

N
e(gsur, κi) .

Thus, by the bilinear property of the pairing

∏
i = 1

N
ρi = e(gsur, ∏

i = 1

N
κi) .

Next, since the key generation sub-protocol ensures that
∏i = 1

N κi = hav/u (see (4)), then

∏
i = 1

N
ρi = e(gsur, hav/u) = Zsavr .

Fig. 4  Key generation sub-protocol

Fig. 5  Escrowed decryption sub-protocol

6 IET Inf. Secur.
© The Institution of Engineering and Technology 2019

Finally, in the combination algorithm, the EA uses this value to
decrypt the CT

Comb(skEA, CT, {ρi}i = 1
N) = Zsvr ⋅ m

(Zsavr)1/a = m .

5.3 Security analysis

In order to evaluate the security of our proposal, we prove that it
complies with the notions described in Section 4.5.

 
Theorem 1: (EDS is IND-EA-CPA-secure): If the DDH

problem in G1 is hard, then the EDS cryptosystem is secure under
the IND-EA-CPA notion.
 

Proof: The strategy in this proof is to embed an instance of the
G1-DDH tuple in the IND-EA-CPA game (in particular, into the
user's public key and the challenge CT), which constitutes a
reduction from the DDH problem in G1 to the IND-EA-CPA
security of our cryptosystem.

Let us assume that there is an adversary ℬ that wins the IND-
EA-CPA game with a non-negligible advantage ε. Then, we can
use ℬ to construct an algorithm A that solves the DDH problem in
G1 with the non-negligible advantage. A receives a DDH tuple
(g, gu, gr, gd) ∈ G1

4, and his goal is to decide whether d = u ⋅ r; he
uses this tuple to simulate the environment for the adversary ℬ.

First, A simulates the output of the setup. Let e:G1 × G2 → GT
be a type-3 pairing, g a generator of G1, h a generator of G2, with
G1, G2 and GT of order q, and Z = e(g, h). A samples random
a ∈ ℤq and sets the EA's public and private keys
(pkEA, skEA) = (ha, a), and publishes the global parameters
pp = (e, G1, G2, GT, q, g, h, Z, pkEA, N), as is usual.

The next step is simulating the output of key generation sub-
protocol for the target user, i.e. producing pk∗. A samples random
s, β, γ ∈ ℤq, and sets the public key of the target user as
pk∗ = ((gu)s, Zsβγ) = (gsu, Zsv), which is a valid public key, but with
the value gu from the DDH tuple embedded. Now A gives ℬ the
tuple (pk∗, pkEA, skEA), as defined in the IND-EA-CPA game. Note
that A does not release to ℬ the user's secret values and the escrow
shares since any of these keys would allow corrupting the target
user and would make ℬ win the game trivially.

Once the adversary provides the messages m0 and m1, A takes a
random δ ∈, and constructs the challenge CT using the values gd

and gr from the DDH tuple as follows:

CT∗ = ((gd)s, mδ ⋅ e(gr, h)sβγ) = (gsd, mδ ⋅ Zsvr) .

A uses adversary ℬ to obtain the guess δ′ and decides that
d = u ⋅ r when δ = δ′. Note that when d = u ⋅ r, the challenge CT is
valid encryption of mδ under pk∗:

CT∗ = ((gus)r, mδ ⋅ (Zsv)r) .

Therefore, in this case, A solves the DDH problem in G1 with non-
negligible advantage ε, since by initial assumption, ℬ guesses δ
correctly with the same advantage. On the contrary, when d is
random, mδ is information-theoretically hidden, so the advantage of
ℬ is 0. Thus, the overall success probability of A is (1/2) + (ε/2),
and therefore, A wins the IND-EA-CPA game with non-negligible
advantage ε/2. □

 
Theorem 2: (EDS is IND-CUST-CPA-secure): If the DDH

problem in G2 is hard, then the EDS cryptosystem is secure under
the IND-CUST-CPA notion.
 

Proof: The strategy in this proof is similar to that in the
previous case, but using a DDH tuple in G2, and embedding it into
the target user's public key and the escrow shares. Let us assume
that there is an adversary ℬ that wins the IND-CUST-CPA game
with non-negligible advantage ε. Then, we can use ℬ to construct
an algorithm A that solves the DDH problem in G2 with a non-
negligible advantage.

A receives a DDH tuple (h, ha, hv, hd) ∈ G2
4, and his goal is to

decide whether d = a ⋅ v; he uses this tuple to simulate the
environment for the adversary ℬ.

First, A simulates the output of the setup. Let e:G1 × G2 → GT
be a type-3 pairing, g a generator of G1, h a generator of G2, with
G1, G2 and GT of order q, and Z = e(g, h). A sets the EA's public
key as pkEA = ha, based on the input DDH tuple, and publishes the
global parameters pp = (e, G1, G2, GT, q, g, h, Z, pkEA, N), as usual.
Hence, A does not know the secret key of the EA.

The next step is simulating the output of the key generation sub-
protocol; in this case, A releases to ℬ the public key of the target
user pk∗ and the escrow shares κi of all the custodians. In order to
do this, A samples random s, u ∈ ℤq, and sets the public key of the
target as pk∗ = (gsu, e(g, hv)s) = (gsu, Zsv), taking hv from the DDH
tuple. As for the escrow shares, he chooses random κi ∈ G2, for
2 ≤ i ≤ N, and, taking hd from the DDH tuple, computes κ1 as
follows:

κ1 = (hd)1/u ⋅ ∏
i = 2

N
κi

−1

.

Once the adversary provides the messages m0 and m1, A takes a
random δ ∈, samples random r ∈ ℤq, and constructs the challenge
CT as described in the scheme

CT∗ = ((gsu)r, mδ ⋅ (Zsv)r) = (gsur, mδ ⋅ Zsvr) .

A runs adversary ℬ to obtain the guess δ′ and decides that
d = a ⋅ v when δ = δ′. Note that when d = a ⋅ v, the escrow shares
of the custodians are valid, and they are capable of re-encrypting
the challenge CT into valid re-encryption shares (although the
adversary cannot retrieve the underlying message through
combination since he does not know the EA secret key). By our
initial assumption, ℬ guesses δ correctly with non-negligible
advantage ε, and hence, A solves the DDH problem in G2 with the
same advantage. On the contrary, when d is random, mδ is
information-theoretically hidden, so the advantage of ℬ is 0. Thus,
the overall success probability of A is (1/2) + (ε/2), and therefore,
A wins the IND-CUST-CPA game with non-negligible advantage
ε/2. □
As a consequence of the previous two theorems, if we assume that
the DDH problem is hard in both G1 and G2, i.e. the SXDH
assumption (see Section 3.1), then the EDS cryptosystem satisfies
both the IND-EA-CPA and IND-CUST-CPA security notions.

6 Extension: threshold EDS (TEDS)
An interesting enhancement over the proposed scheme is to
construct a threshold variant. The escrow decryption capability of
the previous scheme is all-or-nothing: all the corresponding
custodians have to collaborate; otherwise, the escrow decryption
protocol is incomplete and the EA cannot retrieve the original
message. However, in some situations, it could be interesting to
tolerate that some custodians do not participate in the escrow
decryption protocol, e.g. in the event of a technical failure that
prevents a custodian from performing re-encryptions.

In this section, we describe how to modify our original proposal
to support a (t, N)-threshold escrowed decryption functionality. The
idea is basically to share the user's secret value β/u between
several escrow shares using Shamir's secret sharing in the
exponent. Shamir's secret sharing guarantees that the secret is
information-theoretically hidden if less than t shares of the secret

IET Inf. Secur.
© The Institution of Engineering and Technology 2019

7

are known, as described in Section 3.3. In our TEDS variant, this
implies that if less than t custodians participate in the escrow
decryption protocol, the EA has zero information regarding the
underlying message.

This extension only affects the key generation and the escrow
decryption protocols of the previous proposal, which means that
encryption and decryption remain the same. For this reason, we
only need to describe the key generation and the escrow decryption
protocols.

6.1 Description of the scheme

Key generation. As in the basic scheme, the user U first selects
random secrets u, β ∈ ℤq, and computes gu and gβ. Next, he
samples random coefficients f 1, f 2, . . . , f t − 1 ∈ ℤq and defines the
polynomial f (x) ∈ ℤq[x], so that

f (x) = β/u + f 1x + f 2x
2 + ⋯ + f t − 1xt − 1,

i.e. f (0) = β/u. Now, let C be the set of indices of the custodians
selected by U that will receive a partial escrow share κ i. For
simplicity, we can assume that C = {1, . . . , N}. Each partial
escrow share κ i is generated as follows:

κ i = (pkEA) f (i) .

In this case, the ‘shared secret’ among custodians is
(pkEA) f (0) = (ha)β /u. In the same fashion as Shamir's secret sharing,
it can be seen that using Lagrange's polynomial interpolation the
secret haβ /u can be reconstructed from any set of t partial escrow
shares. Let ℐ ⊆ C be a set of t indices. Reconstruction of the
shared secret can be done as follows:

∏
i ∈ ℐ

κ i
λi = haβ /u, where λi = ∏

j ∈ ℐ/{i}

j
j − i . (5)

The user sends (gu, gβ, {κ i}i = 1
N) to CA for certification, as in the

original scheme. Now, the CA must ensure that the input is valid,
and more importantly, that reconstruction can be achieved with any
subset of t shares. A simple, brute-force approach is to reconstruct

the shared secret with the
n
t

 possible subsets of t shares out of n,

and to verify first that the result is always the same, and, second,
that the following equation holds:

e gu, ∏
i ∈ ℐ

κ i
λi = e(gβ, pkEA) . (6)

The number
n
t

 of possible subsets can grow rapidly with n, so we

describe in the Appendix an alternative non-exhaustive approach to
check the validity of the shares. Instead of checking all possible
subsets, the CA uses Lagrange's interpolating polynomial to check
that the coefficients of the polynomial generated by the user are
consistent with a polynomial of degree t − 1 (i.e. it can be
reconstructed with t shares). However, we note that in a real
deployment, n will probably be a low value (e.g. 5–8 custodians),
so the brute-force approach suffices. The rest of the key generation
protocol remains the same than in the previous scheme.

Escrow decryption. The first part of escrow decryption (i.e. the
re-encryption share function) remains the same. Therefore, when
the EA asks custodian Ci, which has escrow share κi, for the re-
encryption of a CT, CT = (CT1, CT2), the custodian computes

ρi = ShareReEnc(CT1, κi) = e(gsur, κi) .

After getting the re-encryption shares from t custodians (whose
indices are contained in the set ℐ), the EA executes the

combination algorithm Comb to decrypt the CT. In our proposal,
this algorithm is defined as follows:

Comb(skEA, CT, {ρi}i ∈ ℐ) = CT2

(∏i ∈ ℐ ρi
λi)

1/skEA
.

6.2 Correctness

Since the public and private keys, and encryption and decryption
functions remain the same, we only need to show the correctness of
the key generation and escrow decryption procedures.

6.2.1 Key generation: The arguments for the correctness of the
key generation procedure are very similar to those in the original
scheme (see Section 5.2). The only difference is that reconstruction
of the secret can be done with a subset of t shares, as opposed to
the original scheme, which required all the shares; however, in both
cases the reconstructed secret has the same form (i.e. haβ /u), whose
validity is checked with a pairing equation ((6) in this scheme, and
(3) in the original).

6.2.2 Escrow decryption: With respect to the escrow decryption
procedure, first we note that the following relation holds from (5)

∏
i ∈ ℐ

κi
λi = (∏

i ∈ ℐ
κ i

λi)γ = (haβ /u)γ = hav/u .

During the combination algorithm, the EA computes the term
∏i ∈ ℐ ρi

λi. By the bilinear property of the pairing, and the previous
equation, it can be observed that the following holds:

∏
i ∈ ℐ

ρi
λi = ∏

i ∈ ℐ
e(gsur, κi

λi)

= e gsur, ∏
i ∈ ℐ

κi
λi

= e(gsur, hav/u) = Zsavr .

Therefore, the combination algorithm correctly retrieves the
original message, since

Comb(skEA, CT, {ρi}i ∈ ℐ) = CT2

(∏i ∈ ℐ ρi
λi)

1/skEA

= Zsvr ⋅ m
(Zsavr)1/a = m .

6.3 Security analysis

The changes introduced in this variant with respect to the original
are minor and have almost no impact in the satisfaction of the
security notions described in Section 4.5.

 
Theorem 3: (TEDS is IND-EA-CPA-secure): If the DDH

problem in G1 is hard, then the TEDS cryptosystem is secure under
the IND-EA-CPA notion.
The public keys, secret keys, and encryption and decryption
procedures are the same than in the previous scheme. In addition,
the IND-EA-CPA notion does not allow the adversary to know the
encryption shares, which are one of the few main differences
between the TEDS and EDS schemes. Therefore, the same security
analysis provided in Section 5.3 is applicable here.

 
Theorem 4: (TEDS is IND-CUST-CPA-secure): If the DDH

problem in G2 is hard, then the TEDS cryptosystem is secure under
the IND-CUST-CPA notion.
The proof for Theorem 2 is applicable here with few changes. In
this case, the security notion requires to release the escrow shares

8 IET Inf. Secur.
© The Institution of Engineering and Technology 2019

to the adversary. However, in the aforementioned proof, the
simulator has the knowledge necessary to correctly construct
escrow shares since he samples the secret u for the target user (as
opposed to the previous proof, where the simulator does not know
u). The changes in the proof are that now the simulator defines a
secret polynomial f (x) as in the scheme, but with f (0) = 1/u. He
computes escrow shares as κi = (hd) f (i). This ensures that
reconstruction of the secret is possible since, for all sets ℐ of t
escrow shares, it holds that

∏
i ∈ ℐ

κi
λi = ∏

i ∈ ℐ
(hd)λi f (i) = (hd)1/u .

It can be observed that when d = a ⋅ v, then escrow shares (and the
reconstructed secret) are correct as described in the scheme, so the
adversary can perform re-encryptions of CTs, just as custodians
can. The rest of the proof remains the same.

7 Performance
In this section, we present a theoretical and experimental analysis
of the performance of the proposed schemes. For the theoretical
part, we analyse computational costs in terms of the main
operations performed, which in this case are the exponentiation and
the pairing. Since we are dealing with asymmetric pairings, which
implies three different groups, the computational costs of
exponentiations of group elements are identified separately; hence,
for a fixed set of parameters, we denote as Cp to the cost of a
pairing operation, Ce1 to an exponentiation in G1, Ce2 to an
exponentiation in G2, and CeT to an exponentiation in GT. We
ignore other minor costs, such as multiplications and inversions.
Note, however, that in our solutions, the number of multiplications
depends mainly on the number of custodians (denoted by N); we
can safely assume that a realistic implementation will involve only
a reduced number of custodians. For the TEDS scheme, an
additional parameter t denotes the threshold in use.

The computation costs of both EDS and TEDS are shown in
Table 1. It can be seen that the most common operations in both
schemes have a moderate cost (e.g. encryption costs two
exponentiations, while decryption one pairing), which is acceptable
for most scenarios. One aspect that is important to mention is that,
for the TEDS scheme, the costs associated with the key generation
in the CA side include the brute-force verification procedure,

which accounts for the
n
t

t exponentiations in G2. However, this

figure can be substituted by N(N − t + 1) exponentiations if the

validation procedure presented in the Appendix is used. This latter
procedure is more efficient for larger values of N (roughly, >10),
although such values do not seem suitable for realistic applications.

With regard to the experimental analysis, we implemented a
prototype of both schemes in C++ using the MIRACL SDK library
[25] in order to make a quantitative assessment of their
performance of our proposal. We selected the default Barreto–
Naehrig curve provided by the library, which is suitable for
asymmetric parings and that achieves 128 bits of security [26].
With regard to the execution environment, the tests were performed
in a laptop with an Intel Core 2 Duo processor@2.66 GHz and 8 
GB RAM. Experiments were executed 100 times and we took the
average for each operation.

Table 2 shows the results of our experiments, assuming four
custodians (N = 4) and a threshold of three in the case of TEDS
(t = 3). It can be seen that the operation that has the biggest cost is
the key generation on the CA side. This is something expected
since the CA has to bear the burden of checking the validity of the
partial escrow shares that come from the user side; however, this
process is only performed once per user, and it is reasonable to
assume that the CA is prepared to assume such load. We make an
important remark here: while this operation seems relatively costly,
the rest of operations are much less expensive, and furthermore,
their cost is constant irrespective of the number of custodians
(except for user's key generation in the TEDS scheme, which also
depends on this number). In particular, the timing of the encryption
and decryption operations (which will be the most used functions
in a real setting) only depends on the size of the pairing groups. We
also note that operations marked with * are actually identical
between EDS and TEDS, and hence, the small variations between
them depend only on experimental factors.

Finally, we remark that it is possible to further optimise some of
the computations such as exploiting the fact that most pairing
operations have a fixed argument (e.g. [27] achieves a speed-up
around 30%), and the use of multiexponentiations and
multipairings.

8 Conclusions
In this study, we present two EDSs, which are PKE schemes that
allow an EA to decrypt messages; the core characteristic of an EDS
is that this decryption is done without escrowing users’ secret keys,
but only the decryption capability, and that it requires the
participation of third-party entities called custodians. In other
words, the decryption capability is ‘escrowed’ to the custodians.

In our proposed schemes, we construct the escrow decryption
capability using techniques from proxy re-encryption. The basic
idea is to use the conventional PKE-based functions of the PRE
scheme (i.e. encryption and decryption) as a regular PKE scheme,
and to use the re-encryption function to define the escrowed
decryption capability. Our solution is inspired by the accountable
escrow encryption scheme from Liu et al. [4] and can be seen as an
efficient alternative as it halves the communication costs since the
escrow decryption procedure only takes one round of queries to the
custodians (instead of two in the original scheme). We also propose
a security model for EDSs, which considers security against three
types of adversaries, namely the EA, the custodians, and external
entities. All of these models are based on the traditional IND,

Table 1 Computational costs of selected PRE schemes
Algorithm EDS TEDS
key generation (user) 2Ce1 + 2Ce2 2Ce1 + (N + 1)Ce2

key generation (CA) 3Cp + 2Ce1 + (N + 1)Ce2 3Cp + 2Ce1 + n
t

t + N + 1 Ce2

encryption Ce1 + CeT Ce1 + CeT

decryption Cp Cp

escrow decryption (custodian) Cp Cp

escrow decryption (escrow agent) CeT t CeT

Table 2 Experimental performance in ms. of the EDS and
TEDS schemes (N = 4, t = 3)
Operation EDS TEDS
key generation (user) 0.536 1.129
key generation (CA) 42.674 44.961
encryption* 0.612 0.603
decryption* 14.176 14.587
escrow decryption (custodian)* 14.118 14.438
escrow decryption (escrow agent) 0.587 1.782

IET Inf. Secur.
© The Institution of Engineering and Technology 2019

9

although extended to our particular setting. Additionally, in this
study, we focus only on IND-CPA.

As future work, it is necessary to further formalise the security
notions of this new cryptosystem. In particular, it is interesting to
define an equivalent of chosen-ciphertext attack (CCA)-security on
this context and to propose a solution that satisfies this notion.
Another line of research is to reduce the trust requirements of the
scheme, in particular with respect to the CA. In order to solve this,
a possible extension is that the custodians have also a private key,
so that the CA cannot do anything with the escrow shares.

9 Acknowledgments
This work was partly supported by the Spanish Ministry of
Economy and Competitiveness through the projects SMOG
(TIN2016-79095-C2-1-R) and PRECISE (TIN2014-54427-JIN).
The first author is supported by a grant from the National
Cybersecurity Institute (INCIBE).

10 References
[1] Parliament of the United Kingdom. Investigatory Powers Act 2016. 2016.

Available at http://www.legislation.gov.uk/ukpga/2016/25/contents/enacted,
accessed 14 December 2018

[2] Wikipedia. FBI–Apple encryption dispute – Wikipedia, the free encyclopedia.
Available at http://en.wikipedia.org/w/index.php?title=FBI, accessed 24
November 2016

[3] The Washington Post. Obama administration's draft paper on technical
options for the encryption debate. 2015. Available at http://t.co/
YKtD9VEKSf, accessed 28 March 2017

[4] Liu, J., Ryan, M.D., Chen, L.: ‘Balancing societal security and individual
privacy: accountable escrow system’. 2014 IEEE 27th Computer Security
Foundations Symp. (CSF), Vienna, Austria, 2014, pp. 427–440

[5] Ateniese, G., Fu, K., Green, M., et al.: ‘Improved proxy re-encryption
schemes with applications to secure distributed storage’, ACM Trans. Inf.
Syst. Secur., 2006, 90, (1), pp. 1–30

[6] Micali, S.: ‘Fair public-key cryptosystems’. Annual Int. Cryptology Conf.,
Santa Barbara, California, USA, 1992, pp. 113–138

[7] Frankel, Y., Yung, M.: ‘Escrow encryption systems visited: attacks, analysis
and designs’. Annual Int. Cryptology Conf., Santa Barbara, California, USA,
1995, pp. 222–235

[8] Kilian, J., Leighton, T.: ‘Fair cryptosystems, revisited’. Annual Int.
Cryptology Conf., Santa Barbara, California, USA, 1995, pp. 208–221

[9] Kroll, J., Felten, E., Boneh, D.: ‘Secure protocols for accountable warrant
execution’, 2014. Available at http://www.cs.princeton.edu/felten/warrant-
paper.pdf

[10] Kohlweiss, M., Miers, I.: ‘Accountable metadata-hiding escrow: A group
signature case study’, Proc. Privacy Enhancing Technol., 2015, 2015, (2), pp.
206–221

[11] Xu, L., Wu, X., Zhang, X.: ‘Cl-pre: a certificateless proxy re-encryption
scheme for secure data sharing with public cloud’. Proc. Seventh ACM Symp.
on Information, Computer and Communications Security, Raleigh, NC, USA,
2012, pp. 87–88

[12] Jakobsson, M.: ‘On quorum controlled asymmetric proxy re-encryption’. Int.
Workshop on Public Key Cryptography, Kamakura, Japan, 1999, pp. 112–121

[13] Lin, H.-Y., Tzeng, W.-G.: ‘A secure erasure code-based cloud storage system
with secure data forwarding’, IEEE Trans. Parallel Distrib. Syst., 2012, 230,
(6), pp. 995–1003

[14] Xiong, H., Zhang, X., Yao, D., et al.: ‘Towards end-to-end secure content
storage and delivery with public cloud’. Proc. Second ACM Conf. on Data
and Application Security and Privacy, San Antonio, TX, USA, 2012, pp. 257–
266

[15] Galbraith, S.D., Paterson, K.G., Smart, N.P.: ‘Pairings for cryptographers’,
Discrete Appl. Math., 2008, 1560, (16), pp. 3113–3121

[16] Kiraz, M.S., Uzunkol, O.: ‘Still wrong use of pairings in cryptography’.
Cryptology ePrint Archive, Report 2016/223, 2016. Available at http://
eprint.iacr.org/

[17] Abe, M., Hoshino, F., Ohkubo, M.: ‘Design in type-i, run in type-III: fast and
scalable bilinear-type conversion using integer programming’. Advances in
Cryptology – CRYPTO 2016 – 36th Annual Int. Cryptology Conf., Santa
Barbara, CA, USA, 14–18 August 2016, Proceedings, Part III, pp. 387–415,
doi: 10.1007/978-3-662-53015-3_14. Available at http://dx.doi.org/
10.1007/978-3-662-53015-3_14

[18] Akinyele, J.A., Garman, C., Hohenberger, S.: ‘Automating fast and secure
translations from type-I to type-III pairing schemes’. Proc. 22nd ACM
SIGSAC Conf. on Computer and Communications Security, Denver,
Colorado, USA, 2015, pp. 1370–1381

[19] Ateniese, G., Camenisch, J., De Medeiros, B.: ‘Untraceable RFID tags via
insubvertible encryption’. Proc. 12th ACM Conf. on Computer and
Communications Security, Alexandria, VA, USA, 2005a, pp. 92–101

[20] Ateniese, G., Camenisch, J., Hohenberger, S., et al.: ‘Practical group
signatures without random oracles’. IACR Cryptology ePrint Archive, 2005,
vol. 385, 2005 b

[21] Nuñez, D., Agudo, I., Lopez, J.: ‘Proxy re-encryption: analysis of
constructions and its application to secure access delegation’, J. Netw.
Comput. Appl., 2017, 87, pp. 193–209.

[22] Blaze, M., Bleumer, G., Strauss, M.: ‘Divertible protocols and atomic proxy
cryptography’. Advances in Cryptology–EUROCRYPT'98, Helsinki, Finland,
1998, pp. 127–144

[23] Shamir, A.: ‘How to share a secret’, Commun. ACM, 1979, 220, (11), pp.
612–613

[24] Shoup, V., Gennaro, R.: ‘Securing threshold cryptosystems against chosen
ciphertext attack’, J. Cryptol., 2002, 150, (2), pp. 75–96

[25] MIRACL. MIRACL Crypto SDK. Available at https://milagro.apache.org/
[26] Aranha, D.F., Barreto, P.S.L.M., Longa, P., et al.: ‘The realm of the pairings’.

Selected Areas in Cryptography – SAC 2013, Burnaby, British Columbia,
Canada, 2013, pp. 3–25

[27] Costello, C., Stebila, D.: ‘Fixed argument pairings’. Int. Conf. on Cryptology
and Information Security in Latin America, Puebla, Mexico, 2010, pp. 92–
108

11 Appendix
 
It is necessary to ensure that the set of N partial escrow shares κ i
provided by the user is correct, i.e. it allows reconstruction of the
shared secret that later will enable the escrow decryption process.
The problem is that reconstruction must succeed with any subset of
t escrow shares since this is a threshold cryptosystem. Since the
parameter N is fixed in advance, and the escrow shares are
generated using an index i as input (i.e. the input to the polynomial
is not an arbitrary value), then the Lagrange basis polynomials can
be defined in advance as shown in the next equation, which
produces polynomials of degree N − 1 with known coefficients ℓi, j

ℓi(x) = ∏
j = 1
j ≠ i

N x − j
i − j = ∑

j = 0

N − 1
ℓi, j ⋅ x j .

Coefficients ℓi, j only depend on the choice of N, and hence, are the
same for all users in the system once parameter N has been
established. It can be shown that the Lagrange interpolating
polynomial can be equivalently expressed as

p(x) = ∑
j = 0

N − 1
x j ⋅ ∑

i = 1

N
ℓi, j ⋅ f (i) . (7)

Note however that in our scheme the polynomial is hidden in the
exponent. Thus, for a fixed j in (7), the term ∑i = 1

N ℓi, j ⋅ f (i) must be
the coefficient of the reconstructed polynomial. Knowing this, we
can use the ℓi, j coefficients to check whether a coefficient of the
reconstructed polynomial is 0 or not, by using the following
auxiliary function:

CheckCoefficient(j) = ∏
i = 1

N
(κi)ℓi, j .

Since the polynomial is in the exponent, then if the coefficient is 0,
the result will be 1, irrespective of the basis of the exponentiation.
Otherwise (i.e. a non-zero coefficient), the result is an arbitrary
value other than 1. Knowing this, one has to verify that the
following conditions hold:

∀ j ∈ {t, N − 1} CheckCoefficient(j) =? 1.

j = t − 1 CheckCoefficient(j) ≠
?

1.

10 IET Inf. Secur.
© The Institution of Engineering and Technology 2019

http://www.legislation.gov.uk/ukpga/2016/25/contents/enacted
http://en.wikipedia.org/w/index.php?title=FBI
http://t.co/YKtD9VEKSf
http://t.co/YKtD9VEKSf
http://www.cs.princeton.edu/felten/warrant-paper.pdf
http://www.cs.princeton.edu/felten/warrant-paper.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-662-53015-3_14
https://milagro.apache.org/

