
Building Trust and Reputation In: A

Development Framework for Trust Models

Implementation

Francisco Moyano, Carmen Fernandez-Gago, Javier Lopez
NICS

www.nics.uma.es

University of Malaga,
Spain

{moyano,mcgago,jlm}@lcc.uma.es

Abstract

During the last years, many trust and reputation models have been
proposed, each one targeting different contexts and purposes, and with
their own particularities. While most contributions focus on defining ever-
increasing complex models, little attention has been paid to the process
of building these models inside applications during their implementation.
The result is that models have traditionally considered as ad-hoc and
after-the-fact solutions that do not always fit with the design of the ap-
plication. To overcome this, we propose an object-oriented development
framework onto which it is possible to build applications that require
functionalities provided by trust and reputation models. The framework
is extensible and flexible enough to allow implementing an important vari-
ety of trust models. This paper presents the framework, describes its main
components, and gives examples on how to use it in order to implement
three different trust models.

1 Introduction

There is not a standard definition of trust, although it is agreed that it is of
paramount importance when considering systems security, as a tool to lever-
age decision-making processes. The concept of trust spans across several areas
beyond computer science, such as psychology, sociology or economy.

The concept and implications of trust are embodied in the so-called trust
models, which define the rules to process trust in an automatic or semi-automatic
way in a computational setting. There are different types of trust models, each
one considering trust in different ways and for different purposes. The origins
of trust management date back to the nineties, when Marsh [10] proposed the

1

F. Moyano, C. Fernandez-Gago, and J. Lopez, “Building Trust and Reputation In: A Development Framework for Trust Models Implementation”,
8th International Workshop on Security and Trust Management (STM 2012), LNCS vol. 7783, pp. 113-128, 2013.
http://doi.org/10.1007/978-3-642-38004-4
NICS Lab. Publications: https://www.nics.uma.es/publications

www.nics.uma.es

first comprehensive computational model of trust based on social and psycho-
logical factors. Two years later, Blaze [2] identified trust management as a way
to enhance the problem of authorization, which up to that date was separated
into authentication and access control.

These two seminal contributions reveal the two main branches or categories
of trust models that have been followed until today, and which we classified
in a previous work [13]. On the one hand, and following Marsh’s approach,
we find evaluation models, where factors that have an influence on trust are
identified, quantified and then aggregated into a final trust score. Uncertainty
and evaluation play an important role in these models, as one entity is never
completely sure whether it should trust another entity, and a decision process
is required after evaluating the degree of trust placed in the entity.

On the other hand and following Blaze’s approach, we find decision models,
which are tightly related to authorization. An entity holds credentials and a
policy verify whether these credentials are enough to permit access to certain
resources. Here, trust evaluation is not so important in the sense that there are
no degrees of trust (and as a consequence, there is not uncertainty), and the
outcome of the process is a binary answer: access granted or access denied. In
this paper, we lay aside these models and focus only on evaluation models.

Both categories, evaluation and decision models, evolved, leading to ever-
complex models. One of the branches of evaluation models with higher impact
has been reputation models, in which a reputation score about a given entity is
derived from other entities’ opinions about it. Reputation and trust are related
concepts, and as stated by [8], reputation can be used to determine whether an
entity can trust another entity.

One issue with trust models is that they are very context-dependent, and are
often designed as ad-hoc mechanisms to work in a limited range of applications.
Actually, the standard is to plug a trust model into an existing, already-built
application after-the-fact. This might lead to architectural mismatches between
the application and the model, and the reusability of the model could also be
damaged. Moreover, it is not possible for the model to exploit all the information
available to the application, since there is not any systematic procedure to
include the model as a holistic part of the application. As a consequence, there
are no mechanisms to consider trust requirements from the very beginning of
the software development lifecycle or to align the design of the model with the
design of the application.

To overcome these shortcomings, we propose an object-oriented development
framework that allows implementing trust evaluation models as a core part of the
applications themselves. Our aim is to assist developers during the development
of applications that might require using evaluation models. The contributions
of this paper are (i) a domain analysis for trust evaluation models; (ii) the
elicitation of the requirements that the framework should meet; (iii) a first
design of the framework architecture; (iv) and guidelines to implement three
different trust evaluation models using the framework.

The rest of the paper is organized as follows. Section 2 reviews several
contributions that are related to ours. A conceptual model of trust, which

2

constitutes the domain analysis for the framework, is presented in Section 3.
This analysis is used as an input to elicit the requirements and the design of the
framework architecture, described in Section 4, whereas Section 5 explains how
the framework can be used to implement three evaluation models. Finally, the
conclusion and future work are presented in Section 6

2 Related Work

SECURE project [3] proposes a trust model to formally reason about trust, and
a framework to provide applications with trust functionalities. Trust decisions
rely on cost-PDFs that compare the benefits of a given interaction with the
cost of such interaction. Thus, although the authors propose an interesting
framework, we do not find it general enough to implement other types of trust
or reputation models found in the literature.

Kiefhaber et al. [15] present the Trust-Enabling Middleware, which provides
applications running on top of it with methods to save, interpret and query trust
related information. The middleware uses built-in functions to measure the
reliability of nodes by considering packets losses. Although rather complete, it
lacks a framework-oriented approach since it does not make explicit the process
of implementing existing or new trust models, and its focus is on distributed,
message-oriented applications.

Huynh [6] proposes the Personalized Trust Framework (PTF), a rule-based
system that makes use of semantic technologies for, given a domain, to apply
the most suitable trust model. In a similar direction, Suryanarayana et al.
[17] present PACE (Practical Architectural approach for Composing Egocentric
trust), an architectural style for composing different trust models into the ar-
chitecture of a decentralized peer in a P2P architecture. The first contribution
is a user framework that assists users in determining the trustworthiness of re-
sources, but it is not a development framework. The second contribution is an
architectural style. Thus, its purpose is helping the architect of the application
with a style to compose trust models, but like the PTF, it is not a framework,
in the sense that it does not provide developers with mechanisms to implement
trust models, nor to use them in their own applications.

Har Yew [5] presents a computational trust model and a middleware called
SCOUT, made up of three services that implement the model: the evidence
gathering service, the belief formation service and the emotional trust service.
Regardless being a comprehensive model, it is not designed as an extensible
framework and it is not clear, if possible at all, how a developer could implement
existing trust models.

Finally, Lee and Winslett present TrustBuilder2 [9], where they propose an
extensible framework that supports the adoption of different negotiation-based
trust models. Although this is a development framework, they focus on decision
models, laying aside the evaluation models we are considering in this paper.

3

3 Trust and Reputation: A Domain Analysis

The aim of this section is to shed light on concepts related to trust and repu-
tation. First, in Section 3.1, we discuss some definitions of trust that are often
found in the literature, whereas in Section 3.2 we put forward a conceptual model
in the form of knowledge graphs that constitutes a domain analysis of trust and
reputation models. This analysis is required for identifying the concepts that
are likely to be part of the framework, as well as their relationships.

3.1 Definitions

Many definitions of trust have been provided along the years. This is due to the
complexity of this concept, which spans across several areas such as psychology,
sociology, economics, law, and more recently, computer science. The vagueness
of this term is well represented by the statement “trust is less confident than
know, but also more confident than hope” [12].

Gambetta [4] defines trust as “a particular level of the subjective probability
with which an agent will perform a particular action [. . .] in a context in which
it affects our own action”. McKnight and Chervany [11] explain that trust is
“the extent to which one party is willing to depend on the other party in a given
situation with a feeling of relative security, even though negative consequences
are possible”. Ruohomaa and Kutvonen [16] state that trust is “the extent to
which one party is willing to participate in a given action with a given partner,
considering the risks and incentives involved”. Finally, Har Yew [5] defines trust
as “a particular level of subjective assessment of whether a trustee will exhibit
characteristics consistent with the role of the trustee, both before the trustor
can monitor such characteristics [. . .] and in a context in which it affects the
trustor’s own behaviour”.

We propose the following definition : trust is a subjective, context-dependent
property that is required when (i) two entities need to collaborate (i.e. there is a
dependence relationship between them and there exists the willingness to collab-
orate), but they do not know each other beforehand, (ii) and when the outcome
of this collaboration is uncertain (i.e. entities do not know if they will perform
as expected) and risky (i.e. negative outcomes are possible). In this situation,
trust acts as a mechanism to reduce the uncertainty in the collaboration and
to mitigate the risk. As risk increases (either the probability or the impact of
negative outcomes), trust becomes more crucial.

The concept of reputation is more objective than the concept of trust. Ac-
cording to the Concise Oxford dictionary, reputation is “what is generally said
or believed about a person or the character or standing of a thing”. Although
the exact relationship between trust and reputation remains fuzzy, we think that
Jøsang [8] linked these two terms appropriately with the following two state-
ments: “I trust you because of your good reputation” and “I trust you despite
your bad reputation”. Thus, reputation can be considered as a building block,
or indicator, to determine trust, although it does not have the final say.

4

3.2 Conceptual Model

This section presents the most important concepts related to evaluation trust
models. These concepts were identified surveying relevant literature and find-
ing commonalities and variations in the definition of different models. This
conceptual model constitutes a domain analysis and the starting point for the
framework requirements elicitation and for the architecture design, as some con-
cepts and relationships can map to object-oriented components. The conceptual
framework is graphically described by means of knowledge graphs and using a
UML notation, as depicted in Figures 1 and 2. Due to space limitations, we
concentrate on those concepts that have a higher impact for the requirements
and architecture of the framework.

A trust model aims to compute trust in a given setting. This setting should
have, at least, two entities that need to interact. An entity might play a role
or even several ones. The basic roles are trustor (the entity that places trust)
and trustee (the entity on which trust is placed). Once there is a trustor and
a trustee, we claim that a trust relationship has been established. A trust
relationship has a purpose, which can be for example controlling the access to
a resource, the provision of a resource or the identity of an entity. It might also
serve to set trust in the infrastructure (devices, hardware, etc). In the very end,
the purpose of a trust model is to aid making a decision. At the higher level, it is
a trust decision in the sense of answering the question: would this entity behave
as expected under this context? At a lower level, an entity trusts a property of
another entity. For instance its capability to provide a good quality of service.
A trust model also makes some assumptions, such as “entities will provide only
fair ratings” and follows a modeling method.

Trust Model
Trust

computes

Context

Assumptions

Entities

Role

PurposeTrust Class

Access IdentiyProvision Infrastructure

Trust
Relationship

has
establishes

relates

plays

has

instantiates

has

1..*

2..*

1..*

2

1..*

1..*

Evaluation
Model

Trustee's
Objective
Properties
Trustee's

Subjective
Properties
Trustor's
Objective
Properties
Trustor's

Subjective
Properties

Factors
influence

Requester Provider Trusted Third
Party

Witness Trustor Trustee

Modeling
Method

LinguisticGraphicMathematic

uses

Behaviour
Model

Reputation
Model

Propagation
Model

Figure 1: Concepts for Evaluation Models (i)

There are three types of evaluation models, namely reputation models, be-
haviour models and propagation models.

Behaviour models often follow a trust lifecycle with three phases. In the
bootstrapping phase, initial trust values are assigned to the entities of the sys-
tem. Then, some monitoring is performed to observe a variable or set of vari-

5

ables. Finally, a trust assessment process is done in order to assign values to
these variables and to aggregate them into a final trust evaluation.

In these models, trust relationships are tagged with a trust value that de-
scribe to what extent the trustor trusts the trustee. This trust value has seman-
tics and dimension, which might be simple or a tuple. Trust values are assigned
during trust assessment through trust metrics, which receive a set of variables
as input and produce a measure of one or several attributes using a computation
engine. There are several computation engines used in the literature, ranging
from the most simple ones such as summation engines, to complex ones that
entail probability distributions or fuzzy logic.

There are several sources of information that might feed a trust metric.
The most common one is the direct interaction of the entity with the trustee.
Other possible sources of information, although less frequent, are sociological
information (e.g. considering the roles of entities or their membership to a
group) and psychological information (e.g. prejudice).

Reputation models can be, in turn, another source of information where
opinions of a given trustee by different entities are made public and are used to
compute a score. Reputation can be centralized or distributed, depending on
whether reputation scores are stored in a central location or by each entity.

Propagation models aim to create new trust relationships from existing ones.
Some of them assume that trust is transitive and exploit this property. New
trust values are often computed by means of operators, and in several models,
we find two of them: a concatenator and an aggregator. The former is used to
compute trust along a trust path or chain, whereas the latter aggregates the
trust values computed for each path into a final trust value.

Behaviour
Model

Trust
Relationship

Trust Lifecycle

Bootstrapping Assessment

Trust
Value

Source of
Information

Sociological
Information

Transitivity

Trust Metric

Semantics

Dimension

Objectivity

Direct
Experience

Direct
Interaction

Direct
Observation

Reputation

Psychological
Information

Attribute

Propagation
Model

Indirect Trust
ComputationOperators

Trust
Propensity

Centralized Distributed

1..*
computes

has

defines

has
1

influences
uses
1..*

measures

feeds

informs about

1..*

quantifies

1
might be a
property of

might exploit

allows

1..*

uses

Variable

1..*

uses
1..*

aggregates 1..*

disseminates 1..*

1..*

Uncertainty/
Reliability

Computation
Engine

Summation/
Average

Bayesian

Discrete

Belief

Fuzzy

uses1

might
consider

Time

might
consider

Scope

has 1

Approach

Game-
Theoretic

Socio-
cognitive

follows

Flow

Continous

Concatenator Aggregator

Figure 2: Concepts for Evaluation Models (ii)

6

4 Trust and Reputation Development Frame-
work

In this section, the object-oriented development framework for trust is presented.
Both the requirements and the design are influenced by the domain analysis
presented in the previous section. Section 4.1 describes the requirements that
the framework should fulfil, whereas Section 4.2 presents the first version of the
framework architecture.

4.1 Framework Requirements

This section summarizes the requirements that the framework must meet. At a
high-level, the framework has to support the implementation of three types of
evaluation models, namely reputation models, behaviour models and propaga-
tion models. Although these models have commonalities, they also pose subtle
differences that the framework must support.

The primary goal of reputation models is to compute reputation scores for
entities. These scores must be stored (centrally or distributively) and entities
should be able to access this information before interacting with other entities.
On the other hand, behaviour models establish relationships between entities,
and their main goal is to compute trust values for these relationships. Finally,
propagation models also build on trust relationships, and their primary goal is
to disseminate trust information to establish new trust relationships.

The following list of requirements describes the coarse-grained functionality
that the framework should provide to developers:

• Entities management: entities hold trust values in other entities. The
framework must allow the creation, binding and naming of entities.

• Trust relationships management: trust relationships might change along
time. New trust relationships might be created (e.g. by propagation
models), other relationships might be deleted, and it is likely that trust
values change too.

• Trust metrics definition: although the framework can provide some default
built-in metrics implementations, it is important to let developers to define
their own trust metrics, as they are the core concept in evaluation models.

• Variables management: a trust metric is composed of variables. It is
important to let developers to create new variables, which can be used by
user-defined metrics.

• Computation engines management: an engine implements a trust metric.
This engine uses variables according to certain rules. Engines range from
simple summation functions to complex probability distributions.

• Indirect trust computation: the framework should provide ways to deter-
mine the value of an undefined trust relationship based on defined ones
by propagating trust information.

7

• Operators definition: indirect trust computation relies on operators that
take trust paths as input and return trust values as output (and thus, a
new trust relationship). Although several operators should be provided by
default, the framework should allow developers to define new operators.

The ultimate goal of the framework is to allow developers to implement both
existing evaluation models and new ones. Next section describes the architecture
that supports these requirements.

4.2 Framework Architecture

This section describes a first version of the framework architecture. The struc-
tural view of the architecture is depicted as a class diagram in Figure 3. Note
that some classes have been mapped directly from the conceptual model de-
scribed in Section 3, such as Entity and TrustRelationship among others.

setContext(ctx)
addEntity(Entity)
addVariable(Variable)
Variable getVariable(String)
setMetric(CEngine)
CEngine getMetric()

context
entities

EvaluationModel

DBConnector getConnector()
setConnector(DBConnector)
updateReputation()

connector
RepType type

ReputationModel
CENTRALIZED
DISTRIBUTED

<<enumeration>>
RepType

getTRelationship()
setTRelationship(Trust Relationship)

TrustRelationship tr[]
BehaviourModel

setSeqOperator(Operator)
setParOperator(Operator)
calculateIndirectTrust(Entity, Entity)

TRelationship tr
Operator seqOp
Operator parOp

PropagationModel

updateEntry(Entity,
Value, DBUri)

DBuri
DBConnector

Trust Database

String getName()
setName(String)
DBConnector getConnector()
setConnector(DBConnector)
TrustMetric getMetric()
setMetric(TrustMetric)

name
id
connector
metric

Entitiy

Entity getTrustor()
Entity getTrustee()
setTrustor(Entity)
setTrustee(Entity)
TrustMetric getMetric()
setMetric(TrustMetric)

Entity trustor
Entity trustee
value
metric

TrustRelationship

compute()
variables

<<interface>>
TrustMetric

String getName()
Object getValue()
setName(String)
setValue(Object)

name
value

Variable
String getName()
setName(String)

name
Operator

compute(TrustRelationships[])
SeqOperator

compute(Object[])
ParOperator

compute()
SummationEngine

Float getWeight()
setWeight(Float)

weight
WeightedVariable

compute(TrustRelationships[])
MinimunFunction

compute(TrustRelationships[])
MaximunFunction

compute()
WeightedSummationEngine

User-Defined Layer

Computation Layer

Relational Layer

Model Layer

External DB System

Figure 3: Framework Architecture

The architecture follows a layered design, where each layer uses the services
provided by the lower layer. Likewise, the framework follows a grey-box ap-
proach, where the developer can use several functionalities in a black-box fash-
ion as well as define new functionalities based on his needs. Next we describe
the classes and relationships for each of the layers.

8

4.2.1 Model Layer

In this layer we find the models that the developer can implement, namely rep-
utation models, behaviour models, and propagation models. More information
about each type of model is provided in Section 5. ReputationModel, Behaviour-
Model and PropagationModel are inherited classes from EvaluationModels and
as such, they share a context (a string describing the context under which the
model operates) and a list of entities that take part in the model. Evaluation-
Model also provides other methods, and their functionality will be delegated to
lower layer classes, depending on the model type.

A reputation model adds a connector to an external database system to store
reputation scores, and it holds the type of reputation model, which might be
centralized or distributed. Moreover, this class exposes the method updateRep-
utation which computes the reputation score and saves it in the trust database.
A behaviour model contains a list of trust relationships and exposes methods
to get and set these relationships. Finally, a propagation model, in addition to
containing a list of trust relationships, it also contains a sequential operator and
a parallel operator 1, and exposes a method to calculate indirect relationships.

4.2.2 Relational Layer

This layer contains the basic building blocks onto which the models of the upper
layer are developed: entities and trust relationships.

Entities have a name, an automatically-generated identifier, a database con-
nector and a trust metric. The fact that each entity holds a database connector
enables distributed reputation systems, where each entity must store the repu-
tation information regarding another entity in a personal database. Likewise,
as each entity holds a trust metric instance, we allow each entity in the model
to use a different trust metric to compute other entities’ reputation.

Regarding trust relationships, they consist on a tuple that specify which
is the entity that places trust (trustor), the entity on which trust is placed
(trustee), the extent to which the trustor trusts the trustee (value), and the
trust metric used to derive this value. Again, having the metric as an instance
variable improves flexibility as each relationship could be measured with differ-
ent metrics.

The decision that both an entity and a trust relationship may define their
metrics supports the implementation of more advanced trust models where the
final trust value that a trustor places on a given trustee might be determined
by both the reputation of the trustee and the trust relationship between the
trustor and the trustee.

1In the conceptual model we called them concatenator and aggregator operators. However,
as we later implement a model where they are called sequential and parallel, we have adopted
this notation for the architecture.

9

4.2.3 Computation Layer

Evaluation models rely on trust metrics to perform trust values calculations.
This is the layer in charge of such computation.

Basically, TrustMetric is an interface that a developer should implement to
override the compute() method, where the trust calculation takes place. Trust
metrics use variables, through the class Variable, which have a name and a value,
as well as methods to get and set these parameters. Operators for propagation
models belong also to this layer.

Note that trust metrics contain instances of variables. As entities and trust
relationships hold in turn instances of trust metrics, each entity or relation-
ship might use different variables, increasing the flexibility of the framework to
accommodate complex models.

4.2.4 User-Defined Layer

This layer is created as users extend the computation layer to accommodate
their own definitions. As we explain in the next section, users can create new
computation engines (implementations of the TrustMetric interface) and new
variables to implement an important range of models. For illustration purposes,
the architecture includes a summation engine (that basically sums up the vari-
ables that it contains) and a weighted summation engine (that adds a weight
to each variable). The latter requires creating a specialized variable class that
adds the weight to its internal state.

Up to now, we have described the framework from a structural point of view.
The behavioural view of the architecture is further analyzed in the following
section, where the framework is used to implement three evaluation models.

5 Instantiations of the Framework

In this section, we describe how the framework presented in Section 4 could
address the implementation of three simple evaluation models. These models
have been chosen because they are well-known as well as representative of the
three types of evaluation models discussed earlier. In the first part of this
section, we briefly describe the models to be implemented. In the second part,
we actually use the framework to implement the models. The goal of this section
is to analyze the feasibility of the framework to implement different evaluation
models.

5.1 Models Description

5.1.1 Ebay Reputation Model [14]

Ebay 2 is probably the most famous auction-based online marketplace where
buyers and sellers interact. Once a transaction has finished, buyers can evalu-

2www.ebay.com

10

www.ebay.com

ate sellers, expressing their satisfaction with regard to the transaction outcome.
This evaluation is made by providing positive or negative feedbacks. The repu-
tation score of a seller is computed by subtracting the negative feedbacks from
the positive feedbacks. This model has its shortcomings, as expressed by Jøsang
et al. [8], since people are usually reluctant to provide a negative evaluation and
prefer to solve their problems off-line. Thus, the reputation score of a person is
not very representative, since a person with 50 positive feedbacks and 10 neg-
ative feedbacks should be considered rather more untrustworthy than another
one with only 40 positive feedbacks (although they would have the same rep-
utation score under the model). However, it is an easy-to-understand model,
therefore it has been chosen it for illustration purposes.

5.1.2 Risk and Utility-based Behaviour Model

In this made-up model a trustor determines his trust in a trustee by means
of two factors: the risk and utility of the interaction. The higher the risk (as
perceived by the trustor), the lower the trust. Likewise, the higher the utility (as
perceived by the trustor), the higher the trust. This model can be considered
an oversimplification of Marsh’s computational model [10], where the author
identifies many parameters that influence trust and combine them into different
formulas. In the simplified version that we propose, the trustor performs the
division between the utility and the risk to calculate the trust in the trustee.

5.1.3 Propagation Model

Agudo et al. [1] present a graph-based propagation model that allows to com-
pute indirect trust relationships from direct ones. Let us suppose, in the context
of the previous model, that an entity e1 does not know the risk and utility values
of interacting with an entity e3. In this setting, there is not an explicit trust
relationship between these two entities. However, let us suppose that we know
the risk and utility values that e1 hold for e2, and the ones that e2 hold for e3
(that is, there is a trust relationship between e1 and e2, and between e2 and
e3). Then, we could use the propagation model to compute the final trust value
from e1 to e3, establishing a new trust relationship.

5.2 Using the Framework

5.2.1 Ebay Reputation Model

Let us suppose a distributed setting in which three entities (which do not know
each other beforehand) have to perform several works. These entities can choose
whether to execute a given work by themselves or to delegate it to the entity
with the higher reputation. Each time an entity delegates a work, it registers
a listener through which the delegatee informs about the outcome of the work
(e.g. success or failure, time consumed, etc). Depending on these parameters,
the delegator decides whether to place a positive feedback or a negative feedback

11

on the delegatee. Thus, we are implementing the eBay reputation model onto
another kind of application.

ReputationModel rm = new ReputationModel("Work Dispatching",

3, CENTRALIZED, SUMMATION);

rm.addVariable("Positive Feedback", 0);

rm.addVariable("Negative Feedback", 0);

This simple code snippet creates a reputation model under the context
“Work Dispatching”. The next parameter represents the number of entities
(three in our example). Next, we specify that the reputation model is central-
ized (and not distributed), and this creates a database connector that acts as
the interface to the reputation database (where reputation scores for the entities
are stored). If the reputation model was distributed, there would be required to
create a database connector for each entity created. The final parameter is the
computation engine, which in this case is a simple built-in summation engine.
As mentioned earlier, the framework is designed to allow different computation
engines for different entities. By default, however, all entities share the same
computation engines and the same variables.

After initializing the reputation model, we add the variables required, namely
the positive and negative feedbacks, specifying their default values. The code
that adds the variables is shown next:

public class ReputationModel {

//If no entity is specified, when we add a

//variable, it is added to the computation

//engine of every entity

public void addVariable(String name, Object value) {

for (int i = 0; i < entities.size(); i++) {

entities.get(i).getComputationEngine().addVariable(name, f);

}

}

// ... (Other methods)

}

From this point onwards, the developer accesses the framework functionali-
ties through the reputation model instance variable. The following code snippet
shows the method to execute when the listener is triggered.

//This is the method the listener invokes when a work is finished

public void onWorkFinished(Work w, Entity delegatee, Message m,

Time tConsumed) {

Variable nFeedback = rm.getVariable("Negative Feedback", delegatee);

Variable pFeedback = rm.getVariable("Positive Feedback", delegatee);

if (m.isError() || tConsumed > threshold) {

12

rm.setVariable("Negative Feedback", delegatee,

-(++nFeedback.getValue()));

} else {

rm.setVariable("Positive Feedback", delegatee,

++pFeedback.getValue());

}

rm.updateReputation(delegatee);

}

Variables are updated depending on the outcome of the work dispatching,
and there is a call to updateReputation. The code for this method is shown next:

public class ReputationModel {

public void updateReputation (Entity e) {

//connector is an instance variable of reputation model that allows

//accessing a persistent database for storing reputation scores

connector.updateEntry(e, e.getComputationEngine().compute());

}

// ...(Other methods)

}

The updateReputation method will perform the computation of the reputa-
tion score according to the summation computation engine and the variables
defined. Furthermore, it will update the central reputation database.

The summation engine overrides the compute() method of TrustMetric. This
way, the framework provides enough flexibility to easily implement different met-
rics. Another metric could use weights to give a higher relevance to negative
feedbacks, for instance. The developer would need to define two new classes:
one extending TrustMetric, namely WeightedSummation, and another one ex-
tending Variable, namely WeightedVariable. The latter must contain the weight
associated to the variable, whereas the former should override the method com-
pute() of TrustMetric, as depicted in Figure 4.

In the code snippets from Figure 4., variables.size() equals two, since there
are two variables (positive and negative feedbacks). The upper code represents
the computation of the traditional eBay reputation model, whereas the other
one describes a weighted version of it.

5.2.2 Risk and Utility-based Behaviour Model

In reputation models, according to the framework design, variables and com-
putation engines belong to entities. That is, each entity has its own variables
and computation engines. Now, an entity might hold a different risk and utility
values for any other entity in the system. In order to support this, the frame-
work introduces the class TrustRelationship, which encapsulates the information

13

addVariable()
compute()

variables
Trust Metric

int compute()

Summation
Engine

float compute()
weightedVariables

WeightedSummation
Engine

id
name
value

Variable

setWeight(float)
float getWeight()

weight
WeightedVariable

float%res%=%0;%
for%(i=0;%i%<%variables.size();%i++)%{%

%res+=variables.get(i).getValue()%
}%
return%res;%

float%res%=%0;%
for%(i=0;%i%<%variables.size();%i++)%{%

%res+=variables.get(i).getValue()%*%
% %%variables.get(i).getWeight()%

}%
return%res;%

Figure 4: Creation of Metrics and Variables

regarding a trust relationship, namely the trustor, the trustee, the trust value,
and the computation engine used to calculate the trust value. Thus, any trust
relationship remains perfectly specified by an instance of this class.

Let us assume a setting with three entities again. The code snippet that the
developer has to write is the following:

BehaviourModel bm = new BehaviourModel("Work Dispatching");

//If entities do not exist, they are created in the addTrustRelationship

// method. This process is tedious and could better done through

//configuration files or GUIs

bm.addVariable(bm.addTrustRelationship("e1", "e2"), "Risk", 0,3);

bm.addVariable(bm.addTrustRelationship("e1", "e2"), "Utility", 0,9);

bm.addVariable(bm.addTrustRelationship("e2", "e3"), "Risk", 0,6);

bm.addVariable(bm.addTrustRelationship("e2", "e3"), "Utility", 0,4);

// Set engine for all trust relationships

bm.setComputationEngine(riskUtilityEngine);

bm.compute(bm.getTrustRelationship("e1", "e2"));

bm.compute(bm.getTrustRelationship("e2", "e3"));

The computation engine that implements the trust metric, namely riskUtil-
ityEngine must be defined by the developer, overriding the compute() method
of TrustMetric. In our example, the engine would only need to retrieve the
variable named Risk and divide it by the variable Utility.

Note that after the execution of the previous code, there is a trust rela-
tionship between e1 and e2, and between e2 and e3. We now proceed to use a
propagation model to create a trust relationship between e1 and e3, as described
next.

14

5.2.3 Propagation Model

The model proposed by Agudo et al. [1] uses a sequential operator to compute
the trust value between two entities in a given trust chain, and a parallel operator
to compute a global trust value between two entities linked by multiple trust
chains. The same concepts are used in other trust models, such as Jøsang’s
belief model [7], which disseminates opinions through discounting and consensus
operators.

Consider the same example of the previous model. Let us assume that the
developer wants to compute a trust value between e1 and e3. The code he
should write is the following:

PropagationModel pm = new PropagationModel(bm, MIN, MAX);

pm.calculateIndirectTrust("e1", "e3");

In this example, we have chosen the built-in minimun and maximum func-
tions as sequential and parallel operators, respectively. However, as there is
only one trust path from e1 to e3, the parallel operator will not be applied.

Also note that the first argument of the constructor is the instance of the
previous model (bm), since the propagation model needs access to the trust
relationships previously defined.

The method calculateIndirectTrust is described next:

public void calculateIndirectTrust(Entity e1, Entity e3) {

float[] values;

TrustRelationship[] trustChains = retrieveTrustChains(tr, e1, e3);

for (int i = 0; i < trustChains.size(); i++) {

values[i] = sequentialOp.compute(trustChains[i]);

}

tr.addTrustRelationship (e1, e3, parallelOp.compute(values));

}

The sequentialOp and parallelOp are instance variables that store an instance
of the operators, which might be defined by the user extending the corresponding
abstract classes. Basically, the method retrieves all the trust paths between e1
and e3. Then, it applies the sequential operator to every path, and finally, it
applies the parallel operator to the obtained values.

6 Conclusion and Future Work

There is a huge amount of different trust models proposed in the literature.
These models, however, are often designed to work in ad-hoc environments,
and to be plugged into already-existing applications. In this paper, we have
presented an object-oriented development framework to assist developers during
the implementation of applications that might require support from trust or
reputation models. As the application is developed using the framework, trust
models are aligned with the design of the application and they can exploit all
the data available to the application.

15

In order to achieve this, we have performed a domain analysis of trust models
by means of knowledge graphs. This analysis has helped us to elicit the require-
ments that the framework should meet, and also to identify several classes and
methods, from which we designed a first version of the architecture. Finally, we
have proved the feasibility of the framework by giving guidelines on the imple-
mentation of three different evaluation models: the eBay reputation model, an
oversimplified version of Marsh’s model, and a propagation model.

As future work, we intend to extend the framework in order to accommodate
several models features that are often found in the literature. First, we are
interested in supporting the implementation of models where the trust values
are represented by a tuple of values (multiple dimensions) rather than by a
single value. We intend to allow defining a different metric for each dimension
in order to provide greater flexibility.

Some trust models yield an uncertainty value together with the trust value,
in order to inform other entities about how certain the trust value should be
considered. We plan to add support for this feature as well. Also, roles played
by entities or the membership of entities to a given group are factors taken into
account in other models to determine trust, and therefore we intend to include
this feature in the near future too.

Finally, we aim to add more complex built-in computation engines, including
beta-probability distributions and fuzzy engines.

Acknowledgements

This work has been partially funded by the European Commission through the
FP7 project NESSoS under grant agreement number 256980, and by the Span-
ish Ministry of Science and Innovation through the research projects ARES
(CSD2007-00004) and SPRINT (TIN2009-09237). The first author is funded by
the Spanish Ministry of Education through the National F.P.U. Program.

References

[1] Isaac Agudo, Carmen Fernandez-Gago, and Javier Lopez. A model for trust
metrics analysis. In 5th International Conference on Trust, Privacy and
Security in Digital Business (TrustBus’08), volume 5185 of LNCS, pages
28–37. Springer, 2008.

[2] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust man-
agement. In IEEE Symposium on Security and Privacy, pages 164–173,
1996.

[3] Vinny Cahill, Elizabeth Gray, Jean-Marc Seigneur, Christian D. Jensen,
Yong Chen, Brian Shand, Nathan Dimmock, Andy Twigg, Jean Bacon,
Colin English, Waleed Wagealla, Sotirios Terzis, Paddy Nixon, Giovanna
di Marzo Serugendo, Ciaran Bryce, Marco Carbone, Karl Krukow, and

16

Mogens Nielsen. Using trust for secure collaboration in uncertain environ-
ments. IEEE Pervasive Computing, 2(3):52–61, July 2003.

[4] Diego Gambetta. Can we trust trust? In Trust: Making and Breaking
Cooperative Relations, pages 213–237. Basil Blackwell, 1988.

[5] Chern Har Yew. Architecture Supporting Computational Trust Formation.
PhD thesis, University of Western Ontario, London, Ontario, 2011.

[6] TD Huynh. A Personalized Framework for Trust Assessment. ACM Sym-
posioum on Applied Computing - Trust, Reputation, Evidence and other
Collaboration Know-how Track, 2:1302–1307, December 2008.

[7] Audun Jøsang. A logic for uncertain probabilities. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 9(3):279–311, June
2001.

[8] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and
reputation systems for online service provision. Decision Support Systems,
43(2):618–644, March 2007.

[9] Adam J. Lee, Marianne Winslett, and Kenneth J. Perano. Trustbuilder2:
A reconfigurable framework for trust negotiation. In Elena Ferrari, Ninghui
Li, Elisa Bertino, and YÃ 1

4cel Karabulut, editors, IFIPTM, volume 300 of
IFIP Conference Proceedings, pages 176–195. Springer, 2009.

[10] Stephen Marsh. Formalising Trust as a Computational Concept. PhD
thesis, University of Stirling, April 1994.

[11] D. Harrison McKnight and Norman L. Chervany. The meanings of trust.
Technical report, University of Minnesota, Management Information Sys-
tems Research Center, 1996.

[12] Keith W Miller, Jeffrey Voas, and Phil Laplante. In Trust We Trust. Com-
puter, 43:85–87, 2010.

[13] Francisco Moyano, Carmen Fernandez-Gago, and Javier Lopez. A concep-
tual framework for trust models. In 9th International Conference on Trust,
Privacy & Security in Digital Business (TrustBus 2012), September 2012
In Press.

[14] Paul Resnick and Richard Zeckhauser. Trust among strangers in Internet
transactions: Empirical analysis of eBay’s reputation system. In Michael R.
Baye, editor, The Economics of the Internet and E-Commerce, volume 11
of Advances in Applied Microeconomics, pages 127–157. Elsevier Science,
2002.

[15] Florian Siefert Gerrit Anders Theo Ungerer Wolfgang Reif Rolf Kiefhaber.
The Trust-Enabling Middleware: Introduction and Application. Technical
report, Institut fuÌˆr Informatik UniversitaÌˆt Augsburg, March 2011.

17

[16] Sini Ruohomaa and Lea Kutvonen. Trust management survey. In Proceed-
ings of the Third international conference on Trust Management, iTrust’05,
pages 77–92, Berlin, Heidelberg, 2005. Springer-Verlag.

[17] Girish Suryanarayana, Mamadou H. Diallo, Justin R. Erenkrantz, and
Richard N. Taylor. Architectural Support for Trust Models in Decentral-
ized Applications. In Proceeding of the 28th international conference, pages
52–61, New York, New York, USA, 2006. ACM Press.

18

	Introduction
	Related Work
	Trust and Reputation: A Domain Analysis
	Definitions
	Conceptual Model

	Trust and Reputation Development Framework
	Framework Requirements
	Framework Architecture
	Model Layer
	Relational Layer
	Computation Layer
	User-Defined Layer

	Instantiations of the Framework
	Models Description
	Ebay Reputation Model Resnick02
	Risk and Utility-based Behaviour Model
	Propagation Model

	Using the Framework
	Ebay Reputation Model
	Risk and Utility-based Behaviour Model
	Propagation Model

	Conclusion and Future Work

