
Engineering Trust- and Reputation-based
Security Controls for Future Internet Systems

Kristian Beckers, Maritta Heisel,
Francisco Moyano and Carmen Fernandez-Gago

September 1, 2015

Abstract
Reputation as a decision criteria for whom to trust has been successfully adopted

by a few internet-based businesses such as ebay or Amazon. Moreover, trust eval-
uation is becoming of increasing importance for future internet systems such as
smart grids, because these contain potentially millions of users, their data, and a
huge number of subsystems. The resulting scale and complexity makes them ideal
candidates for trust and reputation based security controls, but currently engineer-
ing methodologies are missing that provide structured step-by-step instructions on
how to design such controls. We contribute such a methodology including tool
support that helps (i) to elicit trust relationships, (ii) to reason about how to con-
struct trust and reputation engines for these and finally (iii) to specify consequent
security controls. The methodology is based on formal OCL-expressions that pro-
vide (semi-)automatic support analysing UML models with regard to trust and
reputation information.

1 Introduction
Future Internet Systems introduce new ways of communication among software-based
devices. For example, smart grids are commodity networks that intelligently manage
the behaviour and actions of its participants, where in our running example the relevant
commodity is electricity. Smart grid is envisioned to be a more economic and sustain-
able supply of energy, and an essential feature of smart grids is that there is two-way
electronic communication between energy providers and consumers. It is envisioned
that consumers can use their individual devices such as smart phones, notebooks, etc. to
communicate with their energy providers, control the energy consumptions of their
homes and use further services. The envisaged scale of smart grids is enormous if we
consider that in Europe alone live around 500 million people1 and most of them will
use different devices to connect to the grid. Hence, the security challenges as well as
new vulnerabilities will raise in future internet systems2.

1http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_pjan&
lang=en

2http://www.nessos-project.eu/media/deliverables/y3/NESSoS-D4.
3-PartII-Roadmap.pdf

1

F. Moyano, C. Fernandez-Gago, K. Beckers, and M. Heisel, “Engineering Trust- and Reputation-based Security Controls for Future Internet Systems”,
The 30th ACM/SIGAPP Symposium On Applied Computing (SAC 2015), pp. 1344-1349, 2015.
http://doi.org/10.1145/2695664.2695713
NICS Lab. Publications: https://www.nics.uma.es/publications

 e
xt

er
na

l
in

pu
t

m
et

ho
d

in
pu

t/
ou

tp
ut

1. Establish the
Context

Role: Software
Engineer,

Domain Expert

Context Diagram Domain Knowledge
Diagrams with relevant
trust and reputation
information

Unstructured System
and Environment
Description

2. Elicit Trust and
Reputation Knowledge

Roles: Software
Engineer, Trust Engineer,

Domain Expert

3. Deriving Trust-based
Security Controls

Roles: Software
Engineer, Trust Engineer

4. Check the Consistency
of the Model

Role: Software Engineer

5. Reason about Trust-
based Security Controls

Roles: Software
Engineer, Trust Engineer

Refined Domain Knowledge
Diagrams with e.g. all relevant
attributes, Problem Diagrams
that contain elicited security
requirements

Consistent Trust- and
Reputation- Information in
Context-, Domain
Knowledge-, and Problem
Diagrams

Evaluated diagrams
with regard to Trust-
and Reputation
Information

Trust and Reputation
Information OCL Expressions for

Model Consistency
OCL Expressions for
Trust Reasoning

Figure 1: Our Method for Engineering Trust- and Reputation-based Security Controls
for Future Internet Systems

The concept of trust has been in discussion for a long time and researchers still
work on clarifying its terminology [17]. In addition, several well known applications
rely on trust and reputation mechanisms such as Amazon’s product ratings and ebay’s
seller feedback [14].

In security engineering, current practice is to mitigate potential threats by using
hard trust approaches. These approaches are based on cryptography and strict rules
to prevent access to resources without proper authorisation. These mechanisms often
entail a high computational power or administrative burden, they are hard to maintain
in dynamic environments [20], and they only provide limited control prior to the access
of users; once users are in the system, hard trust approaches do not focus on detecting
abnormal behaviours. Moreover, any misbehaviour may lead to multiple rule updates,
which can lead to missing rules due to limited IT staff or to wrong rules due to human
errors.

In contrast to hard trust mechanisms, soft trust mechanisms rely on social control
and on the characterisation of trust relationships based on certain factors that influence
these relationships [19]. Examples of these factors are previous experience, member-
ship to a group, or reputation. Trust values can be used by the trustor itself (i.e. the
entity placing trust) to evaluate if it should engage in an interaction with other entities.
The main difference with the previous schemes is that we are empowering entities to
make decisions based on personal judgement of its context and individual knowledge.
Trust is no longer based on a set of strict rules or on a statement by a certification
authority that is trusted by definition. In particular, future internet systems require
not to depend on a set of strict rules for security, because the changes to these rules
would result in overwhelming effort when coping with the scale and evolution of these
systems. Although trust and reputation have been barely considered in requirements
engineering, some works have included some of their concepts as part of this phase
[18][21].

We propose trust- and reputation-based security controls for a smart grid in our
previous work [16]. We rely on the problem frame approach [13] for this analysis,
because in contrast to goal-based methods such as SI* [15] and KAOS [23], problem
frames use abstractions of the system-to-be, emphasizing the context that surrounds
the system, which is particularly important in order to analyse trust relationships and
reputation. The interested reader can find a more detailed discussion on our choice in
our previous work [16].

This work presents two main extensions over the previous work. First, we discuss

2

a detailed step-by-step methodology that allows for designing trust-based security con-
trols for future internet systems. This methodology supports the separation of duties
among the domain expert, the software engineer and the trust engineer. Second, we
specify formal checks for UML4PF (a UML profile and tool support, see Sect. 2 for
details) models using OCL [22]. These checks support consistency of different dia-
grams in one model, help eliciting trust relationships and reasoning about the design of
trust and reputation engines. Finally, we provide tool support for creating trust models
using UML4PF and (semi-) automatically applying the OCL checks on these models.

These contributions empower ordinary software- and security-engineers to apply
the skills of engineering trust-based security controls.

The remainder of the paper is structured as follows. Section 2 shows the UML4PF
framework, and Sect. 3 presents our step-by-step methodology for engineering trust-
based security controls. Section 4 illustrates the application of our methodology and
Sect. 5 discusses our results. Section 6 concludes and gives directions for future re-
search.

2 The UML4PF Framework
The UML4PF framework3 is a result of a decade of research of the University of
Duisburg-Essen in collaboration with the ITESYS GmbH. Several projects contributed
to the project such as the EU project Network of Excellence on Engineering Secure Fu-
ture Internet Software Services and Systems (NESSoS), and the project of the German
State of North Rhine-Westphalia and EFRE ClouDAT, and the DFG project GenEDA.
The practitioners of the ITESYS GmbH and the ones in the projects ensure that the
resulting framework, its tools, and methods meet practitioners’ needs. In addition, the
developed framework is available as open-source, which allows interested parties to try
and use the framework for free.

We use the UML representation of the problem frames method called UML4PF
[9], because this allows us to write OCL expressions to validate the models that will be
included in the UML4PF support tool. Moreover, we aim to integrate this analysis into
a structured software development process, e.g., an extension of the ADIT [8] process
that relies on UML4PF. We choose the UML notation, because software engineers
are familiar with it to express software design choices. Moreover, if we express the
software analysis and design in UML, we do not need to map the analysis results to a
different notation for the software design. This reduces one source of mistakes during
software development. Hence, expressing trust and reputation analysis in UML allows
for a seamless refinement step to software design, by re-using the UML models created
during the analysis phase in the software design phase.

UML4PF provides a framework for step-by-step methodologies to achieve differ-
ent quality attributes of a system-to-be. To this date UML4PF supports the following
methodologies:

• A software development process with over 70 traceability and consistency checks
between different diagrams [8].

3http://www.uml4pf.org

3

Table 1: OCL Expressions that support Trust-based Security Reasoning and Consis-
tency Checks

OCL-
EXPR-ID

Referenced
Class

Expression Supporting Analysis Ques-
tions

Reasoning Support
IDHE001 HumanEntity - List all biddable domains that are not a

human entity
- Are human entities missing?

IDEN001 Entity, Hu-
manEntity

- List all domains that are not entities or hu-
man entities

- Are some entities or human
entities not elicited yet?

IDHE002 HumanEntity - List all human entities that do not have a
trusts relation.

- Are trust relations of Hume-
nEntities missing?

IDEN002 Entity - List all entities that do not have a trusts
relation.

- Are trust relations of Entities
missing?

TRTE001 TrustEngine - List all machine domains that have a di-
rect relation to a TrustEngine

- Are Trust Engines missing in
the model?

TRRE001 ReputationEngine- List all TrustEngines that have a direct re-
lation to a ReputationEngine

- Are ReputationEngines
missing in the model?

TRJE001 TrustFactor - Check that the how attribute is set and it
is set either to ”assigned” or ”monitored”.

- Are all the trust factors either
“assigned” or “monitored”?

TRCL001 Claims - Check that claims have set the when at-
tribute to either to “after interaction” or
“any moment”.

- Do all claims specify when
they must be provided.

TROF001 ObjectiveFactor- List all trust relationships that have no ob-
jective factors.

- Are all objective factors of
the entity considered?

TRSF001 SubjectiveFactor- List all trust relationships that have no
subjective factors.

- Are all subjective factors of
the entity considered?

Consistency Checks
CCRS001 HumanEntity - Check that all HumanEntities have the

value trustRole set.
- Are HumanEntities mod-
elled correctly ?

CCRS002 Entity - Check that all EntitiesEntities have the
value trustRole set.

- Are Entities modelled cor-
rectly ?

CCCL001 Claim - Check that all sources of claims are a Hu-
man Entity

- Are claims modelled cor-
rectly ?

CCCL002 Claim - Check that all targets of claims are an En-
tity or Human Entity

- Are claims modelled cor-
rectly with respect to entities?

CCCL003 Claim - Check that all claims have targets and
sources

- Have claims an origin and a
target ?

CCSF001 SubjectiveFactor-Have subjective factors the who value set
and refer to a trust relationship?

- Are trust relationships mod-
elled considered subjective
factors ?

CCTV001 TrustValue - Check that all dependencies with a trusts
relationship have a dependency to a Trust-
Value

- Are trust relationships mod-
elled completely ?

CCLTR001 Trustor,
Trustee

- Check that trust relationships have a
trustor and a trustee.

Are all trust relationships
modelled correctly?

CCLTR002 Trustfactor - Check that All classes with a stereotype
trustfactor including the inheriting classes
subjective and objective factor have a de-
pendency to a trusts relationship or to an
entity

Are all trust factors refer to
trust relationship or to enti-
ties?

• A dependability profile and tool support [11].

• A computer aided threat analysis based on functional requirements [10].

4

• A support methodology for security analysis [3, 6] compliant to the Common
Criteria standard [12].

• A support methodology for early hazard analysis complaint to the ISO 26262
automotive safety standard [5].

• A method for modelling of variability by using feature modelling for the problem
and the solution space [2].

• A methodology [1] to identify unwanted interactions between requirements.

• A privacy threat analysis method [4] based on information flow in requirements
models.

In this paper, we rely on all the extensions introduced so far and provide support for
engineering trust-based security controls. Our methodology shows step-by-step how to
identify trust relationships, refine these relationships and elicit trust values, consider
reputation of entities participating in the trust relationships, and creating an analysis
for evaluating the security level of an asset. We provide a dedicated homepage for
the UML4PF Trust Extension4 that contains our previous work, the support tool and a
technical report of our current work.

3 Engineering Trust-based Security Controls for Fu-
ture Internet Systems

We show our method (see Fig. 1) for engineering trust-based security controls in the
following. This method requires three roles to collaborate: a domain expert, a software
engineer, and a security engineer familiar with trust engineering that we call Trust
Engineer.

Step 1: Establish the Context Trust relations are only valid for a specific context.
The software engineer and the domain expert describe the context of the software de-
velopment in a context diagram. This diagram describes the machine, the thing to be
built, in its environment using domains and interfaces between these domains. A set
of textual functional requirements refers to the domains in the context diagram. After-
wards, the security engineer elicits assets and security requirements for them.

Step 2: Elicit Trust and Reputation Knowledge The domain expert and the trust
expert have to work together. The former elicits trust-unaware domain knowledge
diagrams, whereas the latter (together with the former) provides an initial trust do-
main knowledge, where the high level aspects of the trust and reputation models are
first sketched. These aspects include specifying trust entities, their trust relationships,
claims, and trust factors. This step is supported by the OCL expressions in Tab. 1,
which help to identify incomplete relationships and missing relationship elements such
as entities.

4http://www.uml4pf.org/ext-trust/

5

Step 3: Deriving Trust-based Security Controls The information in the trust do-
main knowledge diagrams is refined in this step by the software and trust engineers.
The final diagrams contain detailed information about trust and reputation relationship,
e.g. roles played by the entities, insight on the claims, the trust values, and objective
and subjective factors5. In addition, the security engineer and the software engineer
collaborate to analyse how the respective trust and reputation engines integrate into the
system-to-be and their relationship with the system requirements and the machine.

Step 4: Check the Consistency of the Model The work with any kind of models
is subject to the risk that engineers make mistakes while creating them. We identified
several common mistakes that are made when using our UML4PF trust extension. We
defined OCL expressions to find several of these in the Consistency Checks part of the
OCL expressions in Tab. 1. These contain boolean checks for the conditions in the
table. The execution of these checks support software engineers to find these common
mistakes without having to consult the trust engineers.

Step 5: Reason about Trust-based Security Controls Besides mistakes in models
that can be identified clearly, there are other issues that require a detailed discussion
among engineers. For example, issues regarding the completeness of information of
a trust relationship. Support for these reasoning based concerns cannot fully be auto-
mated. However, we provide OCL expressions in the Reasoning Support part of Tab. 1
that search for specific relations between model elements that may provide hints for
conceptual problems in the model. The trust engineers and the software engineers con-
sider the resulting elements in an analysis and use them as a basis for discussion and
finally to improve their diagrams.

4 Application of our Method
We use the Common Criteria protection profile for the smart metering gateway [7] as
an example for our approach. The protection profile defines security requirements for
a smart metering gateway. In addition, we use the trust and reputation extension of
UML4PF’s UML profile introduced in our previous work [16].

<<Machine>>
SmartMeteringGateway

<<BiddableDomain>>
AuthorizedExternalEntity

<<causalDomain>>
Meter

<<causalDomain>>
CLS

<<BiddableDomain>>
Consumer

1

<<han>>
IF_GW_U

<<lmn>>
IF_GW_M

<<wan>>
IF_GW_WAN

<<han>>
IF_GW_CLS

Figure 2: Smart Metering Gateway (Context Diagram)

5For further information on the semantics of the trust and reputation concepts, we refer the reader to our
previous work [16].

6

Step 1: Establish the Context UML4PF describes a system in domains. The class
with the stereotype machine represents the thing to be developed (e.g., the software),
and CausalDomains comply with some physical laws, while BiddableDomains are
usually people. Domains are connected by interfaces consisting of shared phenom-
ena. Shared phenomena may be events, operation calls, messages, and the like. They
are observable by at least two domains, but controlled by only one domain, as indi-
cated by an exclamation mark. For simplicity’s sake, we show only the most relevant
phenomena in our diagrams.

The gateway is a part of the smart grid and enables the two-way communication
between energy providers and consumers. Moreover, smart metering systems meter
the production or consumption of energy and forward the data to external entities. This
data can be used for billing and steering the energy production.

Figure 2 shows the context diagram that describes the machine to be built in its
environment. The �Machine� is the SmartMeteringGateway, which serves as a bridge
between the Wide Area Network �wan� and the Home Area Network �han� of the
Consumer. The Meter is connected to the machine via a Local Metrological Network
�lmn�. This is an in-house equipment that can be used for energy management. The
Controllable Local System CLS can be, for example, a heater. The Meter sends meter
data to the SmartMeteringGateway. The SmartMeteringGateway stores this data. The Meter
can also receive updates from the AuthorizedExternalEntity forwarded via the SmartMeter-
ingGateway. The AuthorizedExternalEntity receives meter data in fixed intervals from the
SmartMeteringGateway. The Consumer can retrieve meter data via the SmartMeteringGate-
way. The Consumer can also configure the SmartMeteringGateway, send commands to the
CLS, receive status messages from the SmartMeteringGateway and store user data in it.

Step 2: Elicit Trust and Reputation Knowledge Once the context is established,
trust and reputation information must be elicited. We show in Fig. 3 a domain knowl-
edge diagram focusing on the main elements of one trust relationship between the
�HumanEntity� Consumer and the �Entity� CLS. The trust relationship has a �TrustValue�
and there is a �SubjectiveFactor� associated to the Consumer.

On the other hand, Fig. 4 shows relevant information for reputation purposes.
Concretely, we are specifying which entities can make �Claim�s about others, and
which objective factors are considered to yield those claims. In this example, an
�HumanEntity� AuthorizedExternalEntity can make �Claim�s about the �Entity� CLS,
and the �ObjectiveFactor� UnplannedReparis refers to the CLS.

<<Entity>>
CLS

<<HumanEntity>>
Consumer

<<SubjectiveFactor>>
ExplicitTrust

<<refersTo>>

<<trusts>>

<<TrustValue>>
Consumer-CLS-Trustvaule

<<refersTo>>

Figure 3: Analysing the Trust Relationship Consumer-CLS (Domain Knowledge Dia-
gram)

7

<<Entity>>
CLS

<<BiddableDomain,HumanEntity>>
AuthorizedExternalEntity

<<Claim>>
AuthorizedExternalEntity-CLS

<<source>>

<<target>>

<<ObjectiveFactor>>
UnplannedRepairs

<<refersTo>>

Figure 4: Analysing Reputation Information(Domain Knowledge Diagram)

Step 3: Deriving Trust-based Security Controls In this step, we derive trust-based
security controls. For this purpose, the first task consists of refining the trust and reputa-
tion information in order to provide more insight about the trust and reputation models
that are to be implemented. We achieve this by showing the attributes of all the trust
and reputation elements, as depicted in Fig. 5.

The Consumer plays a trustor role in the Consumer-CLS-Trust relationship, it
uses the subjective factor ExplicitTrust for this relationship and his trust disposition
is neutral6. The ExplicitTrust subjective factor has 3 as initial value and is assigned
by the Consumer. The Consumer-CLS-Trustvalue is an unidimensional continuous
value between 0 and 5, with threshold value 3. This latter value refers to the thresh-
old over which we assume that a trustor trusts a trustee. The CLS plays a trustee role
in the Consumer-CLS-Trust relationship, although it also plays the target role with
regard to the AuthorizedExternalEntity-CLS claim. It presents an objective factor,
UnplannedRepairs, which is monitored (in contrast to manually assigned). The Au-
thorizedExternalEntity plays a source role because it can make claims about the CLS
after an interaction with it. Claims are about the past behaviour of the target, and are
represented by an unidimensional discrete number between 0 and 10. For deriving a
fitting control, we need to specify trust and reputation engines as depicted in Fig. 6,
where we also show the interactions between the �Machine�, the �TrustEngine� and
the �ReputationEngine�. Both engines yield continuous values. The trust engine can
retrieve reputation values from the reputation engine in order to compute trust values7.

6We consider that for this scenario, a neutral trust disposition is reasonable, whereas other scenarios
might require assuming that trust dispositions are lower or higher.

7This is the traditional way of relating trust and reputation: reputation is a valuable source of information
for trust computation.

<<BiddableDomain,HumanEntity>>
AuthorizedExternalEntity

<<Claim>>
AuthorizedExternalEntity-CLS

about: past behaviour
scale: 0..10
format: discrete
dimension: 1
when: after interaction

<<source>> <<target>>

<<ObjectiveFactor>>
UnplannedRepairs

description: It refers the amount of unscheduled
maintenance activities and bug fixes of the CLS
how: monitored

<<refersTo>>

trustRole: Source

<<Entity>>
CLS

<<HumanEntity>>
Consumer

<<SubjectiveFactor>>
ExplicitTrust

<<refersTo>>

<<trusts>>
Consumer-CLS-Trust

<<TrustValue>>
Consumer-CLS-Trustvalue

<<refersTo>>
trustRole: Trustor
subFactor: ExplicitTrust
trustDisposition: neutral

value: 3
how: assigned
who: Consumer

format: continuous
scale: 0…5
value: 3
dimension: 1

trustRole: Trustee

Figure 5: Refinement of Trust and Reputation Information (Domain Knowledge Dia-
gram)

8

<<Machine,Entity>>
SmartMeteringGateway

<<causalDomain,Entity>>
CLS

<<BiddableDomain,HumanEntity>>
Consumer

<<TrustEngine>>
CLS-TrustEngine

engineType: continuous
description: "The engine calculates
a trust value for CLS."

<<ReputationEngine>>
CLS-ReputationEngine

engineType: continuous
description: "The engine calculates
a reputation value for CLS."

<<securityRequirement>>
Preventing Data Leackage

<<considers>>

<<Requirement>>
R1

<<complements>>

<<constrains>>

<<BiddableDomain,HumanEntity>>
AuthorizedExternalEntity

<<considers>>

CLS-TE!{getReputationValue}

CLS-TE!{sendTrustValue}

SMG!{sendCLSWarning}

Figure 6: Describing Trust- and Reputation Engines(Problem Diagram)

The SmartMeeteringGateway can retrieve trust information and act accordingly. We focus
our analysis on the MeterData as an asset. The meter data has value for the Consumer,
because his/her billing depends upon it and a behaviour profile about the Customer can
be created from it and it is of concern in the �Claim�s illustrated in Fig. 3 and Fig. 4.

We consider the following functional requirements of the smart metering gateway
in our example: R 1 The CLS can receive energy consumption data from the Meter. We
elicit the security requirement Prevent Data Leakage that �complements� the functional
requirement R1. If the value of the Consumer-CLS-Trustvalue, which is computed by the
trust engine, is above the minimum trust threshold (initially set to 3), no action shall
be taken. In addition, the opinion in the form of feedback claims by the AuthorizedEx-
ternalEntity �AuthorizedExternalEntity-CLS� will be used by the reputation engine, which
shall alert the Consumer about a possible problem.

Step 4: Check the Consistency of the Model We use the OCL expressions that are
part of the consistency checks in Tab. 1 in this step. In particular, we illustrate the
expression CCCL001 in detail in the following. The expression shown in listing 1 col-
lects all classes with the stereotype �Claim� (lines 1-8) and it collects all dependencies
with the stereotype �source� (lines 9-15). The expression filters the dependencies
that start at a class with the stereotype �Claim� and end a class with the stereotype
�HumanEntity� (lines 16-21). Finally, the expression subtracts the classes with the
stereotype �Claim� that are at the end of the previously mentioned dependencies from
all classes with the stereotype �Claim� (lines 22-24). In our case all the claims orig-
inate from the human entities and the expression returns an empty set. Otherwise we
would get a list of classes for analysis.

Listing 1: CCL001. List all sources of claims that are not a Human Entity
1 l e t s t e r e o t y p e M a i n : S t r i n g = ’ Claim ’ in
2 l e t c l a i m C l a s s e s : S e t (C l a s s) =
3 C l a s s . a l l I n s t a n c e s ()−>s e l e c t (
4 l e t f i r s t : S e t (S t e r e o t y p e) = g e t A p p l i e d S t e r e o t y p e s ()−>a s S e t () in
5 f i r s t −>un ion (f i r s t −>c l o s u r e (g e n e r a l . oclAsType (
6 S t e r e o t y p e))) . name−>i n c l u d e s (s t e r e o t y p e M a i n)) in
7 l e t s t e r e o t y p e : S t r i n g = ’ sou rce ’ in
8 l e t S o u r c e s : S e t (Dependency) = Dependency . a l l I n s t a n c e s ()−>s e l e c t (
9 l e t f i r s t : S e t (S t e r e o t y p e) = g e t A p p l i e d S t e r e o t y p e s ()−>a s S e t () in

10 f i r s t −>un ion (f i r s t −>c l o s u r e (g e n e r a l . oclAsType (
11 S t e r e o t y p e))) . name−>i n c l u d e s (s t e r e o t y p e)) in
12 l e t s t e r e o t y p e S o u r c e : S t r i n g = ’ Claim ’ in
13 l e t s t e r e o t y p e T a r g e t : S t r i n g = ’Human E n t i t y ’ in
14 l e t DependencyClaims : S e t (Dependency) =

9

15 Sources−>s e l e c t (s o u r c e . g e t A p p l i e d S t e r e o t y p e s () . name
−>i n c l u d e s (s t e r e o t y p e S o u r c e) and t a r g e t . g e t A p p l i e d S t e r e o t y p e s () . name
−>i n c l u d e s (s t e r e o t y p e T a r g e t)) in

16 l e t c o r r e c t C l a i m s : S e t (C l a s s) =
17 DependencyClaims . s o u r c e . oclAsType (C l a s s)−>a s S e t () in
18 c l a i m C l a s s e s−c o r r e c t C l a i m s

Step 5: Reason about Trust-based Security Controls This step concerns the rea-
soning of the trust and reputation analysis. The engineers use the OCL expressions in
support of reasoning (see Tab. 1). We illustrate the use of the expression TROF001
that lists all trust relations that have no objective trust factors. The result is that the
Customer-CLS-Trust relationship (see Fig. 5) has no �Objective Factor�s. Note that the
�Objective Factor� UnplannedRepairs belongs to the �Entity� CLS and is part of a rep-
utation �Claim� and not the trust relations. The discussions between the engineers
fosters another possible �Objective Factor�. It is the factor unauthorised data transmission
of personal information from a CLS. The who value of the factor is the Consumer.

5 Discussion
We analysed our methodology for engineering trust- and reputation-based security con-
trols based on the publicly available Common Criteria Protection Profile. We discussed
the approach with the security partitioners in the ClouDAT project8 in a brainstorming
session. We presented the methodology to practitioners in the field of security engi-
neering that were familiar with the Protection Profile. As a result, we found that our
methodology helped the practitioners to distinguish between the concepts of trust and
reputation. In particular, the practitioners mentioned that this structured procedure:
Helps to identify trust relationships, supports the identification of reputation claims,
helps to not forget relevant entities and their attributes, and supports the creation of
consistent trust and reputation diagrams. Nevertheless, the practitioners raised the fol-
lowing concerns: The results of the OCL reasoning expression might lead engineers
to add random elements to ”achieve” completeness, reading of the output of all ex-
pressions is time consuming, the UML profile and the methodology have to be learned
beforehand, and our method does not integrate into common security development life
cycles such as the Microsoft SDL.

6 Conclusions
We have presented a methodology to model and specify security controls based on trust
and reputation. We pursue three main goals with this methodology; first, we aim to al-
leviate the security challenges that arise from highly dynamic, ever-changing, resource-
constrained systems framed within the Future Internet, where soft security approaches
become more adequate and flexible than traditional hard security ones; second, we
consider the importance of a clear separation of duties, namely the domain expert, the

8http://ti.uni-due.de/ti/clouddat/en/

10

software engineer, and the security engineer. As systems grow in complexity, this sep-
aration becomes more advantageous and necessary. Finally, we stress the importance
of keeping a clean separation between trust and reputation in order to understand how
they can relate and can support the system.

The proposed methodology uses an extension of the problem frames notation in
order to accommodate trust and reputation concepts and relationships among these
concepts. Intensive context-awareness is an envisioned property of Future Internet
systems, and problem frames fit well due to their focus on describing the context around
the system-to-be. Also, the context becomes of paramount importance when analysing
trust relationships and reputation information, because most of the valuable sources of
information for computing trust and reputation will come from this context.

Given that designing complex systems is error-prone, we have also proposed, as
part of the methodology, formal OCL checks for model consistency, trust information
elicitation and trust reasoning. All this is packaged in a tool that provides support to
requirements engineers.

The outcome of our methodology is a set of requirement artifacts. Given that these
artifacts are shaped around the problem frames approach, and that this approach en-
courages the modularization of the system into domains, the artifacts provide a good
starting point for sketching the architecture of the system. Trust and reputation models
are decomposed in their constituent elements, which provide developers with sufficient
information to implement the models and to integrate them into the system in the next
stages of the development life cycle.

Acknowledgments
This research was partially supported by the Ministry of Innovation, Science, Research
and Technology of the German State of North Rhine-Westphalia and EFRE (Grant
No. 300266902 and Grant No. 300267002). The research has also been partially
funded by the Spanish Ministry of Economy through the project PERSIST (TIN2013-
41739-R) and by Junta de Andalucia through the projects FISICCO (P11-TIC-07223)
and PISCIS (P10-TIC-06334). The third author is funded by the Spanish Ministry of
Education through the National F.P.U. Program.

References
[1] A. Alebrahim, S. Faßbender, M. Heisel, and R. Meis. Problem-based require-

ments interaction analysis. In C. Salinesi and I. van de Weerd, editors, Proceed-
ings of the ReFSQ Conference, volume 8396 of LNCS, pages 200–215. Springer,
2014.

[2] A. Alebrahim and M. Heisel. Supporting quality-driven design decisions by mod-
eling variability. In Proceedings of the QoSA Conference, QoSA ’12, pages 43–
48. ACM, 2012.

11

[3] K. Beckers, I. Côté, D. Hatebur, S. Faßbender, and M. Heisel. Common Criteria
CompliAnt Software Development (CC-CASD). In Proceedings 28th Symposium
on Applied Computing, pages 937–943. ACM, 2013.

[4] K. Beckers, S. Faßbender, M. Heisel, and R. Meis. A problem-based approach
for computer aided privacy threat identification. In B. Preneel and D. Ikonomou,
editors, APF 2012, volume 8319 of LNCS, pages 1–16. Springer, 2014.

[5] K. Beckers, T. Frese, D. Hatebur, and M. Heisel. A Structured and Model-Based
Hazard Analysis and Risk Assessment Method for Automotive Systems. In Pro-
ceedings of the International Symposium on Software Reliability Engineering,
pages 238–247. IEEE, 2013.

[6] K. Beckers, D. Hatebur, and M. Heisel. Supporting common criteria security
analysis with problem frames. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications (JoWUA), 5(1):37–63, 2014.

[7] BSI. Protection Profile for the Gateway of a Smart Metering System (Gateway
PP). Version 01.01.01(final draft), Bundesamt für Sicherheit in der Informa-
tionstechnik (BSI) - Federal Office for Information Security Germany, 2011.
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
SmartMeter/PP-SmartMeter.pdf?__blob=publicationFile.

[8] I. Côté. A Systematic Approach to Software Evolution. Deutscher Wissenschafts-
Verlag (DWV) Baden-Baden, 2012.

[9] I. Côté, D. Hatebur, M. Heisel, and H. Schmidt. UML4PF – a tool for problem-
oriented requirements analysis. In Proceedings of the International Conference
on Requirements Engineering (RE), pages 349–350. IEEE Computer Society,
2011.

[10] S. Faßbender, M. Heisel, and R. Meis. Functional requirements under secu-
rity pressure. In Proceedings of the ICSOFT Conference. INSTICC, SciTePress,
2014.

[11] D. Hatebur. Pattern and Component-based Development of Dependable Systems.
Deutscher Wissenschafts-Verlag (DWV) Baden-Baden, September 2012.

[12] ISO/IEC. Common Criteria for Information Technology Security Evaluation.
ISO/IEC 15408, International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC), 2009.

[13] M. Jackson. Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

[14] Kirtland, Alex and Schiff, Aaron. On A Scale of 1 to 5: Understanding Risk Im-
proves Rating and Reputation Systems. http://boxesandarrows.com/
on-a-scale-of-1-to-5/, Jun 2008.

12

[15] F. Massacci, J. Mylopoulos, and N. Zannone. Security requirements engineering:
The si* modeling language and the secure tropos methodology. In Z. Ras and
L.-S. Tsay, editors, Advances in Intelligent Information Systems, volume 265 of
Studies in Computational Intelligence, pages 147–174. Springer Berlin / Heidel-
berg, 2010.

[16] F. Moyano, C. Fernandez-Gago, K. Beckers, and M. Heisel. Enhancing problem
frames with trust and reputation for analyzing smart grid security requirements. In
Proceedings of the Workshop on Smart Grid Security (SmartGridSec14), LNCS
8448, pages 166 – 180. Springer, 2014.

[17] F. Moyano, C. Fernandez-Gago, and J. Lopez. A conceptual framework for trust
models. In S. Fischer-Hübner, S. Katsikas, and G. Quirchmayr, editors, 9th Inter-
national Conference on Trust, Privacy & Security in Digital Business (TrustBus
2012), volume 7449 of LNCS, pages 93–104, Vienna, 2012. Springer Verlag.

[18] F. Moyano, C. Fernandez-Gago, and J. Lopez. Towards engineering trust-aware
future internet systems. In X. Franch and P. Soffer, editors, 3rd International
Workshop on Information Systems Security Engineering (WISSE 2013), vol-
ume 148 of LNBIP, pages 490–501, Valencia, Jun 2013 2013. Springer-Verlag,
Springer-Verlag.

[19] L. Rasmusson and S. Jansson. Simulated social control for secure internet com-
merce. In Proceedings of the 1996 workshop on New security paradigms, NSPW
’96, pages 18–25, New York, NY, USA, 1996. ACM.

[20] R. Roman, J. Zhou, and J. Lopez. On the features and challenges of security and
privacy in distributed internet of things. Computer Networks, 57:2266–2279, July
2013.

[21] M. G. Uddin and M. Zulkernine. Umltrust: Towards developing trust-aware soft-
ware. In Proceedings of the 2008 ACM Symposium on Applied Computing, SAC
’08, pages 831–836, New York, NY, USA, 2008. ACM.

[22] UML Revision Task Force. OMG Object Constraint Language: Reference,
February 2010.

[23] A. van Lamsweerde. Requirements Engineering: From System Goals to UML
Models to Software Specifications. John Wiley & Sons, 1st edition, 2009.

13

