
Enhancing Problem Frames with Trust and Reputation
for Analyzing Smart Grid Security Requirements ∗

Francisco Moyano1, Carmen Fernandez-Gago1,
Kristian Beckers2, and Maritta Heisel2

1 Network, Information and Computer Security Lab
University of Malaga, 29071 Malaga, Spain
{moyano,mcgago}@lcc.uma.es

2 paluno - The Ruhr Institute for Software Technology -
University of Duisburg-Essen, Germany

{firstname.lastname}@paluno.uni-due.de

Abstract. Smart grids are expected to scale over millions of users and pro-
vide numerous services over geographically distributed entities. Moreover, smart
grids are expected to contain controllable local systems (CLS) such as fridges or
heaters that can be controlled using the network communication technology of
the grid. Security solutions that prevent harm to the grid and to its stakeholders
from CLS are essential. Moreover, traditional security approaches such as static
access control systems cause a lot of administrative workload and are difficult
to maintain in fast growing and changing systems. In contrast, trust management
is a soft security mechanism that can reduce this workload significantly. Even
though there is not any accepted definition of trust, it is agreed that it can im-
prove decision-making processes under risk and uncertainty, improving in turn
systems’ security. We use the problem frames notation to discuss requirements
for a trust-based security solution concerning CLS.

Key words: Problem Frames, Model-driven Engineering, Security Requirements En-
gineering, Trust, Reputation, UML4PF

1 Introduction

The concept of trust has been in discussion for a long time and researchers in software
engineering still work on clarifying its terminology [1]. In addition, several well known
applications rely on trust and reputation mechanisms such as Amazon’s product ratings
and ebay’s seller feedback [2].

In security engineering, current practice is to mitigate potential threats with hard
trust mechanisms, which differ from soft trust ones [3]. Hard trust mechanisms aim to
define strict rules in order to prevent access to resources without proper authorization.

∗This research was partially supported by the EU project Network of Excellence on Engineer-
ing Secure Future Internet Software Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy
ICT, Grant No. 256980). The first author is funded by the Spanish Ministry of Education through
the national F.P.U. program.

F. Moyano, C. Fernandez-Gago, K. Beckers, and M. Heisel, “Enhancing Problem Frames with Trust and Reputation for Analyzing Smart Grid
Security Requirements”, Smart Grid Security - Second International Workshop, LNCS vol. 8448, pp. 166-180, 2014.
http://doi.org/10.1007/978-3-319-10329-7_11
NICS Lab. Publications: https://www.nics.uma.es/publications

These rules are often in the form of permissions associated to roles. Using such a set of
static rules implies a high administrative burden, they are hard to maintain in dynamic
environments [4], and they only provide limited control prior to the access of users;
once users are in the system, hard trust mechanisms cannot detect misbehaviours by
themselves. Moreover, any misbehaviour may lead to multiple rules updates, which can
lead to missing rules due to small IT staff or to wrong rules due to human errors.

Another example of hard trust mechanism is cryptography-supported trust by means
of Public Key Infrastructures (PKIs). However, many challenges must be overcome to
accomplish its integration into highly distributed and heterogeneous Future Internet
scenarios such as the smartgrid. On the one hand, the tight resource constraints of some
devices precludes the use of public-key cryptography [4]. On the other hand, in an open
market where different vendors manufacture different devices, it is not realistic (at least
in the beginning) to assume that they will agree on the format of certificates or on the
Trusted-Third Parties that can play the role of certification authorities.

In contrast to hard trust mechanisms, soft trust mechanisms rely on the characteri-
zation of trust relationships based on certain factors that influence these relationships.
Examples of these factors are previous experience, membership to a group, reputation
or detected strange behaviours. Trust values can be used by the trustor itself (i.e. the
entity placing trust) to evaluate if it should engage in an interaction with other entities.

The main difference with the previous schemes is that we are empowering entities
to make decisions based on personal judgement of its context and knowledge. Trust
is no longer based on a set of strict rules or on statement by a certification authority
that is trusted by definition. Trust is based on a subjective evaluation that takes into
account a set of factors that may lead entities to trust or distrust other entities, and some
of these factors can be monitored autonomously. Trust and reputation are attached to
entities and people, providing a better decoupling from the underlying organizational
structure compared to the previous mechanisms. This is relevant as according to the
European Commission [5]: “Over the period from 2002 to 2010, more than 11000 cases
of restructuring were recorded by the European Restructuring Monitor”. Note that we
may still need roles to be an important factor of the trust model, and in that case the
decoupling would be lower. The drawback of trust-based security solutions is that they
entail certain level of subjectivity and uncertainty and do not provide strong guarantees
that security concerns will be correctly solved.

Two main challenges arise when we plan to incorporate soft trust mechanisms in
the requirements stage of the Software Development Life Cycle (SDLC). First, how to
identify the security requirements for which a soft trust approach is a feasible solution;
second, how to represent the problem, that is, the security concern, and the elements of
trust and reputation that surround this problem. In this paper, we address this second
challenge by integrating concepts from trust and reputation in the problem frames ap-
proach [6]. We choose this approach because it focuses on describing the system-to-be
in its environment. The description of the environment is essential for trust and reputa-
tion, because they rely on knowledge about external stakeholders or software entities in
order to determine adequate trust or reputation values.

Our contribution is a notation that allows specifying the requirements of a system
that includes a trust or reputation model. This notation is an extension over problem

2

frames that supports the definition of trust and reputation elements and their integration
with the rest of elements (i.e. the environment) of the system. Analysts can benefit from
our contribution by grasping a better understanding of the system and its interactions
with the trust model, whereas designers can obtain a good starting point for planning
the architecture and building trust into the architecture.

In this work, we focus on an analysis of trust and reputation relations in the system-
to-be. We propose considering trust and reputation in the early phase of software engi-
neering, because the effort for including it in later phases increases. The challenge of
such an analysis is to achieve a coverage of all possible trust and reputation relations.

Goal-based methods, e.g., SI* [7] and KAOS [8], investigate the goals and views
of all stakeholders of a system. These approaches model stakeholder relations based
upon structured goal models. Hence, they consider all goals and relevant software ar-
tifacts to these goals. However, they do not consider a complete view of the system-
to-be. Other security requirements engineering methods have a similar approach, e.g.,
the asset-driven risk management method CORAS [9] identifies assets and determines
threats to these assets. CORAS models the system-to-be in artifacts that have a relation
to an asset and also do not represent the complete system-to-be. Thus, we do not use
any of these methods for our trust and reputation analysis.

The Problem Frames [6] method uses an abstraction of the system-to-be and models
the environment of the system around it. Thus, this method is our choice to analyze trust
relationships in the software and its environment. The method models the Machine and
its environment in domains with certain characteristics, and we propose a trust and
reputation analysis that uses these characteristic to determine trustors, trustees, claims,
and other trust-related concepts. We show a structured method that elicits trust and
reputation relations for each domain. In the future, we will also provide computer-aided
support for consistency, and security reasoning for this method by using OCL [10]
queries on the problem frame models. Hence, we use the benefit of having a complete
model of the system-to-be and its environment in domains to conduct a threat analysis.

We use the UML representation of the problem frames method called UML4PF
[11], because this allows us to write OCL expressions to validate the models that will
be included in the UML4PF support tool. Moreover, we aim to integrate this analysis
into a structured software development process, e.g., an extension of the ADIT [12]
process that relies on UML4PF. We choose the UML notation, because software engi-
neers are familiar with it to express software design choices. Moreover, if we express
the software analysis and design in UML, we do not need to map the analysis results to
a different notation for the software design. This reduces one source of mistakes during
software development. Hence, expressing trust and reputation analysis in UML allows
for a seamless refinement step to software design, by re-using the UML models created
during the analysis phase in the software design phase.

The remainder of our paper is structured as follows. Section 2 explains background
on trust and problem frames, as well as some related work. Section 3 shows our UML
profile, which illustrates elements of trust, problem frames and their relations. We ap-
ply our profile to a smart grid example in Sect. 4, whereas in Sect. 5 we draw some
conclusions and give lines of future research.

3

2 Background and Related Work

We explain trust concepts in Sect. 2.1, problem frames in Sect. 2.2, and related work in
software engineering in Sect. 2.3.

2.1 Trust Background and Terminology

There has been a huge amount of definitions of trust over the years. We propose the fol-
lowing definition: trust is the personal, unique and temporal expectation that a trustor
places on a trustee regarding the outcome of an interaction between them. This in-
teraction usually comes in terms of a task that the trustee must perform and that can
(negatively) influence the trustor. The expectation is personal and unique because it is
subjective, and is temporal because it may change over time. Tasks belong to a context,
in such a way that a trustor may place different trust values on the same trustee depend-
ing on the the context where trust is applied. The concept and implications of trust are
embodied in so-called trust models, which manage trust relationships between trustors
(entities that place trust) and trustees (entities onto which trust is placed). Many trust
models have been proposed in the literature, but we are particularly interested in evalu-
ation models, as proposed by Marsh in his seminal work [13]. In these models, factors
that have an influence on trust are identified, quantified and then aggregated into a final
trust score by the trust engine of the trust model. Uncertainty and evaluation play an
important role in these models, as the trustor has only limited confidence on a positive
output after the interaction with the trustee, and a quantification process is required to
evaluate the extent to which one entity trusts another one.

Regarding reputation, the Concise Oxford dictionary3 defines it as “what is gen-
erally said or believed about a person or the character or standing of a thing”. The
word generally implies that reputation is formed by an accumulation of opinions, which
makes reputation a more objective concept than trust. A good approximation to the re-
lationship between trust and reputation was suggested by Jøsang [14], who made the
following two statements: ’I trust you because of your good reputation’ and ’I trust you
despite your bad reputation’. Reputation can be considered as a building block of trust
but, as stated by the second statement, reputation has not the final say. One could either
trust someone with low reputation or distrust someone with high reputation, because
there are other factors that may have a bigger influence over the trust decision, such as
the trustor’s disposition to believe in the trustee, the trustor’s feelings, or above all, the
trustor’s personal experiences with the trustee.

A core concept behind reputation as seen in web reputation models is a reputation
statement, which can be defined as a claim stated by a source regarding a target. As an
example, if Alice says: ‘The film Titanic has a good photography’, the source is Alice,
the target is film Titanic, and the claim is to have a good photography. A source can be
human or non-human. Non-human sources include include anti-spam filters, input from
other reputation models, log crawlers or recommendation engines. A target can be hu-
man, non-human or reputation statements themselves. For instance, a user Alice might
claim that the review performed by Bob regarding the film Titanic was useful. In this

3http://www.oxforddictionaries.com

4

case, the target is Bob’s review about Titanic, that is, a reputation statement where the
source Bob expressed its opinion (claim) about the target Titanic. Reputation engines
take reputation statements about a given target as inputs, and produce a reputation score
for the target.

2.2 Problem Frames

Problem frames are a means to describe software development problems. They were
proposed by Jackson [6], who describes them as follows: “A problem frame is a kind of
pattern. It defines an intuitively identifiable problem class in terms of its context and the
characteristics of its domains, interfaces and requirement.”. It is described by a frame
diagram, which consists of domains, interfaces between them, and a requirement. We
describe problem frames using class diagrams extended by stereotypes as proposed in
[15, 11]. All elements of a problem frame diagram act as placeholders, which must be
instantiated to represent concrete problems. Doing so, one obtains a problem descrip-
tion that belongs to a specific kind of problem. The class with the stereotype machine
represents the thing to be developed (e.g., the software). The classes with some domain
stereotypes, e.g., CausalDomain or BiddableDomain represent problem domains that
already exist in the application environment. Domains are connected by interfaces con-
sisting of shared phenomena. Shared phenomena may be events, operation calls, mes-
sages, and the like. They are observable by at least two domains, but controlled by only
one domain, as indicated by an exclamation mark. These interfaces are represented as
associations, and the name of the associations contains the phenomena and the domains
controlling the phenomena. Jackson distinguishes the domain types CausalDomains
that comply with some physical laws, LexicalDomains that are data representations,
and BiddableDomains that are usually people. The stereotype <<causalDomain >>

indicates that the corresponding domain is a CausalDomain, and the stereotype <<bid-
dableDomain >> indicates that it is a BiddableDomain. In our formal meta-model of
problem frames [16], domains have names and abbreviations, which are used to define
interfaces. Hence, the class Domain has the attributes name and abbreviation of type
string.

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
frame diagram, a context diagram consists of domains and interfaces, but the diagram
does not contain requirements. Domain knowledge diagrams focus on some domains
of the context diagram and document further domain knowledge about them in terms
of facts and assumptions. Then, the problem is decomposed into subproblems. Each
subproblem is represented by a problem diagram containing its domains, phenomena,
interfaces, and their relations to at least one requirement that expresses the subproblem.
Since the requirements refer to the environment in which the machine must operate, the
next step consists in deriving a specification for the machine (see [17] for details). The
specification describes the machine and is the starting point for its construction.

5

2.3 Related Work

To the best of our knowledge no problem frame extension exists that considers trust and
reputation concepts with the purpose of describing requirements concerning trust and
reputation concepts.

The software engineering community has focused on specifying traditional security
requirements, such as confidentiality or authorization, during the early phases of the
Software Development Life Cycle (SDLC). Haley et al. [18, 19] represent security re-
quirements in problem frames. The authors represent security requirements also as trust
assumptions, which describe that the security requirement is fulfilled for a particular
context, because it is trusted to satisfy the security requirement explicitly. Further ex-
amples for modeling notation that consider security are UMLsec [20] and SecureUML
[21]. Other notations take relationships between actors and agents into account dur-
ing the system specification. Mouratidis and Giorgini [22] present Secure Tropos, a
notation that extends the Tropos methodology in order to enable the design of secure
systems. Actors in Tropos may depend on other actors in order to achieve a goal. Tropos
captures the social relationships in the system by specifying the dependencies between
actors using the notions of depender, dependum and dependee, and by modeling the
actors and agents in the organization. In a similar direction, Lamsweerde and Letier
present KAOS [23], a comprehensive goal-oriented method to elicit the requirements
of socio-technical systems. Moyano et al. [24] propose a trust model for Si* [7] in or-
der to detect insider threats in an organizational setting during the initial steps of the
SDLC. This work proposes setting users permissions on resources or assets, and a level
of trust in these permissions. Then, threats, which are implicit wrong permissions, are
discovered by examining and navigating through social relationships among actors. All
these contributions put forward the idea of capturing social aspects, but the notion of
trust and its influence on the information systems are barely explored. This is partially
covered by Pavlidis, Mouratidis and Islam [25], who extend the Secure Tropos model-
ing language in order to include some trust-related concepts. The main difference is that
our extension is over problem frames instead of over Secure Tropos. Problem frames
are more focused on modelling the system in its environment, which we consider to be
useful for trust modelling, and it represents information at a higher level of abstraction.

3 UML Profile for problem-based Trust Analysis

Our profile considers Jackson’s domain types (as discussed in Sect. 2.2): CausalDo-
mains, LexicalDomains, BiddableDomains,

Domain Knowledge consist of Statements about domains, in particular Facts that we
can prove and Assumptions that we consider during software development. A Require-
ment is a specific kind of Statement about domains that shall hold after the Machine has
been built. Requirements�constrain� at least one domain and can�referTo� further
domains. A securityRequirement is a statement about the confidentiality, integrity, or
availability concerns of domains and �complement� at least one functional require-
ment in this regard.

We extend our UML profile for Jackson’s problem frame notation called UML4PF
[12] and its dependability extension [15] with required elements to describe trust rela-

6

tionships and trust requirements. We use the profile to create context diagrams, domain
knowledge diagrams, and problem diagrams using the elements described in Sect. 2.2.
Our trust extension for the UML4PF profile is shown in Fig. 14 , where all the contribu-
tions of this paper are marked in grey. We define relations between Jackson’s domains
and the elements of Moyano et al.’s trust framework [1]. Each of these elements are
now a kind of domain. Entity is a domain and Human Entity is a Biddable Domain.
Trust Information and Reputation Information are Lexical Domains.

We aim to build s specific set of Machines in order to integrate trust and reputation
mechanisms into a system-to-be. These are Computation Engines, which in turn can
be Trust Engines or Reputation Engines, depending on whether they calculate trust
or reputation, respectively. Trust Engines are in charge of calculating Trust Values for
Trust Relationships among Entities. These engines take Trust Factors, associated to
Entity as input, which may be Objective Factor or Subjective Factor. Factors can be
assigned explicitly or can be obtained by some sort of monitoring; in any case, they
are responsible for some other Entity playing the role factor producer. Computation
Engines can have different mathematical mechanics, including belief or fuzzy logics.
Uncertainty estimates the probability of a trust or reputation value being accurate. The
Time states when a trust relationship or reputation related statement or information was
defined.

Entities playing the role Source can make Claims about other Entities with role
Target. This information is aggregated in the form of Reputation Statements, which are
used by Reputation Engines to compute reputation scores. A SourceEntity can make
Claims after an interaction or just at any moment. The model considers Human Entities,
who have an implicit trust disposition and who value their Assets and wish to minimize
Risk to these Assets. Countermeasures reduce the risk to Assets. Finally, Events are
circumstances in the system that trigger a trust or reputation update. These events can be
visualized by behavioral diagrams, such as sequence diagrams, as depicted and further
discussed in Fig. 6.

4 Applying the Trust-extension of the UML4PF Profile to a Smart
Grid Example

We use the protection profile for the smart metering gateway [26] as an example for
our approach. The gateway is a part of the smart grid. This is a commodity network
that intelligently manages the behavior and actions of its participants. The commodity
consists of electricity, gas, water or heat that is distributed via a grid (or network). The
benefit of this network is envisioned to be a more economic, sustainable and secure
supply of commodities. Smart metering systems meter the production or consumption
of energy and forward the data to external entities. This data can be used for billing and
steering the energy production. The protection profile defines security requirements
for a smart metering gateway [26] and we use the UML profile as the source for the
following example.

4Note that for readability purposes we simplified the profile and several domains are not
illustrated in Fig. 1, e.g., display domains and assets.

7

abbreviation: String
description: String

<<stereotype>>
Domain

<<stereotype>>
Biddable Domain

(uml)
Class

<<stereotype>>
Machine

<<stereotype>>
Lexical Domain

<<stereotype>>
Causal Domain

<<stereotype>>
Fact

abbreviation: String [1]
description: String [1]

<<stereotype>>
DomainKnowledge

<<stereotype>>
Assumption

<<stereotype>>
Statement

<<stereotype>>
Entity

<<stereotype>>
Trust Information

<<stereotype>>
Human Entity

<<stereotype>>
Computation Engine

<<stereotype>>
Reputation Information

<<stereotype>>
Reputation Engine

<<stereotype>>
Trust Engine(uml)

Class

(uml)
Property

<<stereotype>>
Trust Relationship

<<stereotype>>
Reputation Statement

<<stereotype>>
Claim

trustor: Entity
trustee: Entity
trustValue: TrustValue
timestamp: String [1]

source: Entity
target: Entity
claim: Claim
timestamp: String [1]

reputation: String [1]
trustRole: TrustRole
trustRel: TrustRelationship
objFactor: ObjectiveFactor
subFactor: SubjectiveFactor

<<stereotype>>
Event

about: String [1]
scale: String [1]
value: String [1]
format: Format
dimension: Integer
when: ClaimTemp

source: String [1]
consequence: String [1]

engineType: EngineType

<<enumeration>>
TrustRole

trustor
trustee
trustedThirdParty
witness
source
target

<<enumeration>>
EngineType

belief
discrete
continuous
fuzzy

<<stereotype>>
Reputation Update Event

<<stereotype>>
Trust Update Event

(uml)
Dependency

<<stereotype>>
refersTo

<<stereotype>>
source

<<stereotype>>
considers

<<stereotype>>
Requirement

<<stereotype>>
securityRequirement

<<stereotype>>
trusts

<<stereotype>>
TrustValue

format: Format
scale: String [1]
value: String [1]
dimension: Integer

<<enumeration>>
Format

discrete
continuous
label

<<stereotype>>
Uncertainty

<<stereotype>>
Time

<<stereotype>>
Trust Factor

value: String [1]
how: FactorMode
who: String [1]

<<stereotype>>
Objective Factor

<<stereotype>>
Subjective Factor

<<enumeration>>
FactorMode

assigned
monitored

trustDisposition: String [1]

<<enumeration>>
ClaimTemp

after interaction
any moment

<<stereotype>>
target

<<stereotype>>
constrains

Fig. 1. A Trust extension of the UML4PF Profile

The context diagram shown in Fig. 2 describes the machine to be built in its envi-
ronment. It is part of the overview description of the security target. The�Machine�
is the SmartMeteringGateway, which serves as a bridge between the Wide Area Net-
work �wan� and the Local Network �physical� of the Consumer. The Meter is
connected to the machine via a Local Metrological Network�lmn�. The Meter is an
in-house equipment that can be used for energy management. The Controllable Local
System CLS can be, for example, an air conditioning unit or an intelligent refrigera-

8

<<contextDiagram,technicalContextDiagram>>
Smart_Metering_Gateway

<<Machine>>
SmartMeteringGateway

<<causalDomain>>
SecurityModule

<<BiddableDomain>>
AuthorizedExternalEntity

<<causalDomain>>
Meter

<<causalDomain>>
CLS

<<BiddableDomain>>
Consumer

<<wan>>
IF_GW_WAN

<<lmn>>
IF_GW_M

<<han>>
IF_GW_SM

<<han>>
IF_GW_CLS

<<physical>>
IF_GW_U

1..*

1

1..*

1..*

0..*

0..*
0..*

1

<<lexicalDomain>>
UserData <<physical>>

IF_GW_UD

1

1..*

<<lexicalDomain>>
MeterData1..*

1

<<physical>>
IF_GW_MD

11

<<causalDomain>>
ConsumerBrowser

1..*

0..*
<<han>>
IF_GW_CB

Fig. 2. The Context Diagram of the Smart Metering Gateway

<<domainKnowledgeDiagram>>
Smart_Metering_Gateway_Assets

<<Machine>>
SmartMeteringGateway

<<SecondaryAsset>>
GatewayTime

<<causalDomain>>
Meter<<lmn>>

IF_GW_M

1..*

1

1..*

1

<<physical>>
IF_GW_MD

<<lexicalDomain,Asset>>
MeterData

<<Asset>>
MeterConfig

<<lexicalDomain,Asset>>
UserData

<<physical>>
IF_GW_UD

<<causalDomain,Asset>>
SmartHome

<<Countermesure>>
Firewall

Fig. 3. Domain Knowledge Diagram Concerning Assets and Existing Countermeasures

tor. The Consumer can also access the Machine [26] via a ConsumerBrowser. We ex-
tended the description with the following phenomena. The Meter sends meter data to the
SmartMeteringGateway. The SmartMeteringGateway stores this data. The Meter can
also receive updates from the AuthorizedExternalEntity forwarded via the SmartMeter-
ingGateway. The AuthorizedExternalEntity retrieves sent meter data in fixed intervals
from the SmartMeteringGateway. The SecurityModule provides cryptographic func-
tionalities for the SmartMeteringGateway such as key generation and random number
generation. The Consumer can retrieve meter data via the SmartMeteringGateway and
the ConsumerBrowser. The Consumer can also configure the SmartMeteringGateway,
send commands to the CLS, receive status messages from the SmartMeteringGateway
and store UserData in it.

We iterated over the domains in Fig. 2 and identified the MeterData as an�asset�.
Figure 3 presents a domain knowledge diagram that contains the description of this as-
set. The meter data has value for the Consumer, because his/her billing depends upon it
and a behavior profile about the Customer can be created from it. Integrity, authenticity,
and confidentiality of this data need to be protected. Another asset of the SmartMeter-
ingGateway is the GatewayTime. The asset is revealed via investigating assumptions
about the SmartMeteringGateway, namely that the meter data is recorded with a correct
time stamp. The time is used in MeterData records that are sent to AuthorizedExter-

9

nalEntity for, e.g., billing. Its integrity and authenticity have to be protected and espe-
cially the time adjustment using an externally referenced time is critical.

Some functional requirements of the smart metering gateway are:

R 1 The CLS can receive energy consumption data from the Meter
R 2 The CLS can communicate with an External Entity using the WAN
R 3 The Consumer can communicate with the CLS

We model the trust relationships relevant for the aforementioned considerations in
a domain knowledge diagram (see Fig. 4). We focus on the trust relationship Con-
sumer CLS Trust between the trustor Consumer and the trustee CLS. This relationship
expresses the trust that the trustor has in the trustee concerning the integrity of its con-
figuration and the preservation of confidentiality of private billing information.

We also illustrate in the figure that OtherConsumer, AuthorizedExternalEntity, and
SmartMeteringGateway are trust entities (i.e. �Entity�) in the sense that they are
sources of reputation for the CLS. Concretely, OtherConsumers can report their ex-
perience with the CLS after interacting with it by using a continuous number between
0 and 1. For example, OtherConsumer could be another home user (not the main user),
who after asking the fridge for a list of food that is running out, could physically check
whether the information was accurate and evaluate with a value between 0 and 1 ac-
cordingly. AuthorizedExternalEntity, who may represent administrators or technicians,
can report the same information after a check-up of the CLS, but this time by using a
discrete value between 0 and 10. Finally, the SmartMeteringGateway can report a claim
about the behavior of the CLS in terms of privacy awareness. Each time the CLS sends
some information outside the home environment, the gateway analyses the information
and issues a claim in a labeled scale between very good and very bad, according to the
sensitivity and quantity of the information sent.

We draw a problem diagram for each requirement in order to refine it. We present
a problem diagram for R1 in Fig. 5. R1 �constraints� the CLS in such a way that
it can receive �MeterData�. Moreover, we use the information in Fig. 4 to devise a
trust-based security treatment. The�securityRequirement� CLS Protection describes
that we must preserve both the integrity of the configuration data of CLS and the con-
fidentiality of the MeterData of the Consumer when it is used by a CLS. CLS Pro-
tection �complements� R1. We require a �TrustEngine� called CLS-TrustEngine
to calculate the trust values, which in turn relies on a �ReputationEngine� called
CLS-ReputationEngine. The CLS-TrustEngine considers both the reputation score and
the explicit trust of the consumer when calculating trust values, whereas the CLS-
ReputationEngine uses the claims made by AuthorizedExternalEntity, SmartMeterGate-
way, and OtherConsumer. CLS-TrustEngine considers the trust factors and the CLS-
ReputationEngine the claims illustrated in Fig. 4. For simplicity’s sake, we do not show
these again in Fig. 5, but they have to be considered during the refinement of the prob-
lem diagram into an implementable software specification of the trust and reputation
engines.

Figure 6 illustrates the use of trust in the system, and concretely, an event that causes
the update of a trust relationship between the Consumer and the CLS. We consider that
the SMG has a built-in firewall that allows controlling the information flowing to and

10

<<domainKnowledgeDiagram>>
Consumer_CLS_Trust

<<Machine,Entity>>
SmartMeteringGateway

<<BiddableDomain,HumanEntity>>
AuthorizedExternalEntity

<<Entity>>
CLS

<<HumanEntity>>
Consumer

<<wan>>
IF_GW_WAN

<<han>>
IF_GW_CLS

1

0..*

<<physical>>
IF_GW_U

1..*

<<causalDomain>>
ConsumerBrowser

<<han>>
IF_GW_CB

1..*

<<BiddableDomain,HumanEntity>>
OtherConsumer

<<physical>>
IF_GW_OU

1.*

1..*

<<trusts>>
Consumer_CLS_Trust

The Consumer trusts
the CLS to act only according to its configuration.

<<TrustValue>>
Con-CLS-TV

format: continuous
scale: 0..5
dimension: 1

<<Claim>>
ClaimAEE-CLS

about: past behaviour
scale: 0..10
format: discrete
dimension: 1
when: after interaction

<<Claim>>
ClaimSMG-CLS

about: privacy awareness
scale: very good, good, bad, very
bad
format: label
dimension: 1
when: any moment

<<Claim>>
ClaimOtherC-CLS

about: past behaviour
scale: 0..1
format: continous
dimension: 1
when: after interaction

<<SubjectiveFactor>>
ExplicitTrust

description: It represents an explicit
trust of the consumer in the CLS.
how: assigned

<<ObjectiveFactor>>
SendingOutBehaviour

description: It refers to
how often the CLS sends
out private information
how: monitored

<<reputationStatement>>
OtherC-CLS

<<source>>

<<refersTo>>

<<refersTo>>

<<target>>

<<source>>

<<reputationStatement>>
AEE-CLS

<<reputationStatement>>
SMG-CLS

<<Countermesure>>
Firewall

<<refersTo>>

<<source>>

1..*

0..*

<<target>>

<<target>>

trustRelations: ConsumerCLSTrust
trustRole: trustor, source

1..*

1..*

0..*

Fig. 4. Domain knowledge diagram concerning trust relations and reputation

from the CLS as well as preventing changes to the CLS configuration. The Common Cri-
teria protection profile [26] states that the gateway has already a firewall to protect the
Meter functionality. We propose to extend this firewall to protect the CLS functionality,
as well.

The SMG detects that the CLS is leaking private information that (in its understand-
ing and according to some policy) should not be passed through. In addition to block-
ing the information, the SMG sends a claim, which triggers a reputation update. Once
reputation is updated, SMG requests an update of the trust relationship between the

11

<<problemDiagram>>
Smart_Metering_Gateway_Trust_CLS

<<Machine,Entity>>
SmartMeteringGateway

<<BiddableDomain,HumanEntity>>
AuthorizedExternalEntity

<<causalDomain,Entity>>
CLS

<<BiddableDomain,HumanEntity>>
Consumer

<<wan>>
IF_GW_WAN <<han>>

IF_GW_CLS

<<physical>>
IF_GW_UD

1

0..* 0..*

0..*

<<lexicalDomain,Asset>>
UserData

<<physical>>
IF_GW_U

1

<<lexicalDomain,Asset>>
MeterData

1..* <<physical>>
IF_GW_MD

1

<<causalDomain,Entity>>
ConsumerBrowser

1..*

<<han>>
IF_GW_CB

1..*

1

<<BiddableDomain,HumanEntity>>
OtherConsumer

<<causalDomain,Entity>>
OtherCLS

<<han>>
IF_GW_OCLS

<<physical>>
IF_GW_OU

0..*

0..*

0..*

1..*

<<TrustEngine>>
CLS-TrustEngine

engineType: continuous
description: "The engine calculates
a trust value for each CLS."

<<physical>>
IF_GW_TE

1..*

1..*

<<ReputationEngine>>
CLS-ReputationEngine

engineType: continuous
description: "The engine calculates
a reputation value for each CLS."

<<physical>>
IF_GW_RE

<<securityRequirement>>
CLS Protection

<<considers>>

<<considers>>

<<considers>>

<<refersTo>>

<<refersTo>>

<<refersTo>>

1

1

11

0..*

<<Requirement>>
R1

<<complements>>

<<constrains>>
<<constrains>>

Fig. 5. Problem diagram considering a trust and a reputation engine

Consumer and the CLS. In order to compute the new trust value, the CLS-TrustEngine
needs the explicit trust value defined by the Consumer for that particular CLS as well
as the reputation of the CLS5. Upon receiving the new trust value, the SMG updates the
firewall rules. For example, in case the Consumer does not trust the CLS above a given,
configurable threshold, all requests from the Consumer to the CLS are blocked by the
SMG, and all the messages flowing out from the CLS are also blocked, isolating this
device from the rest of the system.

5 Conclusion

We have extended UML4PF, which is a UML-profile based on Jackson’s Problem
Frame notation, with concepts of trust and reputation. In particular, we related these
concepts to Jackson’s domains and gave some hints on how to describe security require-
ments that consider trust and reputation. We applied the extended UML4PF profile with
trust and reputation concepts to a smart grid example and illustrated the following:

5We are assuming a trust model consisting of two factors: an explicit trust assigned by the
user and the reputation of the trustee, which is computed by aggregating different claims of Oth-
erConsumers, AuthorizedExternalEntity and SmartMeteringGateway. However, any other kind
of trust model that considers other factors can be specified.

12

<<Machine, Entity>
SMG

<<causalDomain, Entity>
CLS

<<TrustEngine>>
CLS-TrustEngine

<<ReputationEngine>>
CLS-ReputationEngine

<<TrustInformation>>
Consumer-CLS

<<ReputationInformation>>
CLS Reputation

Sending out
information

Detects private info.
Send Claim (very bad)

Update
reputation Store reputation

Update trust relationship (Consumer-CLS)

<<BiddableDomain,
HumanEntity>

Consumer

Request CLS reputation
Request Explicit Trust

Compute new
trust value

Store new trust value
Send trust value

Reconfigure
firewall rules

Reputation successfully updated

Explicit trust value
CLS reputation

Fig. 6. Sequence Diagram for Trust Update Event

– How to elicit trust and reputation information for a specific context.
– Explicit documentation of domain knowledge in terms of trust relations, reputation

relations, claims, trust values, etc.
– Describing security requirements that consider trust and reputation domain knowl-

edge with the purpose of building trust and reputation engines to protect assets.
– Refine the static descriptions of trust and reputation engines in problem diagrams

with descriptions of their dynamic behavior in UML sequence diagrams.

In the future, we will create a structured method with tool support for creating trust
and reputation engines. In particular, we will focus on supporting the modeling and we
will provide OCL-based consistency checks of the models. In addition, we will analyze
the relations of security controls of the ISO 27001 [27] standard to trust and reputation
concepts. We assume the results will provide insights into which ISO 27001 controls
can benefit from trust and reputation engines.

References

1. Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust models.
In Fischer-Hübner, S., Katsikas, S., Quirchmayr, G., eds.: 9th International Conference on
Trust, Privacy & Security in Digital Business (TrustBus 2012). Volume 7449 of Lectures
Notes in Computer Science., Vienna, Springer Verlag, Springer Verlag (Sep 2012 2012) 93–
104

2. Kirtland, Alex and Schiff, Aaron: On A Scale of 1 to 5: Understanding Risk
Improves Rating and Reputation Systems. http://boxesandarrows.com/
on-a-scale-of-1-to-5/ (Jun 2008)

3. Rasmusson, L., Jansson, S.: Simulated social control for secure internet commerce. In:
Proceedings of the 1996 workshop on New security paradigms. NSPW ’96, New York, NY,
USA, ACM (1996) 18–25

13

4. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in
distributed internet of things. Computer Networks 57 (July 2013) 2266–2279

5. European Commission: Restructuring in Europe 2011: Restructuring and anticipation
of change, what lessons from recent experience? http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=SEC:2012:0059:FIN:EN:PDF (Jan 2012)

6. Jackson, M.: Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley (2001)

7. Massacci, F., Mylopoulos, J., Zannone, N.: Security requirements engineering: The si* mod-
eling language and the secure tropos methodology. In Ras, Z., Tsay, L.S., eds.: Advances
in Intelligent Information Systems. Volume 265 of Studies in Computational Intelligence.
Springer Berlin / Heidelberg (2010) 147–174

8. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. 1st edn. John Wiley & Sons (2009)

9. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS Approach.
1st edn. Springer (2010)

10. UML Revision Task Force: OMG Object Constraint Language: Reference (February 2010)
11. Côté, I., Hatebur, D., Heisel, M., Schmidt, H.: UML4PF – a tool for problem-oriented re-

quirements analysis. In: Proceedings of the International Conference on Requirements En-
gineering (RE), IEEE Computer Society (2011) 349–350

12. Côté, I.: A Systematic Approach to Software Evolution. Deutscher Wissenschafts-Verlag
(DWV) Baden-Baden (2012)

13. Marsh, S.: Formalising Trust as a Computational Concept. PhD thesis, University of Stirling
(April 1994)

14. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service
provision. Decision Support Systems 43(2) (March 2007) 618–644

15. Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable software.
In Schoitsch, E., ed.: Proceedings of the International Conference on Computer Safety, Re-
liability and Security (SAFECOMP) (LNCS 6351), Springer (2010) 317–331

16. Hatebur, D., Heisel, M., Schmidt, H.: A formal metamodel for problem frames. In: Proceed-
ings of the International Conference on Model Driven Engineering Languages and Systems
(MODELS). Volume 5301., Springer Berlin / Heidelberg (2008) 68–82

17. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In: Proc. 17th
Int. Conf. on Software Engineering, Seattle, USA, ACM Press (1995) 15–24

18. Haley, C.B., Laney, R.C., Nuseibeh, B.: Deriving security requirements from crosscutting
threat descriptions. In: Proceedings of the 3rd International Conference on Aspect-oriented
Software Development. AOSD ’04, ACM (2004) 112–121

19. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems in context.
In: Requirements Engineering Conference, 2007. RE ’07. 15th IEEE International. (2007)
211–220

20. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In: Proceedings
of the 5th International Conference on The Unified Modeling Language. UML ’02, London,
UK, UK, Springer-Verlag (2002) 412–425

21. Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In: Proceedings of the 5th International Conference on The Unified
Modeling Language. UML ’02, London, UK, UK, Springer-Verlag (2002) 426–441

22. Mouratidis, H., Giorgini, P.: Secure Tropos: a Security-Oriented Extension of the Tropos
Methodology. International Journal of Software Engineering and Knowledge Engineering
17(2) (2007) 285–309

23. van Lamsweerde, A., Letier, E.: Handling Obstacles in Goal-Oriented Requirements Engi-
neering. IEEE Trans. Softw. Eng. 26(10) (October 2000) 978–1005

14

24. Paci, F., Fernandez-Gago, C., Moyano, F.: Detecting insider threats: a trust-aware frame-
work. In: 8th International Conference on Availability, Reliability and Security, Regensburg,
Germany, IEEE, IEEE (Nov 2013 2013) 121–130

25. Pavlidis, M., Mouratidis, H., Islam, S.: Modelling Security Using Trust Based Concepts.
IJSSE 3(2) (2012) 36–53

26. BSI: Protection Profile for the Gateway of a Smart Metering System (Gateway
PP). Version 01.01.01(final draft), Bundesamt für Sicherheit in der Information-
stechnik (BSI) - Federal Office for Information Security Germany (2011) https:
//www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/
PP-SmartMeter.pdf?__blob=publicationFile.

27. ISO/IEC: Information technology - Security techniques - Information security management
systems - Requirements. ISO/IEC 27001, International Organization for Standardization
(ISO) and International Electrotechnical Commission (IEC) (2005)

15

