
Towards Engineering Trust-aware Future Internet

Systems∗

Francisco Moyano, Carmen Fernandez-Gago, Javier Lopez
Network, Information and Computer Security Lab

University of Malaga, 29071 Malaga, Spain
{moyano, mcgago, jlm}@lcc.uma.es

June 24, 2013

Abstract

Security must be a primary concern when engineering Future Internet
(FI) systems and applications. In order to achieve secure solutions, we
need to capture security requirements early in the Software Development
Life Cycle (SDLC). Whereas the security community has traditionally fo-
cused on providing tools and mechanisms to capture and express hard
security requirements (e.g. confidentiality), little attention has been paid
to other important requirements such as trust and reputation. We argue
that these soft security requirements can leverage security in open, dis-
tributed, heterogeneous systems and applications and that they must be
included in an early phase as part of the development process. In this
paper we propose a UML extension for specifying trust and reputation
requirements, and we apply it to an eHealth case study.

1 Introduction

Security is a crucial concern that must be addressed in order to guarantee the
successful deployments of FI scenarios [19]. These scenarios usually comprise
a huge number of heterogeneous, geographically distributed entities, including
human users, which must interact to provide services. The complexity of man-
aging security in these scenarios is aggravated by their dynamic nature, with
devices changing, appearing and disappearing along the system lifetime. In
these complex and open scenarios, more flexible security solutions, namely soft

∗This work has been partially funded by the European Commission through the FP7/2007-
2013 project NESSoS (www.nessos-project.eu) under grant agreement number 256980. The
first author is funded by the Spanish Ministry of Education through the National F.P.U.
Program.

1

F. Moyano, C. Fernandez-Gago, and J. Lopez, “Towards Engineering Trust-aware Future Internet Systems”, 3rd International Workshop on Infor-
mation Systems Security Engineering (WISSE 2013), LNBIP vol. 148, pp. 490-501, 2013.
http://doi.org/10.1007/978-3-642-38490-5
NICS Lab. Publications: https://www.nics.uma.es/publications



security mechanisms [14], are required as a complement to the traditional hard
security ones: confidentiality, integrity and availability.

Trust is a soft security mechanism that can leverage the security of a system.
Even though there is not any accepted definition of trust, it is agreed that it
can improve decision-making processes under risk and uncertainty, improving
in turn systems security. Reputation, which is a concept strongly related to
trust, can also help in this task. We argue that increasing security in FI appli-
cations entails that trust relationships between actors, applications and system
environments cannot be taken for granted any more and must be explicitly spec-
ified from the very beginning in the Software Development Life Cycle (SDLC).
However, security requirements engineering methods often lay trust aside and
focus on specifying hard security requirements, such as confidentiality or autho-
rization [7][8]. Even when some social aspects are beginning to be captured at
the requirements stages [10][18], the approach towards analysing trust is still
naive. This could explain why trust and reputation models have been tradi-
tionally added after-the-fac in an ad-hoc fashion, limiting their re-usability and
presenting scalability problems [4].

We advocate that a comprehensive analysis of trust and reputation during
the initial stages of the SDLC is required. The contribution of this paper is
twofold. First, we provide an extension to UML in order to help requirements
engineers and software designers to have a clearer understanding of the trust
and reputation requirements of the system-to-be; second, we analyse, by means
of an eHealth case study, how we can apply this UML profile as well as some
considerations when designing trust-aware systems. We choose UML because
it is a de facto standard in the industry and because other relevant security-
oriented profiles exist that could be potentially integrated with ours.

The rest of the paper is structured as follows. Section 2 reviews some related
work. In Section 3 we provide a domain analysis in the field of trust and
reputation. The extensions performed on UML are explained in Section 4,
whereas Section 5 applies these extensions to an eHealth scenario. Finally,
Section 6 presents the conclusion and some lines for future research.

2 Related Work

There are several works that consider security requirements at the early stages of
the SDLC. Some of these works focus on detecting possible attacks on the system
[16][15]. In others, the emphasis is on modeling security requirements, such as
confidentiality or authorization. This is the case of UMLsec [7] and SecureUML
[8], two UML profiles that include security constraints and annotations into the
diagrams. Other works aim to integrate the notion of risk into the requirement
analysis stage [9] in order to assess whether the risk level of some unwanted
incidents is beyond an acceptable threshold.

The contributions mentioned up to now focus on hard security requirements
or risk, but they usually lay trust aside. In addition to traditional policy lan-
guages for distributed trust management [2][6], there are other works that focus



on trust in early stages of the SDLC. Mouratidis and Giorgini [10] present Se-
cure Tropos, a methodology that extends the Tropos methodology in order to
enable the design of secure systems. Actors in Tropos may depend on other
actors in order to achieve a goal, and these social relationships are captured by
the methodology. In a similar direction, Lamsweerde and Letier present KAOS
[18], a comprehensive goal-oriented methodology to elicit the requirements of a
socio-technical system. All these contributions put forward the idea of captur-
ing social aspects, but the notion of trust and its influence on the information
systems is barely explored. This is partially covered by Pavlidis, Mouratidis
and Islam [12], who include trust-related concepts in Secure Tropos.

The work by Chakraborty and Ray [3] bridges a gap between traditional se-
curity requirements modeling and soft-security considerations by incorporating
the notion of trust levels into the traditional Role-Based Access Control model.
These levels are measured by means of a trust vector, where each component in
the vector is a factor that influences trust, such as knowledge or experience.

In general, the aforementioned works usually fail in capturing and making
explicit all the trust relationships, and above all, how trust and reputation can
be used by the system-to-be. The closest contribution to our work is the one by
Uddin and Zulkernine [17], who present a UML profile for trust called UMLtrust.
They provide extensions, as we do, to some UML diagrams in order to represent
trust information. Their approach and focus is, however, different than ours.
First, their primary concern is reasoning about trust scenarios, without making
explicit which are the trust relationships in the system. Also, they do not
address reputation, whereas it is a primary concern for us. We also provide
more details on how trust and reputation can be computed and the factors (e.g.
variables and attributes) that will be taken into account for this computation.
We also show how trust can influence at the infrastructure level by means of
deployment diagrams. However, our trust analysis is in general at a higher level
of abstraction, without delving into the details of class attributes and methods,
which is something that UMLtrust requires. As a conclusion, we think that
both works are complementary and can help each other in providing a more
comprehensive vision of trust in the system for designers and developers.

3 Trust and Reputation

There are many definitions of trust, and one often cited is the one by Gam-
betta [5]: ’trust is a particular level of the subjective probability with which an
agent assesses that another agent or group of agents will perform a particular
action[...]’. Reputation is defined by the Concise Oxford Dictionary as ’what
is generally said or believed about a person or the character or standing of a
thing’, being a more objective concept that trust.

A trust conceptual model, adapted from the one in [11], is shown in Figure 1.
Many of these concepts are included in the UML profile presented in the next
section. Just to mention some details, it is important to differentiate between a
trust factor, a variable and an attribute. A factor is an application-independent



attribute (e.g. the trustor’s disposition to believe in others’ capability). An
attribute captures the notion of factor and extends it with application-specific
information too (e.g. how much a customer has paid for a book). At the software
level, one or more attributes are represented by variables, which forms the core
of a trust metric. The dimension of a trust or reputation value refers to whether
the final score is just one number (or label), or a tuple of numbers or labels.
Finally, for simplicity sake, some arrows are not depicted. For example, there
would be an arrow from Reputation to Value and from Variable to Value.

Trust Model
Trust

computes

Context
Assumptions

Entities

Role

PurposeTrust Class

Access IdentiyProvision Infrastructure

Trust 
Relationship

has
establishes

relates

plays

has

instantiates

has

1..*

2..*

1..*

2

1..*

1..*

Trustee's 
Objective 
Properties
Trustee's 

Subjective 
Properties
Trustor's 
Objective 
Properties
Trustor's 

Subjective 
Properties

Factors
influence

Witness Trustor Trustee

Modeling
Method

uses

Value

Format

Dimension

Scale
MetricEngine

VariableAttribute

Source
Time

ReputationReputation 
Statement

Source

Claim

Target

has

computes

uses

Summation/
Average

Bayesian

Fuzzy

Continous

Discrete

aggregates
1..*

measures uses
1..*

feedsinforms about

Figure 1: Trust Conceptual Model (summarized)

4 UML Profile for Trust and Reputation

This section presents an extension of UML that aims to ease the specification
and initial design of trust-aware systems and applications. We consider indis-
pensable the use of some behavioural diagram, such as activity diagrams, even
though we do not propose extensions for them. This diagram should represent
the interaction patterns between the trust and business logic of the application,
and should make clear which actor initiates a trust event, how this event is
triggered and what their consequences are1.

Each extended diagram is further explained in the following sections.

4.1 Use Case Diagram

The goal of use case diagrams in the context of trust is to depict, at a glimpse, the
trust relationships that exist between the different actors in the system. There is
however more interesting information that we can represent in this diagram. For
example, we could make explicit which actors can make a claim about which
other actors, thus incorporating reputation information in the diagram. The
extensions performed on the use case diagram are summarized in Table 1.

1A trust event is any occurrence in the system that triggers a reputation or trust relation-
ship update.



Table 1: Use Case Diagram Extensions

Stereotype Base Class Explanation
Trustor Actor Actor playing the trustor role
Trustee Actor Actor playing the trustee role
Witness Actor Actor playing the witness role
Source Actor Actor capable of making a claim
Target Actor Actor capable of receiving a claim
Trusts Connector Trust relationship
Claims Connector Source makes a claim about a Target
Decides Connector Use case affected by a trust/reputation decision

Trustor, trustee, witness, source and target are roles that actors can play
in the system. Trust relationships are made explicit by means of the extension
trusts, whereas claims represent that a given source can make a claim about a
given target. As the ultimate goal of trust is aiding in making a decision, we
also add the decides connector, which captures the idea that a use case can be
affected by trust or reputation information. An actor could perform the same
use case in different ways (or even could decide not to perform it at all), and
this decision can be influenced by trust or reputation information.

In addition to the previous UML extensions, we define two adornments:
decision criteria and context. The former is used to annotate the decides rela-
tionship between an actor and a use case, and it specifies whether the decision
in that use case is based on trust or reputation. The latter annotates trusts and
claims relationships and specifies their context. This captures the idea that
trust and reputation are context-dependent.

4.2 Class Diagram

Class diagrams can provide more insight in certain aspects of trust and repu-
tation. The stereotypes used to extend class diagrams are depicted in Table 2.
We find the same stereotypes that in the use case diagram extension regarding
the roles of the actors. Also, we find TrustRelationship, which represent the
trust relationship between a trustor and a trustee, and Claim, which captures
the notion of a claim made by a source entity about a target entity. We add
also three important notions for the evaluation of trust and reputation, namely
TrustEngine, ReputationEngine and Variable. They represent how trust and
reputation are computed, and the variables considered for such computation.

Tagged values are used in order to define more precisely the aforementioned
concepts. The list of tagged values is shown in Table 3. Just to mention some
of them, subjective properties refer to a list of beliefs of the trustor regarding a
trustee, whereas objective properties represent a list of trustee’s properties that
can be (more) objectively measured (e.g. reliability or certification by a Trusted
Third Party). Dimension is the number of components of a trust or reputation
value, and how specifies whether the value of a variable is explicitly assigned
(interactively) by the actor or is monitored by another system.



Table 2: Class Diagram Extensions

Stereotype Base Class Explanation
Trustor Class Actor playing the trustor role
Trustee Class Actor playing the trustee role
Witness Class Actor playing the witness role
Source Class Actor capable of making a claim
Target Class Actor capable of receiving a claim
TrustRelationship Class Trust relationship between trustor and trustee
Claim Class Claim that a source makes about a target
TrustEngine Class Engine in charge of updating a trust relationship
ReputationEngine Class Engine in charge of computing a target’s reputation
Variable Class Variable used by a trust or reputation engine

Table 3: Tagged Values for Class Diagrams

Value Class Explanation
type Trustor, Trustee, Witness, Source, Target The type of actor (i.e. human, system)
subProp Trustor Subjective properties
objProp Trustee Objective properties
context TrustRelationship, Claim Context
dimension TrustRelationship, Claim Dimension of a trust relationship or a claim
scale TrustRelationship, Claim, Variable Upper and lower bounds
default TrustRelationship Default value
format TrustRelationship, Claim Quantitative vs. qualitative
display ReputationEngine Visualization by user actors
engine Engine Type of computation engine
variables Engine List of variables used by the engine
attribute Variable Attribute(s) captured by the variable
source Variable System or actor that triggers the variable update
how Variable Assigned vs. monitored

Note that some of these tagged values could be almost directly mapped to
attributes of design classes, whether others are just informative and require
further refinement at design stage. For example, attribute represents the at-
tribute(s) captured by a variable. This information might be useful for aiding
designers to keep in mind what the variable actually should represent, but could
hardly be directly mapped to a class attribute.

4.3 Deployment Diagram

Deployment diagrams are useful as they represent the software from the infras-
tructure point of view, and they show valuable information in terms of trust and
reputation. Very often, trust and reputation must be considered not only at the
application level (trust among actors or among software components), but also
at the infrastructure level [13]. Platforms and networks can trust each other and
they can even hold reputation values. This is particularly useful when designing
large-scale distributed systems, where a given processing node (e.g. a mobile
phone or a server) can choose among different nodes in order to collaborate or



communicate information.
The extensions performed on deployment diagrams are shown in Table 4. We

can specify which node acts as reputation manager in a centralized reputation
model. Reputation managers compute reputation, store it, and distribute it (or
just publish it) when necessary. The decides stereotype captures the decision
process made by one entity (processing node) when communicating with other
processing nodes. As in the case of use case diagrams, this stereotype can be
adorned in order to make explicit whether this decision is based on trust or
reputation with decision criteria. Finally, we also add a tagged value entities
to specify the reputation of which entities the reputation manager will store.

Table 4: Deployment Diagram Extensions

Stereotype Base Class Explanation
ReputationManager Node Node that acts as reputation manager
decides Connector Trust-based decision

The next section puts all the concepts discussed in this section together by
applying them to an eHealth scenario.

5 Case Study

In order to consider trust and reputation requirements early in the SDLC, we will
present in this section how we can apply the information provided in Section 4
to a real scenario. The case study comes from the NESSoS project2 and belongs
to an eHealth scenario as described in a project deliverable [1].

The case study presents a patient monitoring scenario, which aims to collect
health-related data independently of the location of the patient. This is useful
for patients, who can receive immediate feedback under critical situations and be
assisted by physicians at any moment and place. In order to make this scenario
feasible, the patient must wear a device capable of measuring vital signs (e.g.
blood pressure). This device must be able to send this information to other
systems that will show it to physicians for monitoring purposes.

The goal is to build a web application through which the physician and the
patient can interact in a trusted way. In this application, the physician can
add and remove a wearable device to the system, start the process to assign
the device to a patient, configure both critical and uncritical alerts, ask patient
consent to use his data for research purposes, create an advice for the patient
based on the patient’s data, demand an immediate reading from the wearable
and start the process to change a patient’s wearable. Patients can configure
uncritical alerts, ask for second opinions (to other physicians), accept or deny
consent, show the physician’s advices, complete the device assignment process
started by the physician and demand a physician change.

2http://www.nessos-project.eu



Even though there are important hard security requirements, the application
must also be trusted, in the sense that physicians and patients must be confident
that the application is performing well and that they can trust the information
provided by other entities. We propose using the aforementioned UML profile
in order to consider trust and reputation requirements early in the SDLC.

A possible trust-aware use case diagram is shown in Figure 2. We state that
there is a trust relationship between the patient and the physician. The patient
plays a trustor role and the physician plays a trustee role. In addition, there is a
trusts connector, which is adorned by the context where this trust relationship
is set, namely monitoring. There is another trust relationship between the
physician (who therefore also plays a trustor role) and the wearable. The patient
also plays the source role and can therefore make claims (claims connector)
about the physician, who plays in this case the target role.

Up to now, we have defined the main actors, the trust roles they can play,
and the trust relationships and possible claims that the application considers.
We also need to include for which purpose this information is going to be used,
and this is the role of the decides connector. Just to mention two examples,
the patient may decide to ask another physician for second opinion. In order
to decide who this other physician is, he uses reputation information about the
physician (annotation decision criteria). Also, the physician may ask for a new
wearable if his trust in the actual wearable falls below a certain threshold. Thus,
we are using trust and reputation to help actors to make decisions at runtime.

<<trustor>>
<<source>>
Patient

<<trustee>>
<<trustor>>
<<target>>
Physician

Add 
Weareable 
to System

Remove 
Wearable From 

SystemConfigure 
Uncritical 

Alerts Configure 
Critical 
Alerts

Ask Patient 
Consent

Create 
Advice

Assign 
Device to 
Patient 1

Demand 
Immediate 

Read

Ask for 
Urgent new 
Wearable

Ask for 
Second 
Opinion

Ack/Deny 
Consent

See Recent 
Advices

Assign 
Device to 
Patient 2

Ask for 
Doctor 

Change

<<trustee>>
Wearable

<<trusts>>

<<trusts>>

<<claims>>

<<decides>>

<<decides>>

<<decides>>

<<decides>>
<<decides>>

<<decisionCriteria>>
reputation

<<trustContext>>
monitoring

Figure 2: Trust-aware Use Case Diagram

Claims and trust relationships can be further refined in trust-aware class
diagrams, as shown in Figure 3 and Figure 43. Regarding the patient monitor-
ing relationship, we specify the context of this relationship (which should be
consistent with the context in the use case diagram), the dimension and format,
which are one and numeric in this case, the scale, which is the interval [0, 1],
and the default value, which is 0.5. Thus, every trust relationship between a
patient and a physician will be assigned by default (i.e. at bootstrap phase)

3We do not depict the trust relationship physician-wearable due to space limitations.



the value 0.5 and will take values between 0 and 1 along the application life.
Also, we specify some information regarding the trustor and the trustee. In this
relationship, the trustor is a human actor and has a subjective property that
influences on the trust relationship: capability belief. This means that the belief
that the patient has in the capability of the physician must be considered when
setting the trust relationship, as stated also by the trust engine that updates
the trust relationship. This engine uses a continuous engine (meaning that it
will yield a continuous value by aggregating continuous variables). The list of
variables used by the engine are the reputation of the trustee, the belief of the
trustor, and the trustor’s quality feedback, which is represented by the claim
in Figure 4. Note that in the case of a claim, the reputation engine computes
reputation for a given target, and not for a trust relationship. The reputation
engine gathers the claims that different patients make about a given physician
and computes a final reputation using an average. In addition to the claims,
time is also used to derive this reputation value, which will be displayed by a 3
stars notation.

<<trustor>>
Patient

{type = human, 
subProp = capability}

<<trustee>>
Physician

{type = human}

<<trustRelationship>>
PatientMonitoring

{context = monitoring,
dimension = 1,

format = quantitative,
scale = [0,1],
default = 0.5}

<<trustEngine>>
PatientPhysicianEngine

{engine = continuous,
variables = (reputation,capability 
belief, trustor's qualityFeedback)}

<<computesTrust>>

<<Variable>>
Capability Belief

{attribute = capability,
scale = [0,1],

source = patient,
how = assigned}

<<uses>>

Figure 3: Patient-Physician relationship

<<source>>
Patient

{type = human}
<<target>>
Physician

{type = human}

<<claim>>
qualityFeedback

{context = monitoring,
dimension = simple
format = qualitative,
scale = (bad,good)}

<<reputationEngine>>
PatientPhysicianEngine

{engine = average,
variables = (qualityFeedback, time),

display = 3 stars}

<<computesReputation>>

Figure 4: Quality Feedback Claim

For every variable defined in the engine, we can define a new Variable stereo-
type and specify some of the important properties of them. Figure 3 shows
that capability belief, assigned by the patient, will take a value in the inter-
val [0, 1] and should capture the attribute trustor’s capability belief. In the
physician-wearable relationship3, the physician triggers a system that monitors
the wearable reliability variable, where the attributes captured by this variable
are reliability and accuracy of the provided data.

Note that from the class diagrams information, especially after identifying



the variables that we need, we can go back to the use case diagram during
the second iteration and add new use cases that should be included. We do
not depict them due to space limitations but basically, the patient should have
means of rating a physician and to set the physician preferences. This last use
case captures the capability belief, as the preference list will likely be made by
the patient in terms of this capability belief about the physicians. Finally, the
physician should be able to measure the wearable reliability.

How the business and trust layers of the application interact may be a valu-
able information for designers. This can be depicted by a behavioural diagram,
such as an activity diagram. The goal is to represent which actor can trigger
a trust event and how, and what are the consequences of that trust event. We
propose using swim lanes in order to make clearer the responsibilities of actors,
the business logic and the trust logic in the whole application. Figure 5 depicts
the trust event triggered when the patient asks for a second opinion.

Patient Business Layer Trust Layer 

See	  list	  of	  
physicians	  

Retrieve	  list	  of	  
physicians	  

Retrieve	  
physicians’	  
reputa5on	  

Show	  list	  of	  
physicians	  Choose	  physician	  

<<localPostCondition>>
{The list is ordered by physician's 

reputation}

Figure 5: Activity Diagram for Use Case Ask for Second Opinion

The basic deployment for this application, without considering trust infor-
mation, consists of a sensor that communicates with a wearable, which in turn,
aggregates the information and sends it to a front-end server running the ap-
plication. This front-end server will send the information to a back-end server
that will store it into the patient’s Electronic Health Record (EHR) and that
executes a configuration application (i.e. to configure certain aspects of the
application) only available to administrators. Figure 6 shows a trust-aware de-
ployment diagram. The wearable device can decide, based on the front-end
server reputation, to which server to send information. The same happens be-
tween the front-end server and the back-end server. Of course we are assuming
that the final deployment will consist of, at least, two front-end servers and
two back-end servers. Otherwise, a decision is not possible. We can also make
explicit on which node the reputations for different entities in the system will
be stored (i.e. assuming a centralized reputation model). In this case, a node
is reserved to play the role of a reputation server that will store the reputation
values for physicians, the front-end servers and back-end servers.



<<device>>
FrontEndServer

<<device>>
BackEndServer

<<device>>
Wearable

<<device>>
Sensor

Configuration 
Server

Database

Application
Server

<<ReputationManager>>
Reputation Server
{entities=(physician, 

FrontEndServer,BackEndServer)}

<<decides>>

<<decides>>

<<decisionCriteria>>
reputation

Figure 6: Trust-aware Deployment Diagram

6 Conclusion

Trust and reputation can be powerful mechanisms to improve security in com-
plex, distributed systems and applications. We have proposed an extension to
UML and some design guidelines to help requirements engineers and software
designers to have a clearer view on trust requirements. This is not a straightfor-
ward task, as the concept of trust itself is difficult to grasp, and as there is an
important gap between the social notion of trust and its software representation.

Our goal with this paper has been to continue bridging this gap, even though
much work still remains to be done. First, the profile should be further extended
in order to represent policies, credentials and trusted third parties, which consti-
tute the roots of many trust management systems nowadays. The profile should
also allow representing how trust information can be propagated between ac-
tors in the system. Trust derivation from lower software abstractions (e.g. trust
among components) to higher level abstractions (e.g. trust among processing
nodes), if possible at all, is an interesting field that requires much further ex-
ploration. Finally, there is a need for defining the semantics and constraints of
each syntactic element. Tool support is then required to check compliance with
these constraints and to derive design patterns and code from the specification.
In this direction, how to integrate our approach with existing frameworks (e.g.
UMLsec) should be analysed.

References

[1] Initial version of two case studies, evaluating methodologies. NESSoS De-
liverable 11.3, October 2012.

[2] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust Man-
agement. In Proceedings of the 1996 IEEE Symposium on Security and
Privacy, SP ’96, pages 164–, Washington, DC, USA, 1996. IEEE Computer
Society.



[3] Sudip Chakraborty and Indrajit Ray. Trustbac: integrating trust relation-
ships into the rbac model for access control in open systems. In Proceedings
of the eleventh ACM symposium on Access control models and technologies,
SACMAT ’06, pages 49–58, New York, NY, USA, 2006. ACM.

[4] Randy Farmer and Bryce Glass. Building Web Reputation Systems. Yahoo!
Press, USA, 1st edition, 2010.

[5] Diego Gambetta. Can We Trust Trust? In Trust: Making and Breaking
Cooperative Relations, pages 213–237. Basil Blackwell, 1988.

[6] Tyrone Grandison. Trust management for internet applications. PhD the-
sis, University of London, July 2002.

[7] Jan Jürjens. UMLsec: Extending UML for Secure Systems Development. In
Proceedings of the 5th International Conference on The Unified Modeling
Language, UML ’02, pages 412–425, London, UK, UK, 2002. Springer-
Verlag.

[8] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Security. In Proceedings
of the 5th International Conference on The Unified Modeling Language,
UML ’02, pages 426–441, London, UK, UK, 2002. Springer-Verlag.

[9] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. Model-Driven Risk
Analysis - The CORAS Approach. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2011.

[10] Haralambos Mouratidis and Paolo Giorgini. Secure Tropos: a Security-
Oriented Extension of the Tropos Methodology. International Journal of
Software Engineering and Knowledge Engineering, 17(2):285–309, 2007.

[11] Francisco Moyano, Carmen Fernandez-Gago, and Javier Lopez. A Con-
ceptual Framework for Trust Models. In 9th International Conference on
Trust, Privacy & Security in Digital Business (TrustBus 2012), volume
7449 of Lectures Notes in Computer Science, pages 93–104, Vienna, Sep
2012. Springer Verlag.

[12] Michalis Pavlidis, Haralambos Mouratidis, and Shareeful Islam. Modelling
Security Using Trust Based Concepts. IJSSE, 3(2):36–53, 2012.

[13] Sarvapali D. Ramchurn, Dong Huynh, and Nicholas R. Jennings. Trust in
multi-agent systems. Knowl. Eng. Rev., 19(1):1–25, March 2004.

[14] Lars Rasmusson and Sverker Jansson. Simulated social control for secure
internet commerce. In Proceedings of the 1996 workshop on New security
paradigms, NSPW ’96, pages 18–25, New York, NY, USA, 1996. ACM.

[15] Bruce Schneier. Attack Trees: Modeling Security Threats. Dr. Dobb’s
Journal, 1999.



[16] Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements
with misuse cases. Requir. Eng., 10(1):34–44, January 2005.

[17] Mohammad Gias Uddin and Mohammad Zulkernine. Umltrust: towards
developing trust-aware software. In Proceedings of the 2008 ACM sympo-
sium on Applied computing, SAC ’08, pages 831–836, New York, NY, USA,
2008. ACM.

[18] Axel van Lamsweerde and Emmanuel Letier. Handling Obstacles in Goal-
Oriented Requirements Engineering. IEEE Trans. Softw. Eng., 26(10):978–
1005, October 2000.

[19] Dirk van Rooy and Jacques Bus. Trust and privacy in the future internet
- a research perspective. Identity in the Information Society, 3(2):397–404,
August 2010.


