
Private Set Intersection: A Systematic Literature
Review

Daniel Moralesb,∗, Isaac Agudob, Javier Lopezb

aNetwork, Information and Computer Security (NICS) Lab, University of Malaga, Spain

Graphical Abstract

Private Set Intersection: A Systematic Literature Review

Daniel Morales, Isaac Agudo, Javier Lopez

1∗Corresponding author
Email addresses: damesca@uma.es (Daniel Morales), isaac@uma.es (Isaac Agudo),

javierlopez@uma.es (Javier Lopez)

D. Morales, I. Agudo, and J. Lopez, “Private set intersection: A systematic literature review”, Computer Science Review, vol. 49, 2023.
http://doi.org/https://doi.org/10.1016/j.cosrev.2023.100567
NICS Lab. Publications: https://www.nics.uma.es/publications

Highlights

Private Set Intersection: A Systematic Literature Review

Daniel Morales, Isaac Agudo, Javier Lopez

• We review Private Set Intersection, a very wide problem that can be solved
with many different techniques.

• We identify Homomorphic Encryption, Oblivious Transfer, and Oblivious
Pseudo-Random Functions as the main building blocks to solve Private
Set Intersection.

• We survey the different solutions for Private Set Intersection from a prac-
tical point of view, with comparisons between complexity, running times,
and usability.

• We identify open problems whose resolution may derive to more efficient,
practical, and accepted Private Set Intersection protocols.

Private Set Intersection: A Systematic Literature
Review

Daniel Moralesb,∗, Isaac Agudob, Javier Lopezb

bNetwork, Information and Computer Security (NICS) Lab, University of Malaga, Spain

Abstract

Secure Multi-party Computation (SMPC) is a family of protocols which al-
low some parties to compute a function on their private inputs, obtaining the
output at the end and nothing more. In this work, we focus on a particular
SMPC problem named Private Set Intersection (PSI). The challenge in PSI is
how two or more parties can compute the intersection of their private input sets,
while the elements that are not in the intersection remain private. This prob-
lem has attracted the attention of many researchers because of its wide variety
of applications, contributing to the proliferation of many different approaches.
Despite that, current PSI protocols still require heavy cryptographic assump-
tions that may be unrealistic in some scenarios. In this paper, we perform a
Systematic Literature Review of PSI solutions, with the objective of analyzing
the main scenarios where PSI has been studied and giving the reader a general
taxonomy of the problem together with a general understanding of the most
common tools used to solve it. We also analyze the performance using different
metrics, trying to determine if PSI is mature enough to be used in realistic sce-
narios, identifying the pros and cons of each protocol and the remaining open
problems.

Keywords: Private Set Intersection, Secure Multiparty Computation, Privacy,
Security

1. Introduction

Secure Multiparty Computation (SMPC) is a broad area of research in cryp-
tography which has attracted the attention of many researchers. From the very
first protocols proposed 40 years ago, this field is now evolving into a more
practical one, with performance rates closer to some realistic use cases and a
better acceptance from both the research and enterprise communities. In gen-
eral, SMPC is a family of protocols which allows a set of distrustful parties

∗Corresponding author
Email addresses: damesca@uma.es (Daniel Morales), isaac@uma.es (Isaac Agudo),

javierlopez@uma.es (Javier Lopez)

Preprint submitted to Computer Science Review May 2023

P = {P1, P2, ..., PN} to perform a joint computation on their private inputs.
The main properties that a SMPC protocol has to ensure are the inputs privacy
for the whole computation and the correctness of the protocol, i.e., a subset of
colluding parties cannot force the honest parties to output an incorrect result.

The first SMPC protocols [1, 2] focused on computing functions in a general
manner, describing the functions as Boolean circuits and performing crypto-
graphic operations on those circuits. However, some specific problems in the
area have presented particular characteristics that have allowed researchers to
solve them using different techniques. One of the main problems of this subset
is Private Set Intersection (PSI). This protocol allows two or more parties to
introduce their private sets as inputs and compute the intersection, but noth-
ing else out of it can be inferred. PSI has attracted the attention of many
researchers because of its wide usability on interesting use cases, which belong
to different areas like medical analysis, anomaly detection, social networks, etc.
Because of the huge interest it generates, this paper revolves around PSI, and
tries to give a broad description, focusing on its practical characteristics. Like
general SMPC, PSI has evolved from the first time it was introduced [3]. Per-
formance has always been a central focus point, because SMPC in general and
PSI in particular are known to be costly protocols. In spite of their irrefutable
progress in terms of performance, these protocols are still heavy and have to
be carefully instantiated, having in mind platform specific characteristics, like
computation limits, bandwidth, or network delay. For that reason, this work
tries to perform an empirical analysis on PSI and discuss if this protocol is ready
from a practical point of view.

1.1. Contributions

We summarize in this section the main contributions of this work. First of
all, we perform an analysis on PSI using a methodology known as Systematic
Literature Review, which offers some sequenced guidelines that allow researchers
to answer some specific questions. Also, we contribute with a survey which is
self-explanatory, where the different building blocks used to achieve PSI are
described in detail. Finally, PSI is reviewed from a practical point of view,
analyzing specific costs and implications related to applications, leading to some
open challenges discussion.

1.2. Organization

We will now briefly describe the organization of the paper. Section 2 intro-
duces the methodology applied to perform the review and explains how papers
are classified and data are extracted. Then, Section 3 analyzes different sce-
narios where PSI is applied and typical applications that are instantiated upon
them, identifying some limitations presented by the actual technology. Section 4
introduces the basic technical concepts that are needed to understand the differ-
ent PSI approaches, including basic building blocks and performance-improving
techniques. Section 5 discusses the different solutions proposed by the reference
literature to achieve different variants of PSI. Performance characteristics are

2

the main focus point, which leads to a discussion in Section 6, where the pre-
dominant limitations are identified, together with some proposed techniques to
increase the performing levels. The discussion is only made from the point of
view of semi-honest security, however, Section 7 adds some additional details on
malicious security. Finally, some conclusions and open challenges are remarked
in Section 8.

2. Systematic Literature Review methodology

The objective of a Systematic Literature Review (SLR) is to analyze a topic
and try to answer research questions, through a specific methodology that makes
the process valid, reliable, and repeatable. There are different ways to develop
reviews that depend on what the objective of the researchers is, e.g., a System-
atic Literature Mapping, whose purpose is to present a wide amount of papers
to get introduced to the research area. The SLR goes further, as it does not
just give a list of interesting papers in the studied field but also analyzes them
to answer specific questions.

In [4] the authors categorize the literature review approaches into 5 different
categories: Describe, Test, Extend, Critique, and Hybrid Reviews. This work
is settled between the two first, Describe and Test, because it tries to give the
reader a list with some of the best papers in the scoped area and also answer
some questions based on the data extracted from these papers.

A SLR is composed of 3 main phases: (1) planning the review, (2) conducting
the review, and (3) reporting the review. Phase 1 is very important, as it makes
possible the desired properties of validity, reliability, and repeatability. In this
phase, the researchers formulate the problem and develop the sequences that
they will follow to obtain the desired information. Phase 2 represents the wider
one, where all the planned phases are carried out. The process of conducting
the review is usually composed of several iterative phases where the reviewers
drop papers from an initial list. The process starts just checking the title,
then the abstract, and finally the whole body of the text. Each phase leaves the
researcher with a smaller amount of papers until a final reference list is obtained,
from where data will be extracted and analyzed. Finally, Phase 3 is the one
where researchers summarize their findings and explain them, together with
their corresponding answers to the initial questions. The following subsections
describe each phase as well as the instantiation of the specific methodology for
this paper.

2.1. Planning the review

To plan the review, the first point is to set the objective. This paper provides
an analysis of PSI from a practical point of view. The conclusions will aim at
resolving which approaches are realistic to develop an implementation which
fulfills conditions in terms of efficiency, latency, time, memory occupancy, etc.
In addition, an overview of typical applications and scenarios is given, which
completes the analysis with the requirements for the PSI protocols.

3

To achieve the objectives, some sub-phases are defined and performed in a
sequential manner. First of all, four research questions are specified, which are
partially related between them:

• (RQ1) What are the most typical building blocks used in PSI protocols?

• (RQ2) What are the existing practical implementations of PSI?

• (RQ3) What are the existing use cases for PSI?

• (RQ4) What are the major challenges to achieve efficient practical im-
plementations of PSI?

The main idea behind RQ1 is to identify the main building blocks that make
it possible to achieve PSI protocols in a secure manner. This aspect is key to
accurate classification and also allows the identification of performance limi-
tations, which are usually highly dependent on the specific components used.
With respect to RQ2, its main purpose is to gather the main practical implemen-
tations that exist on the PSI area. In general for cryptography and specifically
for SMPC protocols, the step from a theoretical design to a practical imple-
mentation can be large sometimes, so identifying realistic implementations can
be useful to target the most successful lines of research within PSI area. The
purpose of RQ3 is somehow close to the one for RQ2, but from the use case
point of view. At the end, the most widespread use cases can establish spe-
cific design requirements that constraints how PSI protocols are researched and
implemented. Finally, RQ4 gathers the specific aspects covered in the previ-
ous research questions and establishes the focus on the challenges that make it
difficult to achieve realistic and practical implementations of PSI. We aim at
identifying the key lines of research where more effort has to be put in order to
increase the widespread of PSI.

The research questions can be split into key terms, and using synonyms a
search string can be developed that will cover the objectives and will be used as
input on different digital libraries. The final search string is presented in Table
1.

Table 1: Search string

((“private” OR “secure”) AND “set” AND
(“intersection” OR “computation” OR “operation”)) AND
(((“protocol” OR “algorithm” OR “building block”) AND

((“implementation” OR “framework” OR “development”) OR
(“efficient” OR “performance”)))
OR “use case” OR “practical”)

The next step is to define the sources where the search string will be exe-
cuted. The most relevant digital libraries in the area have been included: ACM
Digital Library, IEEE Digital Library, ISI Web of Science, Science Direct, Sco-
pus, and Springer Link. Finally, some exclusion criteria must be defined to have

4

rules that allow selecting if a paper is suitable for this review or not (Table 2).
The exclusion criteria aims at disregarding papers that do not contribute with
novelty on the PSI area. Papers that do not present the full text available or
are not written in English are directly excluded from the study. The same hap-
pens with works not published in conferences, journals or books. In addition,
papers that briefly mention PSI, but are too generic or not focused on PSI are
also excluded, because they do not contribute to analyze this protocol in depth.
Also, to be more precise, we do not consider papers that do not offer a novel
PSI protocol or a novel implementation using a PSI protocol. Finally, after a
suitable list is accepted, duplicated papers are excluded.

Table 2: Exclusion criteria

Exclusion criteria

Full text not available
Not published in English

Not a conference/journal/book paper
Too generic

Not PSI-focused
Not a novel PSI protocol or PSI implementation

Duplicated papers

There are two additional planning steps that will be explained in Section 2.2
together with some findings: the design of a Quality Assessment Checklist and
a Data Extraction Form.

2.2. Conducting the review

The first step of this phase is to search the literature using the search string
presented in Section 2.1. This string may need to be adapted to the different
Digital Libraries formats, but the core idea remains. Initially, a set of 610
papers is obtained from all the sources together. This set is reviewed up to
three times from different points of view: the first time by title and keywords,
the second one assessing the abstract, and the third one including Introduction
and Conclusions. During the whole process, a snowballing method is carried out
to add relevant papers that were not included in the query search. This process
is called a backward search and selects interesting papers that have been cited
by the reviewed articles.

At the end of this process, 215 papers are selected as potentially useful
papers for the review. Figure 1 shows the number of papers initially obtained
and then accepted by each source.

The next step is to perform a Quality Assessment Checklist. This step
defines a list of features that a paper has to fulfill to be finally included. Each
feature of the list adds a point to the score of the paper. Those that do not
reach a minimum threshold will be excluded from the final reference list. In
this work, we have defined a list with 5 features, where each of them can be

5

SL SC SD W
S IE A

C SN
0

50

100

150

122

176

59

86

51

116

0

46

75

17 12
25 28

12

First selection papers Accepted papers

Figure 1: First selection and accepted papers. The digital libraries are the following: (SL)
Springer Link, (SC) Scopus, (SD) Science Direct, (WS) ISI Web of Science, (IE) IEEE Digital
Library, (AC) ACM Digital Library, (SN) Snowballing.

evaluated with Yes (1.0), Partially (0.5), or No (0.0). The maximum grade is 5
and the minimum required to be included in the final list is 2.5.

• Does the paper propose a new theoretical PSI protocol?

• Does the paper explain the building blocks used in the proposed solution?

• Does the paper propose a PSI practical implementation?

• Does the paper mention some use cases for the PSI paradigm or resolve
one?

• Does the paper mention terms like efficiency, asymptotic complexity, or
related considerations?

The idea of this checklist is to reward both the theoretical novelty and prac-
tical characteristics of the papers. The results obtained are specified in Figure
2. Significantly enough, most papers obtain a medium score. That is because
they focus only on theoretical aspects or present only an implementation of one
protocol, without focusing on PSI aspects.

Finally, after performing the Quality Assessment Checklist, we can analyze
the number of papers obtained from each year (Figure 3). The trend is clearly
upwards, as shown by the regression line, emphasizing that PSI has been acquir-
ing more relevance through the years. Because the number of papers which have
passed the Quality Assessment Checklist is huge (177), we have only considered
papers from 2017 to 2022 (113). The reasons are: (1) to make the reference

6

Low
38

Medium
142

High
35

Figure 2: Quality Assessment List results. The score ranges are: Low [0-2.5), Medium [2.5-4),
and High [4-5]. The papers scored as Low are not included in the final list.

list easier to handle and (2) to disregard older protocols, which usually perform
slower than newer approaches. The final reference list of papers is shown in
Table 3.

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

5

10

15

20

25

Number of papers
Linear regression

Figure 3: Number of papers selected per year and regression line

The last step of the second phase is to extract the relevant data desired to
perform the review. This step is the most time-consuming and is performed
iteratively. It is necessary to read with detail each paper and fulfill a form with
relevant data like type of PSI, resource complexity, running times, etc.

2.3. Reporting the review

In this section, some statistics about findings discovered after classifying the
reference papers will be reported.

7

The first interesting thing to analyze is the type of each paper, understand-
ing type as the predominance of theoretical or practical characteristics. By
“theoretical” we mean papers which focus on the PSI protocol itself, improving
security or asymptotic costs. On the other hand, “practical” are those which
apply PSI protocols on real scenarios, taking into account other aspects related
to implementation, scalability, or usability. Of all the 113 papers, only 17 can
be classified as practical, while the remaining 96 are purely theoretical (with the
exception of 9 of them that mention a use case where their proposed protocol
may fit). These findings allow us to conclude that the trend for PSI research
has been mainly theoretical, while considerations related to practical aspects
and infrastructure integration are not so common.

Another key aspect which is interesting to understand before any compara-
tive is that PSI has different variants, i.e., different ways to define the inputs,
the outputs, and how the parties interact between them, leading to specific con-
siderations when designing and implementing protocols. While the basic and
traditional primitive is just PSI, where two parties (or just one of them) get the
intersection of their input sets, other protocols may compute a function on the
intersection without revealing the intersection result. Others may need previ-
ous authorization for the elements in the set in order to be considered for the
computation or may need a certain threshold for intersection cardinality to be
reached in order to finally output the results. Although there are many variants,
some of them have been identified and appear to be relevant:

• PSI cardinality (PSI-CA), where the output is not the intersection but the
cardinality of the intersection. In this section we include its generalization
circuit-PSI (C-PSI), where a generic function other than the cardinality
can be computed on the intersection. There are 22 papers which belong
to this category: 14 for PSI-CA and 8 for C-PSI.

• Multi-party PSI (MP-PSI), where there are more than two parties that
want to compute the intersection of their input sets. There are 16 papers
related to MP-PSI in our reference list.

• Outsourced or verifiable delegated PSI (O-PSI/VD-PSI), where the com-
putation of the intersection is outsourced to an external server or cloud
provider that is not supposed to learn anything about the private elements

Table 3: Reference list of papers

Year Papers

2017 [5–28]
2018 [29–48]
2019 [49–66]
2020 [67–85]
2021 [86–103]
2022 [104–119]

8

or the result. There are 20 papers belonging to this group in our reference
list.

3. Scenarios and applications

PSI may be classified based on which party obtains the intersection at the
end of the computation with security warranties. This is traditionally named as
one-way PSI, if only one of the parties obtains the intersection, or mutual PSI,
if every party obtains it. This classification is very interesting from the security
point of view, but there is another somewhat more interesting from a practical
point of view, based on the parties set sizes. This classification distinguishes
between balanced PSI, if set sizes are approximately similar, and unbalanced
PSI, if there is a significant difference. These two scenarios have settled two
focus points when designing PSI protocols, because special considerations can
be made to improve performance when targeting one or the other. In fact, this
classification even sets limits on the election of the underlying building blocks.
We will now discuss very generally some aspects of these two scenarios, relating
them to the different applications that have been proposed along the evolution
of PSI and some technological considerations.

First, when considering the balanced scenario, one can imagine two o more
entities that want to achieve the intersection of their databases or some statistics
from it. By “entities” we refer to enterprises, researchers, medical or financial
institutions, etc. While these examples are not strictly subject to the balanced
scenario, it is a setting that appears frequently when, e.g., two financial entities
want to compute common customers or patterns for their businesses. Some ap-
plications that have been proposed are secure computations on genomics [23, 35]
or on medical data [15, 56], data mining on private data [65, 80], measuring ad
conversion rates [26, 47, 76, 82], security incident information sharing [47], col-
laborative botnet detection [120], aviation safety [121], satellite collisions match-
ing [122], private network interference discovery [115] etc. Looking for common
characteristics, some assumptions can be ventured for this scenario. First, it is
very likely that databases hold many items, because we are envisaging parties
that work with a lot of information (customers, statistics, etc.). Secondly, we can
assume a certain degree of flexibility when acquiring resources, i.e., computation
capabilities like computers, servers, or infrastructure. Finally, this scenario can
tolerate some amount of delay, e.g., a computation on medical private data can
be set up to take a whole day, and this may be acceptable if it is previously
considered by design, and the computation equipment is correctly prepared to
handle it. One can think of two application instances in cloud environments
where databases pour their data to perform a private data mining computation.
Initially, the entities involved may consider the cost of the computation and
determine if the investment benefits them.

The second scenario, the unbalanced one, can be easily compared with a
classical approach that has been existing on the Internet from its origins, the
client-server model. The server allows different clients accessing to different
resources and is always assumed to have much higher computational capabilities

9

than its clients. Turning this into PSI, we can assume that the client’s set size
will be much smaller than the server’s. In fact, it may have just one item.
This specific problem is known as Private Membership Test, which may be seen
as a PSI subcase. Some applications that have been proposed to this scenario
are malware detection by signature [16], checking of compromised credentials
[16, 61], private database querying [29], biometric authentication [62], private
contact discovery [47, 55], shoppers’ personal preference matching [45], etc. The
assumptions made on the balanced scenario can also be discussed here. First,
the client’s database size is much smaller than the server’s. Secondly, the client’s
resources are limited compared with the server’s, because in these applications,
the client is supposed to carry a smartphone or a personal computer. In fact, the
device could be even an IoT device, where computation, communication, and
memory capabilities are very constrained. Finally, the service may not tolerate
long delays. If it is a user handling the computation, e.g., with a smartphone,
she will not want to wait a lot; otherwise, the quality of experience will be
perceived as a bad one. A specific variation that has gained a great importance
the last years is reversed unbalanced PSI, where client set size is larger than the
server’s, e.g., in COVID contact tracing [88, 100, 104, 113].

There are other applications where some devices (maybe limited in terms
of resources) may want to perform PSI, but they depend on a central server
to perform or coordinate the computation, e.g., private ridesharing [27, 48, 62],
online matchmaking [32], social network discovery [30], online dating [62], etc.

The previous discussion has been made with a lot of generalizations, but
when implementing a PSI protocol, there are many considerations to have in
mind, e.g., the network environment or the computational limitations, and this
is one of the main problems that limit PSI acceptance. Some protocols are
efficient on communication but heavy on computation and viceversa. If one
relies, e.g., on a cloud to avoid computational constraints, maybe the latency
can be very high, and communications are limited, so the election of the protocol
implementation has to be made according to this.

4. Notation and Preliminaries

This section introduces some basic aspects (schemes, data structures, etc.)
which are required to fully understand how PSI is solved with the most extended
techniques. Because of the large set of symbols used through the rest of the
paper, it is highly recommended for the reader to check Table A.13.

4.1. Set Representation

Set Representation is a fundamental task that is typically made at the be-
ginning of the PSI protocol. It basically sets a starting point for the tools that
will make it possible to compute the intersection in a privacy-preserving way.
It may also involve data compression, which is a desired property to reduce
communication costs.

10

4.1.1. Polynomial Representation

Given a set S = {s1, ..., sn}, it can be represented as P (x) =
∏n

i=1(x − si),
where each element si is a root of the polynomial. When two sets are represented
as PA(x) and PB(x), the computation of gcd(PA, PB) is the representation of
SA∩SB . For random polynomials RA and RB , RAPA+RBPB = µ·gcd(PA, PB),
where µ is a random polynomial. If the roots of the random polynomial can be
deleted, the intersection can be computed.

When sets are encoded as polynomials, they are typically represented in
point-value form. That means that a set of pairs {(x1, y1), ..., (xd, yd)} are used
as the polynomial representation, where d ≥ n. If x is fixed, y = (y1, ..., yd) is
sufficient to represent P (x).

4.1.2. Vector Representation

Given a set S ⊂ U, where U is the universe set, one can define a vector
of length |U|. If the set has ordering property, each bit of the vector can be
viewed as the representation of each x ∈ U, where 0 means that x /∈ S, and 1
means that x ∈ S. However, this representation technique has a straightforward
limitation, which is that the vector length growths directly with |U|.

4.1.3. Probabilistic Filter Representation

A probabilistic data structure allows the insertion of data and a check func-
tion. The typical constructions are Bloom Filter (BF) [123] and Cuckoo Filter
(CF) [124], which are structures that allow a rate of false positives but not of
false negatives.

A BF insertion maps an element x to k places into a bit array, setting those
bits to 1. The positions are computed by a set of hash functions {h1, ..., hk}. To
check if y is inserted inside the filter, the values hk(y) are computed, and if those
vector bits are all set to 1, that means y is in the filter with high probability.

A CF insertion maps an element x to one from two possible buckets into a
hash table, where there are B buckets and each can have more than one entry.
To determine the two possible buckets, it uses Cuckoo Hashing, with the buckets
being b1 = hash(x) and b2 = b1⊕hash(fingerprint(x)). Items can be relocated
from one bucket to the other to make the table more efficient. Also, the value
stored is the fingerprint of x, so the items can be deleted.

Both BF and CF are very common and work well along different schemes,
e.g., given two BF containing two sets BFX and BFY , BFX∩Y represents the in-
tersection in the plain model where BFX∩Y [i] = BFX [i]∧BFY [i]. It is straight-
forward to combine this technique with homomorphic encryption (Section 4.2.2)
in order to achieve the required privacy.

Table 4: BF and CF space costs extracted from [79].

Data
Structure

Bits/item
Formula α = 95.5%, ϵ = 10−3

BF 1.44 log2(1/ϵ) 14.3
CF ⌈log2(1/ϵ) + 3⌉/α 13.5

11

Table 4 shows the formulas to compute the space costs of BF and CF with
optimal parameters, assuming the load factor α is very high and the false error
rate ϵ is relatively low.

4.2. Privacy Preserving Building Blocks

There is another thing that must be considered when classifying PSI pa-
pers: the basic building blocks that constitute the protocols, allowing privacy-
preserving computations. The way that the protocols work varies considerably
depending on the building blocks selected, and performance aspects as compu-
tation or communication complexity can also be modified. We have identified
some building blocks which are broadly adopted, so they are introduced in this
section.

4.2.1. Oblivious Transfer and OT-Extension

Oblivious Transfer (OT) was firstly introduced in [125, 126], where a sender
owns two messages x0 and x1, and a receiver has a choice bit c. Then, the
sender ignorantly sends xc, and the receiver knows nothing about x1−c. This
protocol receives the name of “1-out-of-2 OT” or

(
2
1

)
-OT and was later gener-

alized to
(
n
1

)
-OT , where the sender owns n messages, and

(
n
k

)
-OT , where the

receiver selects k of them [127, 128]. OT typically involves some kind of public
key cryptography to work, and this makes it a bit heavy for wide computations
(Protocol 1 shows a simple implementation from [129]). It could be approxi-
mated as one exponentiation per OT instance; however, [130] shows that one
exponentiation can be consumed to achieve some OT, using a trade-off which
increases the communication cost.

12

Protocol 1 Simplest OT protocol
Inputs: the sender inputs two messages (M0,M1), and the receiver inputs a
choice bit c.
Outputs: the sender outputs nothing, and the receiver outputs Mc.

Protocol:

1. The sender randomly samples a← Zp and sends A = ga to the receiver.

2. The receiver randomly samples b← Zp and computes:

• B = gb, if c = 0

• B = Agb, if c = 1,

then sends B to the sender and computes a symmetric key KR = H(Ab),
where H is a hash function.

3. The sender computes the two possible symmetric keys:

• K0 = H(Ba)

• K1 = H((B/A)a),

then sends the encryption of the two messages to the receiver:

• e0 ← EK0(M0)

• e1 ← EK1
(M1)

4. Finally, the receiver can decrypt the selected message Mc = DKR
(ec).

Nevertheless, a better performance can be achieved thanks to OT extension
(OTe) [131], especially in terms of computational cost. First of all, a common
notation is specified, where the execution of m OT with l-bit items is written
as OTm

l . An OTe scheme allows to compute OTm
l from OTκ

κ , where m = κc, κ
is the OTe security parameter, and c > 1 is a fixed constant, plus some cheaper
computations, i.e., calls to Pseudo-Random Generator (PRG) and Hash Func-
tions. Table 5 shows some specific costs for two well-known protocols. Typi-
cally, κ = 128, which may be approximated as the number of exponentiations
performed. The security parameter of [132] is twice as large as that of [131];
however, it can be amortized when performing OT with short secrets (small l),
because it achieves

(
n
1

)
-OT directly (with n ≤ κ), instead of

(
2
1

)
-OT .

Table 5: Computation and communication costs for two semi-honest OT-Extension proto-
cols, where PRG(m) generates m-bit items, and RO are calls to a Random Oracle (which is
typically instantiated as a hash function).

Protocol Costs Sec. Param

[131] IKNP
(2
1

)
-OTm

l

Comp. OTκ
κ + 2κPRG(m) + 2mRO

κ
Comm. 2mκ+ 2ml

[132] KK
(n
1

)
-OTm

l
Comp. OTκ′

κ′ + 2κ′PRG(m) +mnRO
κ′ ≈ 2κ

Comm. 2mκ′ + nml

13

4.2.2. Homomorphic Encryption

A Homomorphic Encryption (HE) scheme is a tuple of algorithms {Key Gen-
eration, Encryption, Evaluation, Decryption}, where the Evaluation algorithm
allows to evaluate a function f on ciphertexts as if they were plaintexts. This
can be achieved thanks to the evaluation of simple operations, like addition or
multiplication, on ciphertexts which are encrypted with the same key. More gen-
erally, Ek(m0) ⋆ Ek(m1) = Ek(m0 ⋄m1), where the first operation is performed
on the ciphertext space and the second one on the plaintext space.

Partial
Homomorphic

Encryption

Somewhat
Homomorphic

Encryption

Leveled
Homomorphic

Encryption

Fully
Homomorphic

Encryption

Operational power

System
requirements

Figure 4: HE schemes comparing the operational power of each scheme against the system
requirements to execute it.

There exist different types of HE schemes [133] which offer different proper-
ties. Figure 4 shows a high-level diagram with the relations between them. First
of all, Partial HE schemes only implement one operation, so the allowed compu-
tations are constrained to that, but they are the most efficient. These schemes
are typically obtained from well-known public key schemes based on Factor-
ization Problem or Discrete Logarithm Problem, e.g., RSA [134] and ElGamal
[135] are Multiplicative HE, and Paillier [136] is Additive HE. A generaliza-
tion about the allowed type of operations leads to Somewhat HE [137, 138],
where both additions and multiplications are supported. These schemes are
constrained by design, where the depth of the computable circuits is limited
to some threshold. However, this can be solved with an external parameter d,
which modifies the scheme on its initialization to allow a different circuit depth.
The schemes which have this property are called Leveled HE [139] and represent
a generalization of Somewhat HE. Finally, the most general category is Fully HE
[140], which allows the different operations and has no restrictions on the cir-
cuit depth. This is achieved thanks to a computational expensive process called
bootstrapping, which resets the noise added to the ciphertext after performing
operations. Although Fully HE is known to be very costly, it has evolved a lot
from its conceiving, leading to new constructions that may be practical for some
realistic scenarios [141].

4.2.3. Oblivious Polynomial Evaluation

Oblivious Polynomial Evaluation (OPE) [142] involves two parties: a sender,
whose input is a polynomial P , and a receiver, whose input is a value x. At the

14

end of the protocol, the receiver learns P (x) and the sender learns nothing.
This protocol can be instantiated with different primitives, like OT, Pseudo-

Random Function (PRF), Secret Sharing..., but the most common is HE. The
basic idea for PSI using OPE is that a user (let us call her Alice) represents her
set as roots of a polynomial (Section 4.1.1) and builds P (x). Then, the other
user (let us call him Bob) obliviously evaluates his own set elements within the
polynomial, e.g., using the homomorphic encrypted coefficients of the polyno-
mial (sent by Alice).

4.2.4. Oblivious Pseudo-Random Function

A PRF is a deterministic function which receives a key K and an input x
and which output is indistinguishable from a truly random function of the input
x. In an Oblivious Pseudo-Random Function (OPRF) [143], the key K belongs
to Alice and data x belong to Bob. Bob only obtains FK(x) and knows nothing
about K, and Alice knows nothing about x. OPRF is typically instantiated
using OT.

The basic idea for PSI using OPRF is that Alice gets its PRFK(A) using
the key K of Bob and sends the result to Bob. Bob locally computes PRFK(B)
and determines which elements are equal to those received from Alice.

4.2.5. Oblivious Key Value Store

An Oblivious Key Value Store (OKVS), formally introduced in [85, 95], is a
generalization of data structures that allow mapping a set of keys ki to a set of
values vi, e.g., a polynomial or a PRF. Informally, an OKVS is composed by two
algorithms: (1) Encode, that takes the set of pairs (ki, vi) as input and outputs
a data structure S, and (2) Decode, that evaluates a value k on S obtaining v
as output. It is important to note that when S is evaluated on ki (used to build
S), it outputs the corresponding vi.

4.2.6. Commutative Encryption

A Commutative Encryption (CE) algorithm is one where EK1
(EK2

(m)) =
EK2

(EK1
(m)). It was originally proposed to solve the Mental Poker problem

[144]. The basic idea for PSI using this primitive is that Alice can obtain
EBobPK(A), being A her data set. First Alice sends EAlicePK(A) to Bob. Then
Bob sends EBobPK(EAlicePK(A)) = EAlicePK(EBobPK(A)) to Alice. Then Alice
decrypts it to obtain EBobPK(A). Bob sends Alice its own encrypted data set
EBobPK(B), and Alice only needs to compare values to achieve the intersection.

4.2.7. Pairings

Let G1,G2 be two additive groups, and let GT be a multiplicative group, all
with prime order p. A Bilinear Pairing [145] is defined as a map e : G1 ×G2 →
GT and satisfies some properties:

1. Bilinearity: For all A,B ∈ G1 and C,D ∈ G2, e(A+B,C) = e(A,C)e(B,C),
and e(A,C + D) = e(A,C)e(A,D).

2. Non-degeneracy: There exist P,Q such that e(P,Q) ̸= 1.

15

3. Computability: e can be efficiently computed.

Thanks to the bilinearity property, the Discrete Logarithm Problem in G1

can be efficiently reduced to GT . The security on those schemes is typically
based on the bilinear Diffie-Hellman problem (BDHP), which is: given P, aP, bP, cP ,
compute e(P, P)abc, and the implementations work on elliptic curves.

Pairings have been used for interesting problems, e.g., the one-round 3-party
Diffie-Hellman problem [146] or constructions for Identity-based Encryption
[147].

4.2.8. Generic Circuits

Generic Circuits are the most extended constructions to achieve SMPC pro-
tocols on generic functionalities and can be computed from different building
blocks, e.g., garbling schemes or secret sharing.

A garbling scheme is a tuple of algorithms G = (Gb,En,De,Ev, ev).

• ev(f, ·) : {0, 1}n → {0, 1}m evaluates the original function f with some
input of length n and gives an output of length m.

• (F, e, d) ← Gb(1k, f) is the garbling algorithm, which uses a security pa-
rameter 1k and the original function f to output a garbled function F , an
encoding function e, and a decoding function d.

• X = En(e, x) is the encoding algorithm, which inputs the encoding func-
tion e and the original input x and outputs the garbled input X.

• Y = Ev(F,X) is the evaluation algorithm, which inputs the garbled func-
tion F and the garbled input X and outputs the garbled output Y .

• y = De(d, Y) is the decoding algorithm, which inputs the decoding func-
tion d and the garbled output Y and outputs the final output y.

There are two main properties which must be satisfied for such a scheme.
First, privacy, which allows an evaluator to obtain Y from X without being
able to derive x. Second, correctness, where De(d,Ev(F,En(e, x))) = ev(f, x),
i.e., the garbling scheme must output the same value as directly evaluating
the function without privacy. Garbling schemes are typically instantiated with
Yao’s Garbled Circuit protocol [148], where the original function is represented
as a Boolean circuit in F2 before being garbled and evaluated.

Another way is to use secret sharing-based schemes [149], which allow to
operate on distributed secrets. These schemes represent the original function
as an arithmetic circuit, typically in Fp. A secret-sharing scheme is usually
instantiated as a (t, n)-threshold scheme, where the secret value is split among
n participants and no t− 1 set of shares allows to reconstruct the secret.

While generic circuits allow to compute any desired function, they tend to
be slower than protocol-specific constructions. However, they add the property
of flexibility and offer many capabilities from a single tool, so selecting a generic
or a specific construction is sometimes a discussion topic.

16

4.3. Hashing Techniques

Hashing has become a fundamental technique to achieve efficient PSI pro-
tocols. Its main purpose is to reduce the number of comparisons that have to
be made between the set elements to achieve the intersection. In the plaintext
model, without hashing and assuming two sets with n elements each, the cost
of computing the intersection is O(n2) comparisons.

4.3.1. Hashing to bins

Hashing to bins employs a hash function which maps the set items from
one domain to the other, H : S → M , where |M | < |S|. Each hash address
points to one bin with an associated maximum capacity |B| ≥ 1, because two
or more items may be mapped to the same bin. If every party uses the same
hash function for the mapping, the same items will be mapped to the same bin,
so comparisons can be made bin-to-bin. Thanks to this technique, instead of
performing O(n2) secure comparisons to achieve PSI, the parties can reduce it
to O(B|B|2), where |B| is a pre-defined constant. According to [60], if B =
O(n), then with high probability |B| = logB/loglogB, and it would require
O(logB/loglogB)2 secure comparisons. If we recursively hash each bin into
sub-bins, we can obtain a protocol with O(BlogB) secure comparisons.

There exists a variant, named Dual Hashing, which employs two hash func-
tions, H1 and H2. When one item needs to be inserted, it is mapped both to
H1(x) and H2(x). Then, the item is inserted into the bin where there are less
items already inserted. When using this technique, |B| ≥ 1.

4.3.2. Cuckoo Hashing

Cuckoo Hashing employs two different hash functions, H1 and H2, associ-
ated with two tables, T1 and T2. To insert an element, it is first mapped to
H1(x) and placed in that address of T1 if it is free. Otherwise, it is also placed
in that address, but the previous item is remapped to T2 using H2(y). Using
this technique, each element has two possible positions. If the number of re-
placements for one insertion exceeds a threshold, the item is inserted into the
stash, which is a free address area. When using Cuckoo Hashing, |B| = 1.

4.3.3. Permutation-Based Hashing

This technique, also named Phasing [150], tries to reduce the bit length of
the items that are stored into the bins. It first defines an item as x = xL||xR,
where |xL| = logB. Also, a random function f is defined with range [0, B − 1].
The hash function H maps an item x to the bin with address xL ⊕ f(xR), and
the value stored in that address is only xR. As the stored value has a reduced
bit length of only |x| − logB, there are no collisions.

4.4. Adversary Models

Adversary Models are crucial for PSI and, in general, SMPC protocols. They
specify the adversary capabilities against which the protocol remains secure
and have to be well specified in the designing phase. Traditionally, two main
adversary models have been considered in the literature:

17

• Passive or Semi-Honest1 Adversary, where the corrupted parties do
not deviate from the protocol but may try to infer additional information
from the data they obtain.

• Active or Malicious Adversary, where the corrupted parties may de-
viate from the protocol to get advantage.

In addition to that, the Mixed Adversary, which can corrupt some parties
passively and others actively, must be considered. Achieving malicious security
is not an easy task and has traditionally been put aside in favor of semi-honest
security. In fact, malicious adversaries may harm the protocol in many ways,
and not all possibilities are always covered, e.g., deviation allows the corrupted
party to abort the protocol, aspect which is usually ignored. Other adversary
models have been proposed to set up intermediate scenarios between the semi-
honest and the malicious, e.g., the Covert Adversary [151].

5. PSI Taxonomy

PSI has many variants, which derive from a common root but offer different
properties. The classical definition of PSI allows two parties to compute the
intersection on their sets. A straight variant extends the problem to the multi-
party setting, called MP-PSI, where the communication topology shows up as
a key aspect. Other variants limit some aspects, like Threshold PSI (T-PSI),
where the parties get the intersection only if it reaches a certain threshold,
or PSI Cardinality (PSI-CA), where the size of the intersection is the only
output. On Size-Hiding-PSI (SH-PSI), the cardinality of the sets is hidden,
and on Authorized-PSI (A-PSI), there has to be a previous authorization phase
(TTP signature) for the elements of the set. Finally, Outsourced-PSI (O-PSI) or
Verifiable-Delegated-PSI (VD-PSI) break with the classical P2P topology and
let the parties to outsource their encrypted sets to an external party (server or
cloud) which is able to compute the intersection.

This section briefly describes different techniques to solve PSI problems,
proposing a taxonomy for PSI. This taxonomy also considers the different cryp-
tography building blocks used in existing protocols. Figure 5 shows how the
different building blocks are related. With respect to basic primitives, public
key is the most extended one. It is difficult to find PSI protocols that only require
a generic public key scheme to work, i.e., traditional asymmetric encryption and
digital signature. On the contrary, they usually require some extra capabilities.
Some protocols rely on the existence of pairings and others on properties such
as commutative encryption, but HE is undoubtedly the most typical building
block. The use of other primitives is minimal; this is why we have included
them in an “other” group that comprises symmetric cryptography techniques,
non-standard primitives, and quantum-based protocols. Finally, there are some

1Sometimes named Honest-but-Curious.

18

papers based on more complex protocols like generic circuits (garbled circuits
and secret sharing), OT, OPRF, and OKVS, which are the most extended build-
ing blocks after HE, and achieve the most efficient protocols.

Primitives

ProtocolsOthers

Public Key

Symmetric

Non-Standard

Quantum

Homomorphic
Encryption

Commutative
Encryption

Generic
Circuits

Pairings

Proxy
Re-Encryption

OPRF

OKVS

Oblivious
Transfer

Figure 5: Building blocks classification. Each block size is proportional to the number of
papers that belong to that category.

5.1. General PSI

General PSI may be described as the following:

1. Input:
P1 inputs S1 = {a1, a2, ..., an1}
P2 inputs S2 = {b1, b2, ..., bn2

}
2. Output:

P1 and/or P2 output S1 ∩ S2

Homomorphic Encryption: It constitutes one of the main building blocks
used for PSI. This approach comes from the traditional OPE-based protocols,
where sets are represented as polynomials whose coefficients are encrypted with
HE. This allows the parties to evaluate their points homomorphically on the
polynomials [20, 80]. The OPE-based protocol in [20] is a PSI with Projection
and Histogram (PSI-P-H), where the client learns the projection (or second
attribute in a table) of the items in the intersection and their histogram, but
authors move to an OPRF to improve efficiency for some variants (Existential
PSI [PSI-X], which indicates if the intersection is empty or not, and PSI with
Data Transfer [PSI-DT]). As discussed in [28], OPE-based PSI protocols are
computationally more expensive than those based on other primitives, e.g. [152].
Some protocols are based on Bloom filter to efficiently represent sets [7, 30].
After inserting the set elements in a Bloom filter, each bit is encrypted separately
with an Additive HE scheme, so the computation cost will be O(mBF). On
the other hand, [79] applies cuckoo filter because it takes less bits to encode

19

each item. This protocol also proposes a different representation after cuckoo
filter encapsulation using matrixes and a generalized N-dimensional approach.
Another way to achieve PSI is by encoding the elements into a bit vector [56],
as described in Section 4.1.2. This protocol also applies Additive HE, and the
computational cost grows in a similar way that in Bloom filter-based protocols
but is O(|U|). For its part, [13] proposes a protocol for the malicious setting,
achieving mutual PSI based on distributed ElGamal Encryption (i.e., a key is
split between parties thanks to homomorphic properties), Verifiable Encryption,
Semi-trusted Third Party, and Zero Knowledge Proofs (ZKP).

There are some protocols based on HE schemes with stronger properties
[10, 42]. The first one, which is based on leveled HE, targets the unbalanced
scenario and applies some techniques to improve the performance, like par-
titioning, batching, or windowing, together with preprocessing. It is focused
on reducing communication costs and achieves O(c log s). For its part, [42]
is based on [10] and introduces polynomial representation and OPRF in the
preprocessing phase. Also, the protocol is built for the malicious model, with
added support for arbitrary length items, and achieves labeled PSI. On the other
hand, [62] analyze the Threshold-PSI setting with the focus on communication
complexity. It sets some bounds, which are O(t) for fully HE and O(t2) for
additive HE. However, [94] improves these results and obtains Õ(t) for additive
HE. For its part, [100] proposes a Conditional-PSI protocol, that outputs the
intersection of the elements that fulfills a predicate. Finally, [117] is based on
[10] and proposes a V-PSI protocol, thanks to an inner product computation on
encrypted data.

Table 6: Rough computation costs for HE-based protocols on client side. Clen represents the
bit length of a ciphertext.

Method Reference Client Computation Client Communication

OPE [20][80] n(Enc+Dec) n Clen

Bloom filter [7][30] mBF (Enc+Dec) mBF Clen

Bit vector [56] |U|(Enc+Dec) |U| Clen

Table 6 summarizes the costs on the client side for some of the previous
protocols. It is clear that the size of the encoding data structure directly lim-
its performance, in relation to the number of encryptions that the client must
generate. An observation is that public key operations are the main bottle-
neck for the client device, so very big sets may be a problem. According to
[153], a Bloom filter achieves its optimal performance when k = (m/n)ln2 and
m ≥ nlog2(e)log2(1/ϵ), so the number of bits (and the number of encryptions)
will be higher than the number of elements it contains, with an incremental
factor typically greater than 10. The same applies to bit vector representation,
where it can be assumed that |U| will typically be much greater than n.

Oblivious Transfer: It is another fundamental building block for PSI.
There are two classic approaches: Garbled Bloom Filter (GBF) and OPRF,

20

but PSI is also achievable directly from OT. In the GBF approach [11, 63, 91],
the client builds a Bloom filter and the server a GBF. Each bit i of the Bloom
filter is used as a selection bit for a

(
2
1

)
-OT , where the server sends GBF [i] if

BF [i] = 1 and a random string otherwise. Both papers work in the malicious
setting thanks to probabilistic verification techniques (Section 7). While [11]
employs the cut-and-choose technique, [63] proposes a Traceable-PSI with bit
commitment and proof of ownership. The computation cost for both papers
(excluding precomputation and verification techniques) is similar to [153], which
is mBF

(
2
1

)
-OT for λ-bit strings. With respect to [91], it achieves T-PSI from

GBF and threshold secret sharing for the semi-honest model.
The second approach is OPRF [12, 16, 47, 51, 60, 103, 118]. The work in [12]

extends the paradigm in [152] (typically called PSZ) to the malicious setting.
Both use an oblivious encoding technique, which is similar to an OPRF for a
Set Inclusion protocol. Basically, P1 learns a random mapping F , and P2 learns
F (y). Then, P1 sends F (X) to P2, where element inclusion can be checked. PSI
is achieved by executing the Set Inclusion protocol n times and the malicious
security thanks to dual execution. There are other protocols based on the PSZ
paradigm, like [23, 27]. The first one achieves an approximation of the edit dis-
tance based on shingles and permutation-based hashing, while the second one
achieves Threshold-PSI. Both [16] and [55] modify the OPRF-based NR-PSI
protocol [154]. The modifications establish a precomputation phase (where OT
are executed and later consumed) and send the PRF values using filters. Both
protocols need to precompute lcmax OT, lc multiplications and c exponentia-
tions on the client side. Specifically, [16] uses OT and Bloom filter, while [55]
uses random OT and cuckoo filter. The protocol in [47] executes hashing-to-
bins, instantiated with simple hashing on P1 and cuckoo hashing on P2, and then
evaluates an OPRF instantiated with random OT. Other protocols based on [47]
propose balance hashing [51] or cuckoo hashing [35] instead of simple hashing.
For its part, [60] introduces some improvements that are focused on reducing
communication. The proposed scheme instantiates a one-time OPRF using ran-
dom OT, specifically the BaRK-OPRF scheme [155]. Another OPRF-based PSI
is proposed in [118], with a structure-aware OPRF using function secret sharing
in the semi-honest model. Other OT-based papers are [18, 75, 83]. The first one
builds a n ·n hamming distance matrix, where each cell with value 0 means that
the big string is in the joint set; [75] employs an

(
n
k

)
-OT scheme to achieve PSI

with equality tests; and [83] proposes a Java-based PSI framework to execute
OT-based protocols.

A recent line of research is OKVS-based PSI, introduced in [85]. It achieves
malicious PSI introducing a new linear solver named PaXoS (a binary OKVS)
based on a Garbled Cuckoo Filter and combining it with OT. This protocol
is almost as efficient as the semi-honest one of [152]. Following this line of
research, [103] proposes an OPRF-based PSI, where the OPRF is built from
random Vector Oblivious Linear Evaluation (VOLE) and PaXoS, improving the
communication cost. On the other hand, [95] achieves a compromise between
computation and communication, with a new OKVS based on 3-Hash Garbled
Cuckoo Table. Finally, [105], which is based on [103], obtains the most efficient

21

protocol to the date. More precisely, this paper proposes a more efficient OKVS
instead the one from [85], and uses subfield-VOLE.

Generic Public Key: The protocol in [19] achieves Size Hiding-PSI based
on smooth projective hash functions, which are very close to public key [156],
while [46] studies the PSI problem in the multiple interaction environment
and tries to mitigate the cross-interaction attack. Finally, [29] proposes an
Authorized-PSI based on Schnorr signature, where the client items are signed
by a certification authority.

Commutative Encryption: [5] achieves malicious PSI through commuta-
tive encryption and hash-based commitments. The computation of the intersec-
tion is practically the same as presented in Section 4.2.6. The only difference is
the addition of test numbers and commitments which lead to verification phases
achieving the desired security against malicious adversaries.

Pairings: An Authorized-PSI protocol is also proposed in [73] but built
with Identity-based Encryption using pairings. Following this line, the proto-
col in [43] is based on Bilinear Accumulators to achieve a Reactive-PSI, where
the output of the PSI protocol depends on previous instances. Pairing-based
protocols tend to be costly due to the pairing operations. Table 7 shows the
computation costs for some public key-based protocols.

Table 7: Computation costs for public key-based PSI protocols. T: set cardinality of test
elements.

Protocol
Computation Cost

Asymptotic Cost Specific Cost

CE [5] O(n1 + n2) Enc 2(n1 + n2 + 2T) Enc

HE [13] O(c+ s) Exp
(39c+ 72s+ 27) Exp+ (ec+ 4s) Inv+

+(c+ 3s+ 12) Hash

PK [19]
Client: O(c) Exp
Server: O(cs) Exp

-

PK [46] O(c+ s) Exp (3c+ 2s) Exp

PK [29] O(c+ s) Exp+O(c) Mult -

Pair [73] O(n)
2 Mult+ (3n+ 1) Pair + (2n+ 1) Exp

+(n+ 1) Hash

Pair [43] O(c2/logc) c Pair +O(c2/logc) Exp

Others: There are less common techniques employed to achieve PSI. The
approach presented in [59] is based on the naive hashing technique and also
proposes a protocol to check if the intersection is empty or not using blind
exponentiation. The latter is also the foundation for [69], which is based on
[157]. This protocol works with multi-sets and per-set tags and is applied on
a system which allows journalists to share documents in a privacy-preserving
way. On the other hand, [17] achieves PSI using matrix algebra in the mixed

22

model (malicious client). This protocol is applied in [45] to the Food Adequacy
Check use case. The method in [71] follows the oblivious polynomial evaluation
approach, but instead of using HE, it blinds the polynomials with PRF outputs
zi = PRF (key, i), represented in point-value form as (xi, P (xi) + zi), and [44]
proposes a PSI protocol based on algebraic PRF, which may serve as a building
block for both OPE and OPRF approaches. The work in [92] proposes a laconic
(2-round) PSI protocol with O(s) communication. On the other hand, [108] pro-
poses PSI based on functional encryption, for the reverse unbalanced setting,
where the client’s set cardinality is much larger than the server’s. Finally, the
PSI in [111] is based on greatest common divisor and dummy sets.

Applications: Some works implement PSI to achieve interesting applica-
tions, e.g., [31], which is based on Bloom filter like [158] to build a secure linka-
bility protocol on Vehicular Ad-Hoc Networks, while [49] uses PSI to accomplish
a proximity-based secure pairing using WiFi signals, where the authentication
is correct if |I| reaches a predefined threshold. Also, the users can derive a
pairing key with the intersection material. The authors in [61] analyze proto-
cols for checking compromised credentials where the protocol Google Password
Checkup (GPC) is based on PSI. Finally, [48] proposes a privacy preserving
ride-sharing system, which is based on [159], and the protocol in [92] can be
used for self-detecting encryption.

5.2. PSI-CA and C-PSI

PSI-CA is a specific PSI protocol where the result of the computation is
not the intersection set elements but their cardinality. More precisely, PSI-CA
may be analyzed as a specific instantiation of C-PSI, where a generic function
is computed on the intersection elements, and the result of that function is the
only result learned by the parties. PSI-CA or other functionalities of C-PSI
cannot be directly instantiated from general PSI when using specific purpose
primitives. Instead of that, the protocol has to go through a different path from
the beginning. A general description of C-PSI is formalized below:

1. Input:
P1 inputs S1 = {a1,1, a1,2, ..., a1,n1

}
P2 inputs S2 = {a2,1, a2,2, ..., a2,n2

}
2. Output:

P1 and/or P2 output f(S1 ∩ S2) and nothing else.

Homomorphic Encryption: Like in general PSI, HE remains as a widely
used building block. For instance, [21] proposes a mutual PSI-CA protocol for
malicious parties where both parties get the output with fairness with the help
of a semi-honest third party. It is based on Bloom filter, multiplicative HE,
verifiable encryption, and ZKP. Like other PSI protocols, the set elements are
encoded into a Bloom filter, and it is encrypted bit by bit. Each ciphertext
is sent to the other party together with proofs of knowledge. This protocol
heavily relies on public key cryptography, so it takes 22(kn1

ln 2) + 83n2 + 62 Exp

23

as computation cost. In [34], a verifiable-PSI-CA protocol is proposed with in-
put certification for the Ad Conversion Rate use case, specifically applied on
V2X-assisted Proximity Marketing. This protocol is based on multiplicative
HE, ZKP, and bilinear pairings and is secure under the malicious model. The
computation cost is (23c + 13s + 14) Exp in G and 2 pairings on the client
side. The works in [26, 76] achieve the variant PSI-Sum-CA, where one data
set has an integer value associated with each element. At the end of the com-
putation, the parties only learn the intersection cardinality and the sum of the
associated integer values. The protocol in [26] is based on Diffie-Hellman-style
double masking, and [76] adds two variants based on random OT and encrypted
Bloom filter. However, the three protocols use additive HE as the base of their
functionalities. The authors in [76] claim that the Diffie-Hellman-style protocol
is the most efficient in both communication and computation. This protocol
can handle data sets of size 213 with a running time faster than 10 seconds. On
the other hand, [32] achieves some Threshold-PSI protocols where the base is
an encrypted PSI-CA protocol with output EncPK1

(|C∩S|) and the public key
scheme is homomorphic. The protocol is based on Bloom filter and encrypted
polynomials. The computation cost is (k+2)n1 Enc for P1 and (log2e)kn2 Enc
and n1 Dec for P2. With respect to [70], its protocols are based on leveled HE
and compute differentially private PSI-CA. Finally, [119] proposes some pro-
tocols that allow one party learning a statistic on PSI (e.g., the mean of the
intersection), while the other party learns PSI-CA.

Oblivious Transfer: In [8], an OT-based protocol for PSI-CA is proposed
which use Flajolet-Martin sketches as a data structure encoder. A Flajolet-
Martin sketch is a probabilistic counter of the number of distinct elements in
a multiset. The authors propose a data oblivious algorithm to combine the
sketches and extract the estimator and then give two protocols: (1) to achieve
the intermediate result z, which is the index of the first 0 bit in the union sketch
FS1∪S2 , and (2) to estimate the cardinality of the intersection. Both results are
given to the parties in the form of secret shares.

Generic Public Key: The protocol in [77] is based on the Learning With
Errors (LWE) problem to achieve post-quantum secure SH-A-PSI-CA. LWE is
based on some parameters: the dimension n ∈ N, the prime modulus q, the vec-
tor length l = O(n log q), and a probability distribution X(n) over Zq. Next,
some values are specified: a ←R Zn

q , s ∈ Zn
q , and e ← X(n). The Decisional

LWE problem sets that samples in the form (a, ⟨a, s⟩+ e) are indistinguishable
from uniformly random samples (a, b)←R Zn

q ×Zq. This problem allows instan-
tiating post-quantum public key cryptosystems [160]. It is combined with Bloom
filter to achieve PSI-CA, where the client encapsulates data into the Bloom filter
and encrypts it bit by bit before transmitting to the server. This protocol’s com-
putation cost is ns+nl Mult on the client side and s(nl+l+1)+s(n+1)+ln+lt
Mult on the server side.

Commutative Encryption: The authors in [82] achieve PSI-CA in the un-

24

balanced scenario, thanks to Bloom filter and commutative encryption. The re-
ceiver gets a shuffled copy of its own set encrypted in the form EncPKS

(EncPKR
(Y)),

where it can be decrypted with the receiver’s private key and get EncPKS
(Y).

Then, the sender just sends EncPKS
(X) to the receiver, who can compare the

number of coincidences. In this protocol, Bloom filters are used to increase the
efficiency, and the execution takes (n1 + n2) Enc on the sender side and n2

Enc on the receiver side (with n2 as the receiver’s set cardinality), disregarding
Bloom filter encapsulation costs. For its part, [109] proposes a PSI-CA based
on commutative encryption, hash-prefix filer and cuckoo filter, for the reverse
unbalanced setting.

C-PSI: Some papers [33, 36, 52, 99] propose C-PSI protocols using OT,
Oblivious Programmable Pseudo Random Function (OPPRF), and generic cir-
cuits. These protocols are heavily influenced by the PSZ approach [150]. While
[33] is based on OT, the output of PSI is given in an “encrypted” form where
the result can be consumed by a garbled circuit, secret sharing, or HE schemes.
They use an undirected graph construction to encode the set elements where it
can be obliviously navigated, which allows basically a Private Set Membership
2 (PSM) instantiation. Papers [36] and [52] propose protocols which allows the
computation of symmetric functions on the intersection result. Both perform a
hashing step and a comparison step. The authors in [36] propose a novel hashing
technique called 2D cuckoo hashing, while [52] implements the traditional PSZ
hashing technique (P1 uses cuckoo hashing, and P2 uses simple hashing). Also,
while [36] directly compares each bin using a generic Boolean circuit which can
be extended to compute C-PSI, [52] differs in the usage of an OPPRF func-
tionality to compare the bins, and the output results are later consumed by a
generic Boolean circuit which computes C-PSI. On the other hand, [99] (which
is based on [52]), uses an Oblivious Switching Network and Private Equality
Tests, and achieves better communication (see Table 8). However, this protocol
leaks the cardinality of the intersection. Finally, [87] proposes a mixed-protocol
framework for generic 2PC that outperforms the PSI in [52] thanks to a new
efficient equality testing protocol.

Conversely, [54] proposes some protocols for PSI-CA and C-PSI for a 3-
party setting where the third party acts as a helper with no input but learns
the results of the intersection cardinality. The protocols in [64] also compute
PSI-CA and C-PSI, the second one applied both on the intersection payload and
on the intersection indices. The PSI-CA is based on polynomial interpolation,
and the C-PSI protocols rely on arithmetic circuits (with secret sharing). While
the circuit-based protocol is linear in computation, the polynomial-based and
hybrid ones are O(n log2 n). However, the circuit-based protocol consumes more
resources on communication and number of rounds. The work presented in [74]
builds PSI with bi-oblivious data transfer using a PSM subprotocol based on a

2A PSM protocol is a specific case of PSI where the client only inputs one item and checks
whether the server set contains it or not.

25

Table 8: Communication in MB for circuit-based f (PSI) on n elements of l bit length. Arb.:
Arbitrary Bit Length; SCS: Sort, Compare, and Shuffle (PSI protocol fully built with generic
circuits).

Protocol l
n

212 216 220

SCS [161]
32 104 2174 42976

Arb. 205 4826 106144

[36]
32 51 612 6582

Arb. 115 1751 25532
[52] Both 9 149 2540
[99] 60 2.93 55.49 1030

Bloom filter-based batch one-time OPPRF protocol and hashing techniques. In
this protocol, P2 (with input set Y) outputs fi(bi), where bi = 1 if yi ∈ X or 0
otherwise, and fi(·) is defined by P1.

Applications: There exist some works apply C-PSI to different scenarios.
First, [101] applies C-PSI to the use case of secure featurization, specifically
applied to secure phishing detection. On the other hand, [104] applies PSI-CA
to COVID contact tracing. The work in [65] applies O-PSI-CA on vertically
partitioned data for data mining purposes. Finally, [84] proposes an additive
HE-based protocol to compute PSI-emptiness for the Secure Inter-domain For-
warding Loop Test problem.

5.3. MP-PSI

Multi-party PSI is the natural extension of PSI to more than two parties.
Although it has not originally received as much attention as the two-party case,
it has become a trend the last years thanks to the performance improvements
of 2-party PSI. The main limitation in an MP-environment tends to be the
communication cost and the number of rounds the protocol takes. Increasing
the number of parties in PSI, and more general in SMPC, entails an increment
of resource consumption and may lead a protocol to a prohibitive cost that
eliminates its feasibility for realistic scenarios. The next description summarizes
the MP-PSI behavior:

1. Input:
Pi inputs Si = {ai,1, ai,2, ..., ai,n1

},
where i ∈ 1, ..., N and N > 2.

2. Output:
One or all the parties get ∩iSi and nothing else.

A key aspect in MP-PSI is how parties interact between each other. While
generic SMPC typically assumes a fully-meshed network with equally amount
of work for each party, for MP-PSI there are two specific topologies widely used
(shown in Figure 6): (1) the sequential and balanced topology, where parties can
be logically organized as a ring or a chain, and each of them performs approx-
imately the same amount of computation; and (2) the star network topology,

26

where one party assumes the role of leader, and every other party communicates
through the leader, which typically carries a heavier amount of work. These spe-
cific topologies have contributed to achieve complexities that grow linearly with
N , as shown in Figure 7 for some of the most efficient protocols.

P2

P3

P1

P4

P5

...
(Initiator)

(a) Ring network topology

P2

P3

P1

P4

P5

...
(Leader)

(b) Star network topology

Figure 6: Different topologies for MP-PSI

Of the selected papers, [78, 93] propose MP-PSO protocols based on vec-
tor set encoding and partial HE. However, [93] solutions assumes the external
decider setting, i.e., the result is given to a party that does not have an input
set. Like other vector-based protocols, each bit of the vector represents an el-
ement of the universe set U. Also, each bit needs to be encrypted using HE,
so it is desirable for |U| not to be very large. Both protocols work in a chain
setup where Pi makes some process on data received by Pi−1. At the end, data
published by PN can be decrypted using threshold cryptosystem to recover the
desired function (union, intersection...). While [78] requires O(NU) encryptions
and decryptions, [93] improves to O(U). Somehow similar is [96], but instead
of encrypting full-universe vectors, it encrypts BF. Another difference is that it
works in the star network topology.

Another approach is to extend a 2-party PSI to a MP-PSI using the star
network topology in an offline phase, where each pair (P1, Pi) performs an inde-
pendent 2-party protocol. Different works [38, 54, 90, 116] achieve this through
executions of OT (offline phase) and GBF (online phase). The cost of these
protocols is typically O(N) times the cost of the base protocol. While [38] and
[90] (based on [162]) achieve semi-honest security, [54] (based on [11]) and [116]
(based on [12]) achieve malicious security thanks to cut-and-choose techniques.
Partially related is [106], which proposes an MPC-PSI-Emptiness protocol using
GBF but HE instead of OT. This protocol is applied to vertically partitioned
data and achieves O(Nn) computation and communication in the semi-honest
model.

Another common approach for MP-PSI is the zero sharing technique [14,
58, 89, 102, 107], where the parties share some data that sum up to zero if
one particular item is in the intersection. To achieve that, [14] performs a first
phase for a conditional zero-sharing, where Pi obtains for xj a share of zero sj

i.
In a second phase the parties perform a conditional reconstruction thanks to

27

2 4 6 8 10 12 14 16 18

101

102

Number of parties

R
u

n
n

in
g

T
im

e
(s

ec
on

d
s)

[38]

[14]

[89]

[116]

[102]

Figure 7: Running time of different MP-PSI protocols as a function of the number of parties
involved N . We have restricted the figure to set size n = 216, threshold corruption t = 1, and
network WAN setting, as representative values. Note that higher values for t lead to slower
protocols.

OPPRF evaluated on xj and programmed to output the shares sj
i. If every

party programmed the OPPRF with xj , the sum outputs 0, i.e., xj is in the
intersection. The work in [89] improves [14] in terms of communication, and
proposes variants for circuit-PSI and quorum-PSI. On the other hand, [107]
also improves [14], but specifically in the small set setting. The work in [102]
follows the same technique but is based on the efficient OKVS from [85]. Finally,
[58] applies the zero sharing technique on vertically partitioned data, in order
to achieve a random forest between a client and some servers.

There exist other papers that achieve MP-PSI from not so widespread tech-
niques, e.g., [9] proposes an MP-PSI-CA based on commutative encryption and
random permutations, in the star network topology. On the other hand, [22]
presents two protocols, one secure against semi-honest adversaries and the other
maliciously secure, both in the star network topology, based on threshold addi-
tive HE and balance hashing. Finally, [94] extends a 2P HE-based T-PSI with
O(t) communication to the MP setting, with O(Nt) communication.

5.4. O-PSI

O-PSI is an interesting variant which has a main focus point: delegate the
PSI computation to an outsourced party, in a privacy preserving manner. This
type of PSI seems to be promising, because clients do not need to handle heavy
computations on their devices and PSI can be offered as a service in a cloud
environment. However, security and communication aspects are still weak points
for this variant. A general description of the O-PSI functionality is given below:

1. Outsource data sets: each client Ci sends E(Si) to the cloud.

28

2. Authorize the cloud: clients send specific data Authi to the cloud which
allows it to compute the intersection on authorized data sets.

3. Compute the set intersection: cloud computes
f(E(Si), Authi, E(Sj), Authj) = E(Si ∩ Sj).

4. Decrypt and verify the intersection: clients computes Si ∩ Sj =
Dec(Enc(Si ∩ Sj)) and verify it.

Homomorphic Encryption: It is, once again, the main building block. In
[53], two different constructions are proposed. One of them, named O-PSI, was
previously presented in [163]. This protocol has been taken as a reference for
many subsequent protocols. It is essentially based on polynomial representation
and additive HE. Each client represents its set in point-value form, blinds the
points using a PRF and then outsources them to the cloud. The clients commu-
nicate to compute some delegation data and send them to the cloud, which can
perform the intersection thanks to additive HE. Finally, the cloud sends a vector
to client B. The vector is then decrypted, the blinding factors are deleted, and
the resultant polynomial is interpolated so the client can obtain the intersec-
tion from it. It takes (2c + 1)Exp for the authorizer and 2(2c + 1)Exp + Fact,
where Fact is O(c2), for the receiver. Following this direction, [65] achieves
OPE-based O-PSI-CA. The scheme proposed in [40] is based on the O-PSI from
[53] and it is very similar but uses multiplicative HE instantiated with RSA.
It takes (2n + 1)(Enc + Mult) for client A and (2n + 1)(Enc + Dec + Mult)
for client B. The main difference from [53] is that client B encrypts the random
values and directly sends them to the cloud rather than to client A. Also, client
A saves (2n + 1)Mult operations.

The works in [15, 30, 110, 114] achieve O-PSI using Bloom filter encapsula-
tion and bit-by-bit encryption with additive HE. While [30] works in the 2-party
setting, [15, 114] achieves an O-MP-PSI scheme and [110] achieves O-MP-PSI-
CA for independent set sizes, where the computational cost for each party is
independent of the number of parties. In [15], all the parties have to perform
a threshold decryption process and then check if each item from their sets is
included in the resultant Bloom filter which contains the intersection. Computa-
tion complexity for each client is O(ci), but communication is O(c+N) because
of the threshold decryption phase. Conversely, [30] works in the client-server
scenario and proposes to outsource the encryption and decryption processes to
the cloud. However, this entails a higher communication cost, more network
delay, and even security issues. The work in [66] also employs an encryption
of vector’s bits fashion, but using full universe vector encoding, which is not
desirable for large universe sets.

On the other hand, [25] targets the problem of Verifiable-Delegated-PSI.
Based on the O-PSI from [53], it considers a cloud which can be malicious.
This protocol proposes a verification mechanism that allows a client to verify
the correctness of the result without having access to his own outsourced data
set. To achieve this, a secret value β is agreed for both clients and then sent
encoded to the cloud. The latter has to include this value into the intersection in
a way that, when the client unblinds the result, β has to be correct, otherwise

29

the client gets a random set, and it is supposed the cloud misbehaved. This
protocol takes (6n + 9)Exp and (4n + 6)Exp on clients A and B respectively,
but verification is only O(|I|).

For its part, [41] allows outsourcing and verification too. The authors analyze
the need for secure channels between clients in [25]. Therefore, they propose a
protocol that does not require secure channels between clients, who do not even
need to negotiate with each other in advance. Also, clients’ costs are balanced
with respect to other protocols. It takes (4n + 6)Enc and (2n + 3)(Enc + Dec)
on both clients respectively. On the other hand, [67] is also based on polyno-
mial representation, additive HE, and PRF. It is extensible to the Multi-party
setting and can handle normal channels. Encrypted data outsourced to the
cloud can be used directly by clients without additional computations. The
authors call this solution a natural secure data storage. This protocol takes
(2c+1)Mult+Dec+2(2c+1)Exp on client A and (2c+1)Enc+(2c+1)Dec on
client B. Finally, [97] can be viewed as HE, but it is built upon secret sharing
for a multi-owner database model. Despite the computation cost is lower, it
needs a setup with some non-colluding servers.

Generic Public Key: Both [6] and [39] are the same protocol, based on
public key encryption, where the first one encrypts using ElGamal and the sec-
ond one RSA. Basically, clients upload their data sets in an encrypted form,
where each sent element is (Enc(di), g

di), and the clients have to authorize the
cloud to compute the intersection. Basically, the cloud can compare exponential
obfuscated elements and then send to each client the encrypted intersection and
a witness to verify it. The computation of the intersection takes (n1 + n2)Exp.

Table 9: Computation costs of some algorithms in [68]. |Lt| is the cardinality of the leaf node
set of the access tree; n1 and n2 are the set cardinalities for the Data Owner and Data User
respectively.

Algorithm Cost

Blind (Owner) (1 + 2|LT |) ExpG1 + (n1 + 1) ExpG2 + n1 Hash+ |LT | OpG1

Token Generation (User) 5 ExpG1 + ExpG2 + |Att| OpG1

PSI (User) n2 (ExpG2 +Hash) +OpG2 + Intersection(n1, n2)

Pairings: The work in [81] is also verifiable but based on pairings. The
clients outsource their encrypted data sets with an associated tag. When the
cloud is authorized to compute the intersection between two data sets, the users
generate re-encryption keys, which are used to transform similar data encrypted
with different keys into common intermediate data. The cloud can then compute
the intersection and send it to the clients together with verification witnesses.
However, the whole process is resource intensive: both the encryption and set
intersection processes need O(n)(Exp + Pair + Mult). For a set of around 212

items, the encryption algorithm takes more than 20,000 seconds and the set
intersection process more than 15,000 seconds, but these results are prohibitive
for most applications. The authors in [68] propose an Attribute-Based PSI pro-

30

tocol with fine-grained access control, also based on pairings, public key, and
access tree. The protocol allows some Data Owners to outsource their sets in
an encrypted form to a Cloud, thanks to an access tree. Then, registered Data
Users who obtain delegated keys from a CA can perform a PSI computation
against the Cloud. Basically, they send some tokens to the Cloud, and the
Cloud computes some tokens for the users, who can locally compute the inter-
section. Table 9 shows the users computation cost for some steps, which may be
critical, as they are supposed to set a low threshold due to resource constraints.
Finally, [98] proposes an A-O-PSI protocol.

Others: Finally, there are other approaches based on symmetric key tech-
niques, like [24], that presents a two-server aided PSI protocol which combines
multiple keys with symmetric key proxy re-encryption, together with a rep-
utation system to prevent colussion. Roughly speaking, a proxy re-encryption
scheme allows Alice to give Bob decryption rights on her ciphertext, thanks to a
proxy that re-encrypts the ciphertext but cannot recover the original plaintext.
In [57] Bloom filter, deterministic encryption, and Pseudo-Random Permuta-
tion (PRP) are employed. Basically, the clients encode their sets into a Bloom
filter, which is then encrypted bit-by-bit, and the corresponding ciphertexts are
permuted according to a common PRP for both clients. The server tests which
ciphertexts are the same on both parties and sends their indices back to the
clients so they can use them to get the Bloom filter intersection. This pro-
tocol is semi-honest, but a malicious server variant is proposed using disjoint
dummy sets which are included into the intersection. For its part, [72] proposes
a modification to the EO-PSI scheme from [53], which is secure against passive
attacks, while it does not need any secure channels. This protocol presents more
balanced computation costs for the clients. Finally, [112] proposes a protocol
for O-MP-PSI where the clients’ sets are updatable. This protocol is based on
PRF, hash tables and BF.

6. Performance: a Semi-Honest perspective

As we have seen in the previous sections, PSI has been approached from
different perspectives, using different primitives. That diversity makes it difficult
to embed a given protocol directly in real applications. There are variants
designed for very specific scenarios, while others are designed from a general
perspective. Selecting the right protocol for a given scenario and setting is a
complex challenge for developers trying to put PSI intro practice.

When selecting a PSI variant, there are different parameters that have to
be taken into account. First, the restrictions on the resources available in the
devices and the infrastructure involved, including computation, communication
and memory. Secondly, the ability of the protocol to be optimized, including
aspects such as pre-processing or parallelization. Finally, the way the parties
interact in the protocol and the application specific requirements. Different
trade-offs and running time constrains may be considered depending on the use

31

case. In this section, some of these aspects are covered, from a semi-honest PSI
point of view.

6.1. Default performance

Through the whole paper, performance has been a central point of analysis.
The default performance can be analyzed directly from the costs, which depend
on the building blocks and the protocol design itself. In general, computation
and communication costs are well analyzed on most of the papers, but the
situation is not the same for memory, which is typically not well addressed.

6.1.1. Computation

PSI protocols tend to be heavy on computation, and that is because they
are mainly based on public key schemes.

Fully HE schemes are well known as heavy on computation, because of plain-
text encoding, encryption, and circuit evaluation. However, this technology is
growing, and specific implementations can achieve better results; e.g., using
leveled HE [10, 42] avoids the need for bootstrapping. However, the cost is
still significant, and many applications combine it with high-performance se-
tups [164], like multi-threaded CPUs or GPUs, to achieve better running times.
Some works have proposed solutions for lightweight scenarios, but they do not
achieve optimal results yet [165], especially for applications like PSI, where the
number of encryptions may be noteworthy.

On the other hand, partial HE schemes achieve better performance, closer
to classical public key schemes, but at the expense of the number of operations
supported and the communication level (section 6.1.2). However, public key
cryptography schemes are still heavy for constrained scenarios if the number of
operations is large; e.g., [166] achieves competitive running times at the expense
of key lengths.

According to [167, 168], the computation cost of one pairing can be estab-
lished in between 4 and 8 exponentiations in G1. However, pairing-based PSI
protocols are typically complex constructions, with additional functionalities
compared to general PSI, e.g., Attribute-based PSI (AB-PSI) [68], Authorized-
PSI [73], or Tag-based VD-PSI [81]. That means that the computational cost
may be increased, but with the profit of useful functionalities.

With respect to commutative encryption schemes, a similar limitation ap-
pears, where constructions like SRA [144] and Pohlig-Hellman [169] are based
on integer factorization and discrete logarithm problem. Exponentiations are
the main bottleneck, and they may be unacceptable for lightweight devices if
the number to perform is large.

On the other hand, there are constructions much more efficient on compu-
tation, mainly based on symmetric key cryptography. Despite base OT is built
with public key cryptography, thanks to OTe, as described in Section 4.2.1,
many OT can be achieved mainly with symmetric key techniques.

Also, OPRF , OKVS, and VOLE constructions meet these requirements
(e.g., [85] is built on OTe). In fact, they are known as the most efficient PSI

32

protocols to the date [60, 85, 103, 105, 170]. They work well for the unbalanced
setting, as they only need O(c) OPRF invocations (or OKVS encodings), but
at the expense of O(s) communication. Typical constructions are instantiated
with a previous hashing phase (cuckoo and simple hash) on both parties and
later B independent OPRF executions. According to [170], it is said that the
roughly cost to compute n OPRFs is the cost to compute 3.5n

(
2
1

)
-OT (with OT

extension). On the other hand, the OPPRF variant is typically used in f (PSI)
protocols, where some computations are executed on the intersection. These
protocols share the same principle, but they may present some additional phases
with other techniques, like additive HE [76] or general circuit computation [52],
to achieve the additional functionalities.

Finally, there are some protocols directly based on symmetric ciphers, but
they are very uncommon (because of the difficulty to achieve strong and secure
functionalities). The same applies to constructions directly based on algebra
techniques. These protocols typically rely on very specific designs and they are
not normally flexible to fit on different applications, as it may happen with other
building blocks which have been well studied and improved.

6.1.2. Communication

Communication presents a reverse scenario with respect to computation, and
for that reason trade-offs are always needed when selecting the correct protocol
for a specific application.

In general, public key-based protocols do not consume a lot of resources
(typically sending a number of ciphertexts proportional to the set sizes), and
communication rounds tend to be few. However, it depends on the security
design, because large ciphertexts (e.g., one that uses a 4,096-bit modulus with
220 elements would cost 512 MiB 3.), may be unacceptable depending on the
setting. Fully HE encryption-based works typically focus on reducing com-
munication [10, 42, 62], as it is their strong characteristic with respect to other
building blocks. A theoretical analysis for communication bounds on Threshold-
PSI is performed in [62] and it establishes the communication bounds as O(t)
for fully HE, O(t2) for partial HE, and O(t3) for garbled circuit approaches.
These results highlight the need for a trade-off, where authors argue for partial
HE being a better option than fully HE, because it does not consume such high
computation resources even if it is a bit more costly in terms of communication.

On the other hand, protocols built on fast primitives like OT, OPRF, and
OKVS are known to be more costly in terms of communication, e.g., with the
Hash + OT setting for PSI, which is linear with the size of the larger set.
That can be proven with the OPRF-based protocols [60, 103], which effectively
sends O(s) PRF values. However, improved extraction techniques [103] allow
to reduce the sender’s communication by half.

Table 10 presents some interesting values to compare communication costs
of OTe protocols and OPRF-based PSI protocols. In the first place, with re-

3MiB and MB are both understood as 1,024 KB

33

Table 10: Communication costs for cheap computation protocols in MiB. For the OPRF costs,
the values are set as 23kb/OPRF when instantiated with LowMC, k = 2 hash functions and
PRFval = 128 bits. The formula to compute the OPRF-based costs from [60]

is c OPRF + ks PRFval, where c = s in the balanced case.

Protocol Param.
Set Size

210 212 214 216 218 220 224

IKNP
(2
1

)
-OT32 κ = 128 0.039 0.156 0.625 2.5 10 40 -

KK
(2
1

)
-OT32 κ = 256 0.07 0.281 1.125 4.5 18 72 -

KK
(100

1

)
-OT32 κ = 256 0.453 1.813 7.25 29 116 464 -

GBF λ = 128 0.0625 0.25 1 4 16 64 -

PSI (OPRF) [60]
(balanced)

- 2.91 11.63 46.5 186 744 2976 -

PSI (OPRF) [60]
(unbalanced)

c = 210 2.91 3 3.38 4.88 10.88 34.88 -

PSI (OPRF) [103] c = 210 2.86 2.9 3.1 3.84 6.84 18.84 258.84
PSI (OPRF) [105] c = 210 0.4 0.44 0.62 1.37 4.37 16.37 256.37

spect to OTe, we can observe that IKNP outperforms KK for standard length
items (32 bits). It takes 40 MiB for 220 items, which may be acceptable for
some applications. On the other hand, garbled Bloom filter can be seen as(
2
1

)
-OTmBF

128 , where λ = 128 is the GBF security parameter (the length of the
items it contains). For that reason, it is a bit more costly than the typical OT
instantiation. For the OPRF setting, a rough calculation has been made, based
on the communication scenario of [60], where, assuming a 100% of occupation
on the client cuckoo filter, the protocol takes c times the communication cost of
an OPRF and ks times the length of a PRF value. It is clear that the unbal-
anced scenario totally outperforms the balanced one, as the number of OPRF
instantiations is directly related with the client set size. It is also noteworthy
that the OKVS paradigm [103, 105] has allowed the most compact protocols in
terms of communication.

Finally, generic circuit PSI has the problem of sending the whole circuit from
one party to the other, as it happens, e.g., when using Yao’s Garbled Circuit
approaches. As it was shown in Table 8 (Section 5.2), new techniques which
include hashing and OPRF outperforms General Circuit fully-based protocols
in terms of communication.

6.1.3. Memory

With respect to memory, it is not typically a problem itself except for data
structures that must be full loaded on memory. On public key schemes, pro-
cessing and checking the ciphertexts can be made independently so the memory
consumption may be well handled. On OT schemes, being interactive schemes,
the exchanged data must be typically loaded on memory; e.g., IKNP works with
m · κ matrixes, which would take 16 MiB for an OT 220 . However, matrixes can
be read line by line and loading from persistent memory, at the expense of run-
ning times. OPRF-based protocols are cheaper, as 4.19 MiB of client storage on
memory are needed when instantiated with [55]. On the other hand, data struc-

34

tures which perform fast arbitrary checks, as it happens with Bloom and cuckoo
filters, must be full loaded on memory; e.g., when modeled with error ϵ = 10−5

and load factor α = 95.5%, a Bloom filter takes 2.989 MiB and a cuckoo filter
2.617 MiB. While those values may be acceptable for general use devices, they
may be a problem for many IoT devices if they handle the computation them-
selves. With respect to generic circuits PSI, memory is highly dependent on the
circuit design. If many layers of gates cannot be split as separated processes,
they all must be loaded on memory, which may grow to unmanageable values.

6.2. Performance improvements

As it has been analyzed, PSI protocols are heavy by definition, especially
when the set sizes are large. For that reason, several performance improvement
techniques have been proposed on many papers.

6.2.1. Parallelization

Parallelization is a very important technique that can be applied when the
computations to perform are independent. Parallelization can be achieved from
different perspectives, and many protocols benefit from it. A straightforward
case is to run the protocol over a pool of threads. As previously mentioned,
public key schemes typically perform independent encryptions over the data
sets, which can be split through the threads [86]. However, the most promising
parallelization technique for those settings seems to be the use of Single Instruc-
tion Multiple Data (SIMD) [171, 172], where one instruction can be executed on
multiple data at the same time. Fully HE-based protocols are, in fact, the ones
which most rely on those techniques [10, 42] to reduce the heavy computational
cost they present. Other schemes, like OTe or OPRF, can also be executed as
independent threads, while dynamic allocation structures like cuckoo filter do
not allow it. In the case of generic circuit designs, the circuit evaluation phase
does not fit well with parallelization because it tend to be very sequential. The
main problematic issue of parallelization techniques is that they are platform-
dependent and typically associated with devices that are not very constrained
on resources.

6.2.2. Precomputation

On the other hand, precomputation is one of the most extended techniques
on the SMPC paradigm, as it allows the parties to compute resources in advance
of the inputs, considering only the online phase as the important running time
to analyze. Precomputation is well integrated into OT-based protocols, as the
base OT generates correlated data which are computed previously to the input
data. However, public key schemes do not fit well with this solution, because
the encryptions tend to be directly performed on the input data. With respect
to OPRF schemes, it depends on how they are instantiated, while the general
case, as previously analyzed, is to build them using OT. For generic circuits
approaches, precomputation is straightforward and one of their strongest per-
formance improvement techniques. While Boolean circuit-based schemes are

35

based on OT, Arithmetic circuit-based schemes are based on Secret Sharing,
which are also precomputable thanks to Beaver Multiplication Triples [173].
However, precomputation has a caveat, namely it still needs to be computed.
For periodic or automatic executions, which may be well coordinated, it has
sense, but if the protocol relies on user interaction, the precomputation process
still needs to wait for some kind of input to be executed, translating into waiting
times for the user. Another interesting but not much covered aspect (because
of the security losses) is parameter reuse. If that characteristic is allowed in a
PSI protocol, it may lead to a combination with precomputation, which would
translate into faster protocols.

6.2.3. Outsourcing

Finally, outsourcing is another technique whose main purpose is to reduce the
cost of the operations performed on the client side. Those protocols, as analyzed
in Section 5.4, outsource the data in an encrypted way to a high-performance
server or cloud, where heavy computations are carried on to compute the inter-
section. This approach is very straightforward with HE-based protocols, and it
has been applied too on generic public key and pairing-based protocols; however,
this is not the case with OT-based protocols, where the computation parties in-
teract directly between them. Outsourcing presents several problems: (1) data
sets need to be moved from the local setting to an external setting, which may be
very slow if the available bandwidth is not high enough or the data set is large;
(2) they are typically related to verification processes, which may be costly,
slowing down the computation; (3) the designs to the date do not significantly
reduce the computation costs on the client side, as can be observed in Table 11.
While the whole process is costly for the client, O-PSI may be thought as split
phases. If parameter generation and setup can be made in advance, then the
clients may be able to encrypt their data sets when they are updated to save
that computation to a future outsourcing and intersection computation. Also,
how to dynamically adapt the encrypted set when new items are included into
the client set without re-encrypting and outsourcing every item is an interesting
open problem.

6.2.4. Multi-party setting

In SMPC protocols, the number of parties (N) which are involved into the
protocol is a key parameter. When N is increased, the protocol running time
tend to increase exponentially. This is overall a communication problem, be-
cause the number of interactions between parties grows very high, especially if
the topology is a full mesh. For that reason, the topology is a key aspect that
has influence on performance. In section 5.3, it has been shown for MP-PSI that
two main topologies have been proposed: the star network and the ring network
(Figure 6). Clearly, these two approaches lead to less communication rounds
thanks to the topologies themselves, however with some trade-off. The star net-
work topology has the problem of establishing a leader who will consume much
more resources than the others, typically O(Nn) for the leader and O(n) for the
clients. For that reason, that topology may only have sense for some specific

36

Table 11: O-PSI Client-side Computation Costs. The presented results show all the costs
which concern the clients added together.

ID BB Client Computation Cost

[67] HE
A

(2c+ 1)Mult+Dec+
2(2c+ 1)Exp

B (2c+ 1)Enc+ (2c+ 1)Dec
[53]

O-PSI
HE

Auth (2c+ 1)Exp

Recv
(2c+ 1)Enc+

(2c+ 1)Dec+ Fact

[72] Symm
A Bnd Add+Bn(d+ 1)Mult

B
Bn Add+Bn Mult+

B(Int+ Fact)

[81]
TVDPSI

Pair. A
(2n+ 5) Exp+

(2(n+ |I|) + 3) Pair+
(n+ |I|) Mult

[39] PK A (4n+ 2|I|+ 3) Exp

[98] A-O-PSI Pair. A
8c Exp+ 4c Pair+
O(1) or O(c) Enc

scenarios. On the other hand, the ring network may not be always possible, due
to protocol design or building blocks characteristics, in addition to being easily
susceptible to DoS attacks (corrupting any party breaks the full execution). In
general, achieving fast protocols on MP-PSI with high density of parties is a
difficult task, but we identify a trend in mapping 2P-PSI to MP-PSI. It is clear
that novel and more efficient 2P-PSI have contributed to improve running times
in MP-PSI, as shown in Figure 7.

6.3. Running time and usability

An interesting thing to analyze is running time, because it gives direct in-
formation about the protocol performance in a specific (typically realistic) set-
ting. Table 12 shows some numbers for different protocols and settings. At
first sight, the difference between Local Area Network (LAN) and Wide Area
Network (WAN) settings may be noticed. WAN instantiations (typically with
100 Mbps of bandwidth and 100 ms of Round Trip Time [RTT]) are clearly
slower than LAN instantiations, still being much more common for most of the
applications described on Section 3. Some protocols on Table 12 do not even
consider any network constrain, so the specified times are expected to be slower
than they are.

First, there exist a clear distinction between HE-based protocols and those
from OPRF, OKVS approaches. For the first category, in order to achieve
fast running times (slower than 10 seconds), they need to compute on small
set sizes, with the exception of [10], which is surprisingly fast even when it is
based on fully HE, works on WAN setting, and employs just one thread. Other
protocols [7, 54] seem to be the most problematic protocols, maybe even for
balanced applications where running time is not a direct constrain (not only for
the waiting time, but also for the necessity of re-execution in case a problem
occurs when the protocol is on computation). The second category [85, 105, 155]

37

Table 12: Running Time (in seconds) for different protocols and set sizes. If asymmetric set
size is not specified, the protocol works in the balanced setting. Simulation equipment tends
to be general purpose processors and main memory > 100 GB, except [53, 68, 74, 76, 83],
where it is < 100 GB. NNt: no network delay; NS: not specified; xTh: number of threads;
xP: number of parties; (*): only phase for computing the intersection.

ID Type Setting
Asymm.
Set Size

Set Size
28 210 212 214 216 218 220 224

[155]
(PSI)
OT

LAN - 0.19 - 0.21 - 0.39 - 3.78 58.57
WAN - 0.56 - 0.59 - 1.26 - 7.46 106.83

[83]

PRTY20 (PSI)
Malicious, OT

LAN - 0.54 - 1.22 - 11.40 - 215.00 -
WAN - 1.84 - 2.36 - 13.00 - 204.00 -

CM20 (PSI)
OPRF

LAN - 0.81 - 1.13 - 8.08 - 180.90 -
WAN - 2.12 - 2.11 - 9.49 - 186.00 -

[51]
(PSI)

ROT, Hash
LAN

212
- - - - 0.80 - 2.96 33.94

WAN - - - - 2.28 - 5.43 53.33

[7]
(PSI)

HE, BF
NS - 11.76 44.68 175.79 702.39 2834.68 11327.78 - -

[10]
(PSI)
FHE

1Th
WAN 212

- - - - 2.1 - 9.3 106.2

64Th
WAN

- - - - 1 - 3.1 15.30

[85]
(PSI)

Malicious, OKVS
LAN - - - 0.12 - 0.25 - 5.6 -
WAN - - - 0.64 - 1.8 - 18.62 -

[105]
(PSI)

Malicious, OKVS
LAN - - - - - 0.062 - 0.439 8.055

[70]
(DiPSI-CA)

LHE
NS 212 - - 89.50 - 530.70 - 11751.90 -

[76]
(PSI-Sum-CA)

DH+Paill.
NNt - - - 3.17 - 48.93 - 776.46 -

[74]
(C-PSI)

OPPRF, BF
LAN - 1.41 2.60 6.80 22.49 85.13 - - -
WAN - 5.03 16.81 62.58 245.28 975.38 - - -

[99]
(C-PSI)

OT, OPRF
LAN - - - 1.58 - 6.36 - 84.41 -
WAN - - - 7.11 - 24.84 - 282.89 -

[54]
(MP-PSI)

GBF
4P - 0.8 - 2.95 - 40.91 - 513.02 -

[89]
(MP-PSI)
OPPRF

(4P,1t) - - - 1.9 - 7 - 69.6 -
(10P,4t) - - - 3 - 10.4 - 153.9 -

[102]
(MP-PSI)

OKVS
(4P,1t) - - - 0.36 - 1.83 - 18.48 -
(10P,4t) - - - 1.78 - 8.42 - 124.26 -

[68]
(O-PSI)*

Pair.
NS 210 - 10.28 - - - - 20.72 -

[53]
(O-PSI)
Symm

NS - - 6.20 25.20 101.20 415.80 1719.10 6864.20 -

achieves much faster protocols with acceptable running times even for large set
sizes, making it possible to embed them in real applications.

With respect to LAN settings, they may have sense in intra-network ser-
vices, when PSI can be executed to perform some kind of authentication [49]
or between devices that are inside the same corporation. However, there are
few applications where this has any sense. The normal instantiation is made
between organizations which must communicate over the Internet, and the same
is true for client-server applications. Only edge computing techniques may be
useful to move the computation closer to the user, but that needs the service
providers to deploy such resources on different edge servers instantiations.

Finally, there are applications where an O-PSI setting may have more sense,
e.g., when PSI is coordinated by the application but performed by the users,
like Private Ridesharing, Online Matchmaking, or Social Network Discovery.
For these settings, users may upload their data sets in an encrypted way to an

38

application instance and compute the intersection on demand. However, O-PSI
computations are still immature, with slow performance. On Table 12, [68] is
shown as faster than [53], but the data reflected here only specify the intersection
computation phase (ignoring encryption and other costly primitives). On the
other hand, [53] specifies the whole process but is very slow even when it is
based on symmetric techniques.

7. Overhead for the Malicious Adversary model

This section will discuss the different techniques which are applied to achieve
security against malicious adversaries for PSI protocols and their influence on
performance. As previously stated on section 4.4, semi-honest is usually much
better covered than malicious behavior; however, on the reference list there is
a group of papers which target the last model. Specifically, there are 13 for the
malicious model and 10 for the mixed model.

7.1. Zero Knowledge Proofs

A Zero Knowledge Proof is a protocol where a prover wants to convince the
verifier of the knowledge of some secret value, but without revealing it. The
verifier has to be able to check if the proof of knowledge is true. A general
construction for a Proof of Knowledge (PoK) is denoted by

π = PoK{(α1, ..., αl)|
M∧
i=1

Xi = fi(α1, ..., αl)}, (1)

being αj the values to be proven and Xi the commitments which allow the
verifier to check the proofs. ZKP allows a party to prove the execution of one
step using some private parameter; e.g., that some data have been correctly
encrypted using the corresponding private key. For that reason, they allow
parties to protect against deviations, because they can abort if the proof is not
correct. This building block has been the most extended to achieve security
against malicious adversaries, especially in the form of Σ-protocols [174] and
logarithm-based proofs [175]. From the reference list, [13, 21] apply them in the
mixed model, while [22, 34, 44] target the malicious model.

Nevertheless, the disadvantage is that they are costly in terms of compu-
tation and communication, whose costs are increased linearly. The work in
[13] claims that the number of exponentiations needed for a ZKP is Exp =

M + 2
∑M

i=1 ExpXi , where ExpXi is the number of exponentiations to compute
Xi, and the number of group elements to send is GE = M + l + 1.

7.2. Commitment Scheme

A Commitment Scheme [176, 177] is a protocol involving two parties, where
one of them commits to a private value (committing phase) which is only re-
vealed to the other party at the end (revealing phase). This protocol allows
binding one party to a value and using it through the protocol; otherwise, the

39

revealing phase will not carry out correctly, and the other party will detect the
cheating.

Some papers include commitment schemes (all for the malicious setting),
typically together with other techniques: [22] with polynomial checks and ZKP,
[5] with random test number to allow verification, and [64] with the help of
an untrusted third party. On the other hand, [54, 63] include bit commitment
with cut-and-choose techniques, which will be covered in the next subsection.
Finally, [36] performs dual execution to achieve malicious security, together
with commitments. This protocol works similarly to the PSZ setting, with
items mapped to hash tables and OPRF execution. The problem with dual
execution is that the OPRF is executed in both directions for each phase, so
both communication and running time are increased.

7.3. Probabilistic Verification Techniques

A Probabilistic Verification protocol allows a party to challenge the other
party to reveal some of its private values, typically randomly selected. If those
values fulfill some desired conditions, the rest of the private values are also
supposed to fulfill them with high probability. One classical technique to achieve
probabilistic verification is cut-and-choose [178, 179]. Those schemes are related
to OT, where the receiver commits to some selection values and has to reveal
some of them. Cut-and-choose is achieved through the following reduction4:

Fκ,l
ROT ≤ Fκ,l′

COTe
, where l′ = l + (κ + λ). From the reduction, one can observe

that the number of OTs needed is increased, but unlike older protocols, which
need S = {2, 3, 4} OT per original OT and sacrifice S−1 OT on revealing phase,
new protocols achieve better performance. That is thanks to the cheap cost of
OTe and new designs for probabilistic verification: no more than 5% of passive
IKNP from [131] in [55], and +1-10% of OTe in [11]).

The works in [11, 54, 63] achieve malicious security for the garbled Bloom
filter approach, where cut-and-choose is employed to limit the number of 1s
the receiver use in the Bloom filter 5. On the other hand, [55] achieves security
against malicious clients in the mixed model, where server is semi-honest because
it may learn information about the intersection if it is computed in plain, or
may influence the correctness of the computation using wrong labels or circuit
description.

Finally, one interesting thing is that [54, 63] use bit commitment, but [11, 55]
do not. In fact, OT has a committing property itself, by which if the sent values
are randomly generated, the receiver just needs to reveal the received value as
a commitment for the specific bit.

7.4. Other techniques

Some protocols achieve Malicious security thanks to Semantic Security or
IND-CPA schemes [181]. Specifically, [25, 41, 79] achieve security in the mixed

4COTe stands for Committed OTe.
5This achieves security, e.g., against Full Universe Attack [180].

40

model against malicious cloud or server, unlike other protocols, where the trend
is to protect only against malicious clients. On the other hand, [30] works in
the malicious model. If the public key scheme is semantically secure, security
comes with no additional cost but only for privacy aspects. If the wish is to
obtain cheating detection or data verification, other techniques must be used.

With respect to [42], it achieves security for the malicious model, but only
privacy against a malicious sender. To protect against a malicious receiver, an
OPRF pre-processing is employed, and for the sender, a labeled PSI protocol
is used, which is based on hashing. Like previously discussed, when discussing
semantically secure protocols, to avoid deviation, using ZKP would be required.

Other protocols achieve privacy against malicious adversaries, like [69], which
uses hashing and exponentiations, or [58], which is based on secret sharing. The
latest, however, assumes a trusted commodity server. The works in [17, 45]
achieve privacy too, thanks to randomized matrixes. To allow verification, [57]
adds to the computation 3 dummy sets, which are extracted after the intersec-
tion. However, it is necessary to agree previously on the dummy sets, that also
add more data to the computation, lowering the protocol performance. Finally,
[61] argues malicious security, but from application specific issues, while the
sublayer PSI protocol is semi-honest.

Finally, constructions based on OKVS [85, 103, 105] achieve malicious se-
curity because their proposed structures do not leak information as standard
semi-honest Cuckoo-based techniques do. More precisely, achieving malicious
security in these protocols only involves changing a set of parameters from the
base protocol, achieving overheads not so critical with respect to the semi-honest
setting.

8. Conclusions

We have carried out a Systematic Literature Review on Private Set Inter-
section that shows the ascending popularity of PSI in the number of published
papers, as well as the many different perspectives from where it is addressed,
identifying protocols, building blocks, and the most typical applications. The
analysis of the 76 papers from the reference list compares not only the different
security models and primitives but primarily the performance of each protocol,
serving as a good reference when trying to decide which protocol to use for each
particular scenario.

The goal of this paper was to give some answers to the initial questions
proposed in Section 2.1, that deal with the use of different building blocks,
relative performance of different approaches, different use cases, and challenges
to improve efficiency.

Regarding building blocks, as it is shown in Figure 5, HE, OT, and OPRF
remain as the main building blocks upon which PSI is built. While HE is
identified as an easy construction to build PSI on, OT and OPRF-based PSI
presents the most competitive performance. Other building blocks, like generic
Public Key, Commutative Encryption, or Pairings, present some limitations

41

regarding protocol capacity or a slower performance. We also remark a notable
trend in Quantum PSI, where more papers have been proposed the last years
[182–189] than in previous years [37, 50].

In general, PSI has been covered from a theoretical point of view, like most
of the papers from the reference list. Researchers tend to analyze how PSI could
be improved to be more efficient or secure, but there are only a few papers which
analyze PSI when it is embedded into practical applications or how to develop
efficient and versatile libraries.

PSI has been widely studied because of the wide set of use cases where these
protocols can be applied. Section 3 gives a description of the different use cases
which have been proposed, together with some classifications to specific scenar-
ios and their characteristics. The discussion has been based on the balanced
and unbalanced approaches, relating them to specific applications.

There are still some remaining challenges if the PSI paradigm is to be im-
proved. First of all, working on the performance is essential. Even when some
protocols achieve very competitive running times, they are typically based on
some assumptions and trade-offs. Some approaches (e.g., HE) assume high
computational power, while others (e.g., OPRF) assume high bandwidth. The
asymptotic levels are well placed, as nearly every protocol is sublinear. How-
ever, improving techniques like hashing structures or getting a faster OT may
lead to better running times. In this line, OKVS-based protocols have boosted
performance with respect other techniques, so we identify them as the new
standard building block for PSI. From the trade-offs which have to be made,
another aspect arises, namely how to classify or unify the different approaches.
Generic circuit techniques solve this problem and allow PSI to be easily embed-
ded into other SMPC protocols, although at the expense of performance. In
addition to that, dynamically switching from the OT to the HE setting may
not be possible. In light of the above, developing libraries and leading new con-
structions to more adaptive scenarios may be an interesting open problem. For
now, some works are introducing hybrid compilers that optimize circuit com-
putations performance, selecting different building blocks for each sub-circuit.
Other properties like multi-interaction or parameter reusability may help to im-
prove performance too. Another constrain is the number of parties, as MP-PSI
with high N typically means unmanageable running times. For that reason, im-
proving the multi-party case is also identified as an open problem. As MP-PSI
are obtaining more attention through the years, most designs are asymmetric,
assuming one party with a higher number of resources available. Finally, with
respect to security models, most of the protocols are only secure against semi-
honest adversaries. For the malicious setting, different techniques have been
analyzed, and some of them (e.g., malicious OT) do not add very high over-
loads. The main problem is how to achieve efficient proofs of correct behavior,
allowing more secure protocols.

42

Acknowledgements

This work has been partially supported by the projects: BIGPrivDATA
(UMA20-FEDERJA-082) from the FEDER Andalućıa 2014-2020 Program and
SecTwin 5.0 funded by the Ministry of Science and Innovation, and the Eu-
ropean Union (Next Generation EU) (TED2021-129830B-I00). The first au-
thor has been funded by the Spanish Ministry of Education under the National
F.P.U. Program (FPU19/01118). Funding for open access charge: Universidad
de Málaga / CBUA.

References

[1] A. C. Yao, Protocols for secure computations, in: 23rd Annual Symposium
on Foundations of Computer Science (sfcs 1982), 1982, pp. 160–164, iSSN:
0272-5428. doi:10.1109/SFCS.1982.38.

[2] O. Goldreich, S. Micali, A. Wigderson, How to play ANY mental game,
in: Proceedings of the nineteenth annual ACM symposium on Theory of
computing, STOC ’87, Association for Computing Machinery, New York,
NY, USA, 1987, pp. 218–229. doi:10.1145/28395.28420.

[3] M. J. Freedman, K. Nissim, B. Pinkas, Efficient Private Matching and Set
Intersection, in: C. Cachin, J. L. Camenisch (Eds.), Advances in Cryptol-
ogy - EUROCRYPT 2004, Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2004, pp. 1–19. doi:10.1007/978-3-540-24676-3 1.

[4] Y. Xiao, M. Watson, Guidance on Conducting a Systematic Literature
Review, Journal of Planning Education and Research 39 (1) (2019) 93–
112, publisher: SAGE Publications Inc. doi:10.1177/0739456X17723971.

[5] X. Cao, H. Li, L. Dang, Y. Lin, A two-party privacy preserving set in-
tersection protocol against malicious users in cloud computing, Computer
Standards & Interfaces 54 (2017) 41–45. doi:10.1016/j.csi.2016.08.004.

[6] M. M. Oliaiy, M. H. Ameri, J. Mohajeri, M. R. Aref, A Veri-
fiable Delegated Set Intersection without pairing, in: 2017 Iranian
Conference on Electrical Engineering (ICEE), 2017, pp. 2047–2051.
doi:10.1109/IranianCEE.2017.7985395.

[7] A. Davidson, C. Cid, An efficient toolkit for computing private set oper-
ations, Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10343
LNCS (2017) 261–278. doi:10.1007/978-3-319-59870-3 15.

[8] C. Dong, G. Loukides, Approximating Private Set Union/Intersection
Cardinality With Logarithmic Complexity, IEEE Transactions on In-
formation Forensics and Security 12 (11) (2017) 2792–2806, confer-
ence Name: IEEE Transactions on Information Forensics and Security.
doi:10.1109/TIFS.2017.2721360.

43

[9] S. Zander, L. L. H. Andrew, G. Armitage, Collaborative and privacy-
preserving estimation of IP address space utilisation, Computer Networks
119 (2017) 56–70. doi:10.1016/j.comnet.2017.03.010.

[10] H. Chen, K. Laine, P. Rindal, Fast Private Set Intersection from Homo-
morphic Encryption, in: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’17, Association
for Computing Machinery, New York, NY, USA, 2017, pp. 1243–1255.
doi:10.1145/3133956.3134061.

[11] P. Rindal, M. Rosulek, Improved private set intersection against malicious
adversaries, Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10210 LNCS (2017) 235–259. doi:10.1007/978-3-319-56620-7 9.

[12] P. Rindal, M. Rosulek, Malicious-Secure Private Set Intersection via
Dual Execution, in: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’17, Association
for Computing Machinery, New York, NY, USA, 2017, pp. 1229–1242.
doi:10.1145/3133956.3134044.

[13] S. Debnath, R. Dutta, New realizations of efficient and secure private
set intersection protocols preserving fairness, Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 10157 LNCS (2017) 254–284.
doi:10.1007/978-3-319-53177-9 14.

[14] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, N. Trieu, Prac-
tical Multi-party Private Set Intersection from Symmetric-Key Tech-
niques, in: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, Association for
Computing Machinery, New York, NY, USA, 2017, pp. 1257–1272.
doi:10.1145/3133956.3134065.

[15] A. Miyaji, K. Nakasho, S. Nishida, Privacy-Preserving Integration
of Medical Data, Journal of Medical Systems 41 (3) (2017) 37.
doi:10.1007/s10916-016-0657-4.

[16] A. Kiss, J. Liu, T. Schneider, N. Asokan, B. Pinkas, Private set intersec-
tion for unequal set sizes with mobile applications, Proceedings on Privacy
Enhancing Technologies 2017 (4) (2017) 177–197. doi:10.1515/popets-
2017-0044.

[17] Z. Gheid, Y. Challal, Private and efficient set intersection protocol for big
data analytics, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 10393 LNCS (2017) 149–164. doi:10.1007/978-3-319-65482-9 10.

44

[18] A. Rasheed, A. Kenneth, R. Mahapatra, D. Puthal, Private matching and
set intersection computation in multi-agent and industrial control systems,
in: Proceedings of the 12th Annual Conference on Cyber and Informa-
tion Security Research, CISRC ’17, Association for Computing Machinery,
New York, NY, USA, 2017, pp. 1–6. doi:10.1145/3064814.3064817.

[19] P. D’Arco, M. González Vasco, A. Pérez Del Pozo, C. Soriente, R. Stein-
wandt, Private set intersection: New generic constructions and feasibility
results, Advances in Mathematics of Communications 11 (3) (2017) 481–
502. doi:10.3934/amc.2017040.

[20] X. Carpent, S. Faber, T. Sander, G. Tsudik, Private Set Projections
& Variants, in: Proceedings of the 2017 on Workshop on Privacy
in the Electronic Society, WPES ’17, Association for Computing Machin-
ery, New York, NY, USA, 2017, pp. 87–98. doi:10.1145/3139550.3139554.

[21] S. Debnath, R. Dutta, Provably secure fair mutual private set intersec-
tion cardinality utilizing bloom filter, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 10143 LNCS (2017) 505–525. doi:10.1007/978-
3-319-54705-3 31.

[22] C. Hazay, M. Venkitasubramaniam, Scalable Multi-party Private Set-
Intersection, in: S. Fehr (Ed.), Public-Key Cryptography – PKC 2017,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2017,
pp. 175–203. doi:10.1007/978-3-662-54365-8 8.

[23] M. Aziz, D. Alhadidi, N. Mohammed, Secure approximation of
edit distance on genomic data, BMC Medical Genomics 10 (2017).
doi:10.1186/s12920-017-0279-9.

[24] E. Zhang, F. Li, B. Niu, Y. Wang, Server-aided private set inter-
section based on reputation, Information Sciences 387 (2017) 180–194.
doi:10.1016/j.ins.2016.09.056.

[25] A. Abadi, S. Terzis, C. Dong, VD-PSI: Verifiable delegated private
set intersection on outsourced private datasets, Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 9603 LNCS (2017) 149–168.
doi:10.1007/978-3-662-54970-4 9.

[26] M. Ion, B. Kreuter, E. Nergiz, S. Patel, S. Saxena, K. Seth, D. Shana-
han, M. Yung, Private Intersection-Sum Protocol with Applications to
Attributing Aggregate Ad Conversions, Tech. Rep. 738 (2017).

[27] P. Hallgren, C. Orlandi, A. Sabelfeld, PrivatePool: Privacy-
Preserving Ridesharing, in: 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), 2017, pp. 276–291, iSSN: 2374-8303.
doi:10.1109/CSF.2017.24.

45

[28] M. Kim, B. Z. Kim, An experimental study of encrypted polynomial
arithmetics for private set operations, Journal of Communications and
Networks 19 (5) (2017) 431–441. doi:10.1109/JCN.2017.000075.

[29] Y. Wen, Z. Gong, Z. Huang, W. Qiu, A new efficient authorized private set
intersection protocol from Schnorr signature and its applications, Cluster
Computing 21 (1) (2018) 287–297. doi:10.1007/s10586-017-0940-2.

[30] X. Wang, F. Xhafa, X. Luo, S. Zhang, Y. Ding, A privacy-preserving
fuzzy interest matching protocol for friends finding in social networks,
Soft Computing 22 (8) (2018) 2517–2526. doi:10.1007/s00500-017-2506-x.

[31] T. N. D. Pham, C. K. Yeo, Adaptive trust and privacy management frame-
work for vehicular networks, Vehicular Communications 13 (2018) 1–12.
doi:10.1016/j.vehcom.2018.04.006.

[32] Y. Zhao, S. S. Chow, Can You Find The One for Me?, in: Proceedings
of the 2018 Workshop on Privacy in the Electronic Society, WPES’18,
Association for Computing Machinery, New York, NY, USA, 2018, pp.
54–65. doi:10.1145/3267323.3268965.

[33] M. Ciampi, C. Orlandi, Combining private set-intersection with secure
two-party computation, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 11035 LNCS (2018) 464–482. doi:10.1007/978-3-319-
98113-0 25.

[34] D. Liu, J. Ni, H. Li, X. Lin, X. Shen, Efficient and Privacy-Preserving Ad
Conversion for V2X-Assisted Proximity Marketing, in: 2018 IEEE 15th
International Conference on Mobile Ad Hoc and Sensor Systems (MASS),
2018, pp. 10–18, iSSN: 2155-6814. doi:10.1109/MASS.2018.00014.

[35] L. Shen, X. Chen, D. Wang, B. Fang, Y. Dong, Efficient and Private
Set Intersection of Human Genomes, in: 2018 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), 2018, pp. 761–764.
doi:10.1109/BIBM.2018.8621291.

[36] B. Pinkas, T. Schneider, C. Weinert, U. Wieder, Efficient circuit-based psi
via cuckoo hashing, Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 10822 LNCS (2018) 125–157. doi:10.1007/978-3-319-78372-7 5.

[37] R. Shi, Efficient Quantum Protocol for Private Set Intersection Cardinal-
ity, IEEE Access 6 (2018) 73102–73109, conference Name: IEEE Access.
doi:10.1109/ACCESS.2018.2872741.

[38] R. Inbar, E. Omri, B. Pinkas, Efficient scalable multiparty private set-
intersection via garbled bloom filters, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture

46

Notes in Bioinformatics) 11035 LNCS (2018) 235–252. doi:10.1007/978-
3-319-98113-0 13.

[39] Q. Wang, F.-c. Zhou, T.-m. Ma, Z.-f. Xu, Faster fog-aided pri-
vate set intersection with integrity preserving, Frontiers of Informa-
tion Technology & Electronic Engineering 19 (12) (2018) 1558–1568.
doi:10.1631/FITEE.1800518.

[40] X. Yang, X. Luo, X. A. Wang, S. Zhang, Improved outsourced private
set intersection protocol based on polynomial interpolation, Concur-
rency and Computation: Practice and Experience 30 (1) (2018) e4329,
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4329.

doi:https://doi.org/10.1002/cpe.4329.

[41] S. Terada, K. Yoneyama, Improved Verifiable Delegated Private
Set Intersection, in: 2018 International Symposium on Informa-
tion Theory and Its Applications (ISITA), 2018, pp. 520–524.
doi:10.23919/ISITA.2018.8664310.

[42] H. Chen, Z. Huang, K. Laine, P. Rindal, Labeled PSI from Fully Homo-
morphic Encryption with Malicious Security, in: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, Association for Computing Machinery, New York, NY, USA,
2018, pp. 1223–1237. doi:10.1145/3243734.3243836.

[43] A. Cerulli, E. De Cristofaro, C. Soriente, Nothing refreshes like a RePSI:
Reactive private set intersection, Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 10892 LNCS (2018) 280–300. doi:10.1007/978-3-319-
93387-0 15.

[44] C. Hazay, Oblivious Polynomial Evaluation and Secure Set-Intersection
from Algebraic PRFs, Journal of Cryptology 31 (2) (2018) 537–586.
doi:10.1007/s00145-017-9263-y.

[45] Z. Gheid, Y. Challal, L. Chen, Private and efficient set intersection pro-
tocol for RFID-based food adequacy check, in: 2018 IEEE Wireless Com-
munications and Networking Conference (WCNC), 2018, pp. 1–6, iSSN:
1558-2612. doi:10.1109/WCNC.2018.8377207.

[46] S. Chatterjee, C. Kamath, V. Kumar, Private set-intersection with com-
mon set-up, Advances in Mathematics of Communications 12 (1) (2018)
17–47. doi:10.3934/amc.2018002.

[47] B. Pinkas, T. Schneider, M. Zohner, Scalable private set intersection based
on ot extension, ACM Transactions on Privacy and Security 21 (2) (2018).
doi:10.1145/3154794.

47

[48] U. M. Aı̈vodji, K. Huguenin, M.-J. Huguet, M.-O. Killijian, SRide: A
Privacy-Preserving Ridesharing System, in: Proceedings of the 11th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, ACM,
Stockholm Sweden, 2018, pp. 40–50. doi:10.1145/3212480.3212483.

[49] W. Cui, C. Du, J. Chen, PSP: proximity-based secure pairing of mo-
bile devices using WiFi signals, Wireless Networks 25 (2) (2019) 733–751.
doi:10.1007/s11276-017-1588-9.

[50] R. Shi, M. Zhang, A Feasible Quantum Protocol for Private Set Intersec-
tion Cardinality, IEEE Access 7 (2019) 72105–72112, conference Name:
IEEE Access. doi:10.1109/ACCESS.2019.2919119.

[51] L. Shen, X. Chen, J. Shi, B. Fang, A More Efficient Private Set Inter-
section Protocol Based on Random OT and Balance Hash, in: ICC 2019
- 2019 IEEE International Conference on Communications (ICC), 2019,
pp. 1–7, iSSN: 1938-1883. doi:10.1109/ICC.2019.8761417.

[52] B. Pinkas, T. Schneider, O. Tkachenko, A. Yanai, Efficient circuit-based
PSI with linear communication, Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 11478 LNCS (2019) 122–153. doi:10.1007/978-3-030-
17659-4 5.

[53] A. Abadi, S. Terzis, R. Metere, C. Dong, Efficient Delegated Private
Set Intersection on Outsourced Private Datasets, IEEE Transactions
on Dependable and Secure Computing 16 (4) (2019) 608–624, confer-
ence Name: IEEE Transactions on Dependable and Secure Computing.
doi:10.1109/TDSC.2017.2708710.

[54] E. Zhang, F.-H. Liu, Q. Lai, G. Jin, Y. Li, Efficient Multi-Party Private
Set Intersection Against Malicious Adversaries, in: Proceedings of the
2019 ACM SIGSAC Conference on Cloud Computing Security Workshop,
CCSW’19, Association for Computing Machinery, New York, NY, USA,
2019, pp. 93–104. doi:10.1145/3338466.3358927.

[55] D. Kales, C. Rechberger, T. Schneider, M. Senker, C. Weinert, Mobile
Private Contact Discovery at Scale, 2019, pp. 1447–1464.

[56] O. Ruan, Z. Wang, J. Mi, M. Zhang, New Approach to Set Rep-
resentation and Practical Private Set-Intersection Protocols, IEEE
Access 7 (2019) 64897–64906, conference Name: IEEE Access.
doi:10.1109/ACCESS.2019.2917057.

[57] S. Qiu, Z. Dai, D. Zha, Z. Zhang, Y. Liu, PPSI: Practi-
cal Private Set Intersection Over Large-Scale Datasets, in: 2019
IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced
Trusted Computing, Scalable Computing Communications, Cloud

48

Big Data Computing, Internet of People and Smart City Inno-
vation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019,
pp. 1249–1254. doi:10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-
SCI.2019.00232.

[58] D. Boer, Z. Ahmadi, S. Kramer, Privacy Preserving Client/Vertical-
Servers Classification, in: C. Alzate, A. Monreale, L. Bioglio, V. Bitetta,
I. Bordino, G. Caldarelli, A. Ferretti, R. Guidotti, F. Gullo, S. Pasco-
lutti, R. G. Pensa, C. Robardet, T. Squartini (Eds.), ECML PKDD 2018
Workshops, Lecture Notes in Computer Science, Springer International
Publishing, Cham, 2019, pp. 125–140. doi:10.1007/978-3-030-13463-1 10.

[59] S. Ramezanian, T. Meskanen, V. Niemi, Privacy preserving 2-party
queries on bipartite graphs with private set intersection, in: Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19,
Association for Computing Machinery, New York, NY, USA, 2019, pp.
1867–1870. doi:10.1145/3297280.3297610.

[60] B. Hemenway Falk, D. Noble, R. Ostrovsky, Private Set Intersection with
Linear Communication from General Assumptions, in: Proceedings of the
18th ACM Workshop on Privacy in the Electronic Society, WPES’19,
Association for Computing Machinery, New York, NY, USA, 2019, pp.
14–25. doi:10.1145/3338498.3358645.

[61] L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, T. Ristenpart,
Protocols for Checking Compromised Credentials, in: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, ACM, London United Kingdom, 2019, pp. 1387–1403.
doi:10.1145/3319535.3354229.

[62] S. Ghosh, M. Simkin, The Communication Complexity of Thresh-
old Private Set Intersection, in: A. Boldyreva, D. Micciancio (Eds.),
Advances in Cryptology – CRYPTO 2019, Lecture Notes in Com-
puter Science, Springer International Publishing, Cham, 2019, pp. 3–29.
doi:10.1007/978-3-030-26951-7 1.

[63] T. Jiang, X. Yuan, Traceable Private Set Intersection in Cloud Comput-
ing, in: 2019 IEEE Conference on Dependable and Secure Computing
(DSC), 2019, pp. 1–7. doi:10.1109/DSC47296.2019.8937666.

[64] P. H. Le, S. Ranellucci, S. D. Gordon, Two-party Private Set Intersec-
tion with an Untrusted Third Party, in: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’19, Association for Computing Machinery, New York, NY, USA, 2019,
pp. 2403–2420. doi:10.1145/3319535.3345661.

[65] Y. Li, Z. L. Jiang, L. Yao, X. Wang, S. M. Yiu, Z. Huang, Outsourced
privacy-preserving c4.5 decision tree algorithm over horizontally and ver-
tically partitioned dataset among multiple parties, Cluster Computing
22 (1) (2019) 1581–1593. doi:10.1007/s10586-017-1019-9.

49

[66] L. Chen, Z. Li, Z. Chen, Y. Liu, Two anti-quantum attack protocols for
secure multiparty computation, in: H. Zhang, B. Zhao, F. Yan (Eds.),
Trusted Computing and Information Security, Springer Singapore, Singa-
pore, 2019, pp. 338–359.

[67] O. Ruan, X. Huang, H. Mao, An Efficient Private Set Intersection Pro-
tocol for the Cloud Computing Environments, in: 2020 IEEE 6th Intl
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl
Conference on High Performance and Smart Computing, (HPSC) and
IEEE Intl Conference on Intelligent Data and Security (IDS), 2020, pp.
254–259. doi:10.1109/BigDataSecurity-HPSC-IDS49724.2020.00053.

[68] M. Ali, J. Mohajeri, M.-R. Sadeghi, X. Liu, Attribute-based fine-grained
access control for outscored private set intersection computation, Infor-
mation Sciences 536 (2020) 222–243. doi:10.1016/j.ins.2020.05.041.

[69] K. EdalatNejad, W. Lueks, J. Martin, S. Ledésert, A. L’Hôte, B. Thomas,
L. Girod, C. Troncoso, Datasharenetwork a decentralized privacy-
preserving search engine for investigative journalists, 2020, pp. 1911–1927.

[70] B. Kacsmar, B. Khurram, N. Lukas, A. Norton, M. Shafieinejad,
Z. Shang, Y. Baseri, M. Sepehri, S. Oya, F. Kerschbaum, Differen-
tially Private Two-Party Set Operations, in: 2020 IEEE European
Symposium on Security and Privacy (EuroS P), 2020, pp. 390–404.
doi:10.1109/EuroSP48549.2020.00032.

[71] O. Ruan, H. Mao, Efficient Private Set Intersection Us-
ing Point-Value Polynomial Representation, iSSN: 1939-0114
Pages: e8890677 Publisher: Hindawi Volume: 2020 (Sep. 2020).
doi:https://doi.org/10.1155/2020/8890677.

[72] A. Kavousi, J. Mohajeri, M. Salmasizadeh, Improved Secure Efficient
Delegated Private Set Intersection, in: 2020 28th Iranian Conference
on Electrical Engineering (ICEE), 2020, pp. 1–6, iSSN: 2642-9527.
doi:10.1109/ICEE50131.2020.9260663.

[73] Y. Wen, F. Zhang, H. Wang, Y. Miao, Z. Gong, Intersection-policy private
mutual authentication from authorized private set intersection, Science
China Information Sciences 63 (2) (2020) 122101. doi:10.1007/s11432-
019-9907-x.

[74] F. Karakoç, A. Küpçü, Linear Complexity Private Set Intersection for
Secure Two-Party Protocols, in: S. Krenn, H. Shulman, S. Vaudenay
(Eds.), Cryptology and Network Security, Lecture Notes in Computer
Science, Springer International Publishing, Cham, 2020, pp. 409–429.
doi:10.1007/978-3-030-65411-5 20.

[75] X. Wang, X. Kuang, J. Li, J. Li, X. Chen, Z. Liu, Oblivious Trans-
fer for Privacy-Preserving in VANET’s Feature Matching, IEEE Trans-
actions on Intelligent Transportation Systems (2020) 1–8Conference

50

Name: IEEE Transactions on Intelligent Transportation Systems.
doi:10.1109/TITS.2020.2973738.

[76] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth,
M. Raykova, D. Shanahan, M. Yung, On Deploying Secure Comput-
ing: Private Intersection-Sum-with-Cardinality, in: 2020 IEEE Euro-
pean Symposium on Security and Privacy (EuroS P), 2020, pp. 370–389.
doi:10.1109/EuroSP48549.2020.00031.

[77] S. K. Debnath, P. Stănică, T. Choudhury, N. Kundu, Post-quantum pro-
tocol for computing set intersection cardinality with linear complexity,
IET Information Security 14 (6) (2020) 661–669, conference Name: IET
Information Security. doi:10.1049/iet-ifs.2019.0315.

[78] W. Wang, S. Li, J. Dou, R. Du, Privacy-preserving mixed set operations,
Information Sciences 525 (2020) 67–81. doi:10.1016/j.ins.2020.03.049.

[79] S. Ramezanian, T. Meskanen, M. Naderpour, V. Junnila, V. Niemi,
Private membership test protocol with low communication complex-
ity, Digital Communications and Networks 6 (3) (2020) 321–332.
doi:10.1016/j.dcan.2019.05.002.

[80] K. Nomura, Y. Shiraishi, M. Mohri, M. Morii, Secure As-
sociation Rule Mining on Vertically Partitioned Data Using
Private-Set Intersection, IEEE Access 8 (2020) 144458–144467.
doi:10.1109/ACCESS.2020.3014330.

[81] Q. Wang, F. Zhou, J. Xu, S. Peng, Tag-based Verifiable Delegated Set In-
tersection over Outsourced Private Datasets, IEEE Transactions on Cloud
Computing (2020) 1–1Conference Name: IEEE Transactions on Cloud
Computing. doi:10.1109/TCC.2020.2968320.

[82] S. Lv, J. Ye, S. Yin, X. Cheng, C. Feng, X. Liu, R. Li, Z. Li, Z. Liu,
L. Zhou, Unbalanced private set intersection cardinality protocol with low
communication cost, Future Generation Computer Systems 102 (2020)
1054–1061. doi:10.1016/j.future.2019.09.022.

[83] Z. Liang, W. Liu, F. Zhang, B. Zhang, J. Liu, L. Zhang, K. Ren, A
Framework of Private Set Intersection Protocols., Tech. Rep. 1541 (2020).

[84] Y. Zhang, B. Zhu, Y. Fang, S. Guo, A. Zhang, S. Zhong, Secure inter-
domain forwarding loop test in software defined networks, IEEE Trans-
actions on Dependable and Secure Computing 17 (1) (2020) 162–178.
doi:10.1109/TDSC.2017.2731773.

[85] B. Pinkas, M. Rosulek, N. Trieu, A. Yanai, Psi from paxos: Fast, mali-
cious private set intersection, in: A. Canteaut, Y. Ishai (Eds.), Advances
in Cryptology – EUROCRYPT 2020, Springer International Publishing,
Cham, 2020, pp. 739–767.

51

[86] S. Mishima, K. Nakasho, Y. Takano, A. Miyaji, A practi-
cal parallel computation in a scalable multiparty private set in-
tersection, in: 2021 Ninth International Symposium on Comput-
ing and Networking Workshops (CANDARW), 2021, pp. 332–338.
doi:10.1109/CANDARW53999.2021.00063.

[87] A. Patra, T. Schneider, A. Suresh, H. Yalame, ABY2.0: Improved Mixed-
Protocol secure Two-Party computation, in: 30th USENIX Security Sym-
posium (USENIX Security 21), USENIX Association, 2021, pp. 2165–
2182.

[88] L. Reichert, M. Pazelt, B. Scheuermann, Circuit-based psi for covid-19 risk
scoring, in: 2021 IEEE International Performance, Computing, and Com-
munications Conference (IPCCC), IEEE Computer Society, Los Alamitos,
CA, USA, 2021, pp. 1–8. doi:10.1109/IPCCC51483.2021.9679360.

[89] N. Chandran, N. Dasgupta, D. Gupta, S. L. B. Obbattu, S. Sekar, A. Shah,
Efficient linear multiparty psi and extensions to circuit/quorum psi, in:
Proceedings 2021 acm sigsac conference on computer communications se-
curity, Association for Computing Machinery, New York, NY, USA, 2021,
p. 1182–1204. doi:10.1145/3460120.3484591.

[90] A. Kavousi, J. Mohajeri, M. Salmasizadeh, Efficient scalable multi-party
private set intersection using oblivious prf, in: R. Roman, J. Zhou
(Eds.), Security and Trust Management, Springer International Publish-
ing, Cham, 2021, pp. 81–99.

[91] E. Zhang, J. Chang, Y. Li, Efficient threshold private set intersection,
IEEE Access 9 (2021) 6560–6570. doi:10.1109/ACCESS.2020.3048743.

[92] N. Alamati, P. Branco, N. Döttling, S. Garg, M. Hajiabadi, S. Pu, Laconic
private set intersection and applications, in: K. Nissim, B. Waters (Eds.),
Theory of Cryptography, Springer International Publishing, Cham, 2021,
pp. 94–125.

[93] S. Ramezanian, T. Meskanen, V. Niemi, Multi-party private set operations
with an external decider, in: K. Barker, K. Ghazinour (Eds.), Data and
Applications Security and Privacy XXXV, Springer International Publish-
ing, Cham, 2021, pp. 117–135.

[94] S. Badrinarayanan, P. Miao, S. Raghuraman, P. Rindal, Multi-party
threshold private set intersection with sublinear communication, in: J. A.
Garay (Ed.), Public-Key Cryptography – PKC 2021, Springer Interna-
tional Publishing, Cham, 2021, pp. 349–379.

[95] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, A. Yanai, Oblivious key-
value stores and amplification for private set intersection, in: T. Malkin,
C. Peikert (Eds.), Advances in Cryptology – CRYPTO 2021, Springer
International Publishing, Cham, 2021, pp. 395–425.

52

[96] S. K. Debnath, T. Choudhury, N. Kundu, K. Dey, Post-quantum
secure multi-party private set-intersection in star network topology,
Journal of Information Security and Applications 58 (2021) 102731.
doi:https://doi.org/10.1016/j.jisa.2020.102731.

[97] Y. Li, D. Ghosh, P. Gupta, S. Mehrotra, N. Panwar, S. Sharma, Prism:
Private verifiable set computation over multi-owner outsourced databases,
in: Proceedings of the 2021 International Conference on Management of
Data, SIGMOD ’21, Association for Computing Machinery, New York,
NY, USA, 2021, p. 1116–1128. doi:10.1145/3448016.3452839.

[98] Y. Wang, Q. Huang, H. Li, M. Xiao, S. Ma, W. Susilo, Private set in-
tersection with authorization over outsourced encrypted datasets, IEEE
Transactions on Information Forensics and Security 16 (2021) 4050–4062.
doi:10.1109/TIFS.2021.3101059.

[99] G. Garimella, P. Mohassel, M. Rosulek, S. Sadeghian, J. Singh, Private
set operations from oblivious switching, in: J. A. Garay (Ed.), Public-
Key Cryptography – PKC 2021, Springer International Publishing, Cham,
2021, pp. 591–617.

[100] J. Takeshita, R. Karl, A. Mohammed, A. Striegel, T. Jung, Prov-
ably secure contact tracing with conditional private set intersection, in:
J. Garcia-Alfaro, S. Li, R. Poovendran, H. Debar, M. Yung (Eds.), Se-
curity and Privacy in Communication Networks, Springer International
Publishing, Cham, 2021, pp. 352–373.

[101] A. Shah, N. Chandran, M. Dema, D. Gupta, A. Gururajan, H. Yu, Secure
featurization and applications to secure phishing detection, in: Proceed-
ings of the 2021 on Cloud Computing Security Workshop, CCSW ’21,
Association for Computing Machinery, New York, NY, USA, 2021, p.
83–95. doi:10.1145/3474123.3486759.

[102] O. Nevo, N. Trieu, A. Yanai, Simple, fast malicious multiparty pri-
vate set intersection, in: Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’21, Associa-
tion for Computing Machinery, New York, NY, USA, 2021, p. 1151–1165.
doi:10.1145/3460120.3484772.

[103] P. Rindal, P. Schoppmann, Vole-psi: Fast oprf and circuit-psi from vector-
ole, in: A. Canteaut, F.-X. Standaert (Eds.), Advances in Cryptology –
EUROCRYPT 2021, Springer International Publishing, Cham, 2021, pp.
901–930.

[104] D. Wang, X. Chen, L. Zhang, Y. Fang, C. Huang, A blockchain-
based human-to-infrastructure contact tracing approach for covid-
19, IEEE Internet of Things Journal 9 (14) (2022) 12836–12847.
doi:10.1109/JIOT.2021.3138971.

53

[105] S. Raghuraman, P. Rindal, Blazing fast psi from improved okvs and
subfield vole, in: Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’22, Association
for Computing Machinery, New York, NY, USA, 2022, p. 2505–2517.
doi:10.1145/3548606.3560658.

[106] Y. Zhang, Y. Shi, Z. Zhou, C. Xue, Y. Xu, K. Xu, J. Du,
Efficient and secure skyline queries over vertical data federation,
IEEE Transactions on Knowledge and Data Engineering (2022) 1–
12doi:10.1109/TKDE.2022.3222415.

[107] L. Wei, J. Liu, L. Zhang, W. Zhang, Efficient and collusion resistant multi-
party private set intersection protocols for large participants and small sets
setting, in: X. Chen, J. Shen, W. Susilo (Eds.), Cyberspace Safety and
Security, Springer International Publishing, Cham, 2022, pp. 118–132.

[108] L. Xiong, Z. L. Jiang, Y. Huang, J. Wang, J. Xiao, W. Zhang, X. Wang,
Efficient private set intersection based on functional encryption, in: 2022
4th International Conference on Data Intelligence and Security (ICDIS),
2022, pp. 9–15. doi:10.1109/ICDIS55630.2022.00009.

[109] H. Li, Y. Gao, Efficient private set intersection cardinality protocol
in the reverse unbalanced setting, in: W. Susilo, X. Chen, F. Guo,
Y. Zhang, R. Intan (Eds.), Information Security, Springer International
Publishing, Cham, 2022, pp. 20–39.

[110] A. Adavoudi Jolfaei, H. Mala, M. Zarezadeh, Eo-psi-ca: Ef-
ficient outsourced private set intersection cardinality, Journal
of Information Security and Applications 65 (2022) 102996.
doi:https://doi.org/10.1016/j.jisa.2021.102996.

[111] M. Wu, T. H. Yuen, Gcd-filter: Private set intersection without encryp-
tion, in: L. Wang, M. Segal, J. Chen, T. Qiu (Eds.), Wireless Algorithms,
Systems, and Applications, Springer Nature Switzerland, Cham, 2022, pp.
429–440.

[112] A. Abadi, C. Dong, S. J. Murdoch, S. Terzis, Multi-party updatable dele-
gated private set intersection, in: I. Eyal, J. Garay (Eds.), Financial Cryp-
tography and Data Security, Springer International Publishing, Cham,
2022, pp. 100–119.

[113] F. Kato, Y. Cao, M. Yoshikawa, Pct-tee: Trajectory-based private contact
tracing system with trusted execution environment, ACM Trans. Spatial
Algorithms Syst. 8 (2) (dec 2022). doi:10.1145/3490491.

[114] A. Bay, Z. Erkin, J.-H. Hoepman, S. Samardjiska, J. Vos, Practical multi-
party private set intersection protocols, IEEE Transactions on Information
Forensics and Security 17 (2022) 1–15. doi:10.1109/TIFS.2021.3118879.

54

[115] D. R. George, S. Sciancalepore, Prm - private interference discov-
ery for ieee 802.15. 4 networks, in: 2022 IEEE Conference on
Communications and Network Security (CNS), 2022, pp. 136–144.
doi:10.1109/CNS56114.2022.9947236.

[116] A. Ben-Efraim, O. Nissenbaum, E. Omri, A. Paskin-Cherniavsky, Psimple:
Practical multiparty maliciously-secure private set intersection, in: Pro-
ceedings of the 2022 ACM on Asia Conference on Computer and Commu-
nications Security, ASIA CCS ’22, Association for Computing Machinery,
New York, NY, USA, 2022, p. 1098–1112. doi:10.1145/3488932.3523254.

[117] Y. Jiang, J. Wei, J. Pan, Publicly verifiable private set intersection
from homomorphic encryption, in: X. Chen, X. Huang, M. Kuty lowski
(Eds.), Security and Privacy in Social Networks and Big Data, Springer
Nature Singapore, Singapore, 2022, pp. 117–137.

[118] G. Garimella, M. Rosulek, J. Singh, Structure-aware private set inter-
section, with applications to fuzzy matching, in: Y. Dodis, T. Shrimp-
ton (Eds.), Advances in Cryptology – CRYPTO 2022, Springer Nature
Switzerland, Cham, 2022, pp. 323–352.

[119] J. H. M. Ying, S. Cao, G. S. Poh, J. Xu, H. W. Lim, Psi-stats: Private set
intersection protocols supporting secure statistical functions, in: G. Ate-
niese, D. Venturi (Eds.), Applied Cryptography and Network Security,
Springer International Publishing, Cham, 2022, pp. 585–604.

[120] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, N. Borisov, BotGrep:
Finding P2P Bots with Structured Graph Analysis 16.

[121] E. D. Cristofaro, J. Kim, G. Tsudik, Linear-Complexity Private Set In-
tersection Protocols Secure in Malicious Model, Tech. Rep. 469 (2010).

[122] L. Kamm, J. Willemson, Secure Floating-Point Arithmetic and Private
Satellite Collision Analysis, Tech. Rep. 850 (2013).

[123] B. H. Bloom, Space/time trade-offs in hash coding with allow-
able errors, Communications of the ACM 13 (7) (1970) 422–426.
doi:10.1145/362686.362692.

[124] B. Fan, D. G. Andersen, M. Kaminsky, M. D. Mitzenmacher, Cuckoo
Filter: Practically Better Than Bloom, in: Proceedings of the 10th
ACM International on Conference on emerging Networking Experi-
ments and Technologies, ACM, Sydney Australia, 2014, pp. 75–88.
doi:10.1145/2674005.2674994.

[125] M. O. Rabin, How To Exchange Secrets with Oblivious Transfer, Tech.
Rep. 187 (2005).

55

[126] S. Even, O. Goldreich, A. Lempel, A Randomized Protocol for Sign-
ing Contracts, in: D. Chaum, R. L. Rivest, A. T. Sherman (Eds.),
Advances in Cryptology, Springer US, Boston, MA, 1983, pp. 205–210.
doi:10.1007/978-1-4757-0602-4 19.

[127] G. Brassard, C. Crepeau, J.-M. Robert, All-or-Nothing Disclosure of Se-
crets, in: A. M. Odlyzko (Ed.), Advances in Cryptology — CRYPTO’ 86,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1987,
pp. 234–238. doi:10.1007/3-540-47721-7 17.

[128] M. Naor, B. Pinkas, Computationally Secure Oblivious Transfer, Journal
of Cryptology 18 (1) (2005) 1–35. doi:10.1007/s00145-004-0102-6.

[129] T. Chou, C. Orlandi, The Simplest Protocol for Oblivious Transfer, Tech.
Rep. 267 (2015).

[130] M. Naor, B. Pinkas, Efficient oblivious transfer protocols, in: Proceed-
ings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’01, Society for Industrial and Applied Mathematics, USA, 2001,
pp. 448–457.

[131] Y. Ishai, J. Kilian, K. Nissim, E. Petrank, Extending Oblivious Transfers
Efficiently, in: D. Boneh (Ed.), Advances in Cryptology - CRYPTO 2003,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2003,
pp. 145–161. doi:10.1007/978-3-540-45146-4 9.

[132] V. Kolesnikov, R. Kumaresan, Improved OT Extension for Transferring
Short Secrets, in: R. Canetti, J. A. Garay (Eds.), Advances in Cryptology
– CRYPTO 2013, Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2013, pp. 54–70. doi:10.1007/978-3-642-40084-1 4.

[133] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A. Reuter,
M. Strand, A Guide to Fully Homomorphic Encryption, Tech. Rep. 1192
(2015).

[134] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM
21 (2) (1978) 120–126. doi:10.1145/359340.359342.

[135] T. Elgamal, A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms, IEEE TRANSACTIONS ON INFORMATION
THEORY (4) (1985) 4.

[136] P. Paillier, Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes, in: J. Stern (Ed.), Advances in Cryptology — EURO-
CRYPT ’99, Lecture Notes in Computer Science, Springer, Berlin, Hei-
delberg, 1999, pp. 223–238. doi:10.1007/3-540-48910-X 16.

[137] C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stan-
ford University, crypto.stanford.edu/craig (2009).

56

[138] Z. Brakerski, Fully Homomorphic Encryption without Modulus Switching
from Classical GapSVP, Tech. Rep. 078 (2012).

[139] Z. Brakerski, C. Gentry, V. Vaikuntanathan, Fully Homomorphic Encryp-
tion without Bootstrapping, Tech. Rep. 277 (2011).

[140] C. Gentry, Fully homomorphic encryption using ideal lattices, in: Proceed-
ings of the forty-first annual ACM symposium on Theory of computing,
STOC ’09, Association for Computing Machinery, New York, NY, USA,
2009, pp. 169–178. doi:10.1145/1536414.1536440.

[141] I. Chillotti, M. Joye, D. Ligier, J.-B. Orfila, S. Tap, CONCRETE: Con-
crete Operates oN Ciphertexts Rapidly by Extending TfhE (2020) 6.

[142] M. Naor, B. Pinkas, Oblivious transfer and polynomial evaluation, in:
Proceedings of the thirty-first annual ACM symposium on Theory of Com-
puting, STOC ’99, Association for Computing Machinery, New York, NY,
USA, 1999, pp. 245–254. doi:10.1145/301250.301312.

[143] M. J. Freedman, Y. Ishai, B. Pinkas, O. Reingold, Keyword Search and
Oblivious Pseudorandom Functions, in: J. Kilian (Ed.), Theory of Cryp-
tography, Lecture Notes in Computer Science, Springer, Berlin, Heidel-
berg, 2005, pp. 303–324. doi:10.1007/978-3-540-30576-7 17.

[144] A. Shamir, R. L. Rivest, L. M. Adleman, Mental Poker, in: D. A. Klarner
(Ed.), The Mathematical Gardner, Springer US, Boston, MA, 1981, pp.
37–43. doi:10.1007/978-1-4684-6686-7 5.

[145] H.-G. Rück, On the discrete logarithm in the divisor class group of curves,
Mathematics of Computation 68 (226) (1999) 805–807. doi:10.1090/S0025-
5718-99-01043-1.

[146] A. Joux, A One Round Protocol for Tripartite Diffie–Hellman, Journal of
Cryptology 17 (4) (2004) 263–276. doi:10.1007/s00145-004-0312-y.

[147] D. Boneh, M. Franklin, Identity-Based Encryption from the Weil Pairing
(2001) 17.

[148] A. C.-C. Yao, How to generate and exchange secrets, in: 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), 1986, pp.
162–167, iSSN: 0272-5428. doi:10.1109/SFCS.1986.25.

[149] M. Keller, V. Pastro, D. Rotaru, Overdrive: Making SPDZ Great Again,
in: J. B. Nielsen, V. Rijmen (Eds.), Advances in Cryptology – EURO-
CRYPT 2018, Lecture Notes in Computer Science, Springer International
Publishing, Cham, 2018, pp. 158–189. doi:10.1007/978-3-319-78372-7 6.

[150] B. Pinkas, T. Schneider, G. Segev, M. Zohner, Phasing: Private Set In-
tersection Using Permutation-based Hashing, 2015, pp. 515–530.

57

[151] Y. Aumann, Y. Lindell, Security Against Covert Adversaries: Efficient
Protocols for Realistic Adversaries, Tech. Rep. 060 (2007).

[152] B. Pinkas, T. Schneider, M. Zohner, Faster Private Set Intersection based
on OT Extension, Tech. Rep. 447 (2014).

[153] C. Dong, L. Chen, Z. Wen, When Private Set Intersection Meets Big Data:
An Efficient and Scalable Protocol, Tech. Rep. 515 (2013).

[154] C. Hazay, Y. Lindell, Efficient Protocols for Set Intersection and Pattern
Matching with Security Against Malicious and Covert Adversaries, in:
R. Canetti (Ed.), Theory of Cryptography, Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2008, pp. 155–175. doi:10.1007/978-
3-540-78524-8 10.

[155] V. Kolesnikov, R. Kumaresan, M. Rosulek, N. Trieu, Efficient Batched
Oblivious PRF with Applications to Private Set Intersection, Tech. Rep.
799 (2016).

[156] R. Cramer, V. Shoup, Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption (2002) 20.

[157] E. De Cristofaro, P. Gasti, G. Tsudik, Fast and Private Computation
of Cardinality of Set Intersection and Union, in: J. Pieprzyk, A.-R.
Sadeghi, M. Manulis (Eds.), Cryptology and Network Security, Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg, 2012, pp. 218–
231. doi:10.1007/978-3-642-35404-5 17.

[158] M. Lentz, V. Erdélyi, P. Aditya, E. Shi, P. Druschel, B. Bhattacharjee,
{SDDR}: Light-Weight, Secure Mobile Encounters, 2014, pp. 925–940.

[159] U. M. Aı̈vodji, S. Gambs, M.-J. Huguet, M.-O. Killijian, Meeting
points in ridesharing: A privacy-preserving approach, Transporta-
tion Research Part C: Emerging Technologies 72 (2016) 239–253.
doi:10.1016/j.trc.2016.09.017.

[160] M. I. Mihailescu, S. L. Nita, Ring-Learning with Errors Cryptography,
in: Pro Cryptography and Cryptanalysis, Apress, Berkeley, CA, 2021, pp.
343–357. doi:10.1007/978-1-4842-6367-9 14.

[161] Y. Huang, D. Evans, J. Katz, Private Set Intersection: Are Garbled Cir-
cuits Better than Custom Protocols? 15.

[162] M. Chase, P. Miao, Private Set Intersection in the Internet Setting from
Lightweight Oblivious PRF, in: D. Micciancio, T. Ristenpart (Eds.), Ad-
vances in Cryptology – CRYPTO 2020, Vol. 12172, Springer International
Publishing, Cham, 2020, pp. 34–63, series Title: Lecture Notes in Com-
puter Science. doi:10.1007/978-3-030-56877-1 2.

58

[163] A. Abadi, S. Terzis, C. Dong, O-PSI: Delegated Private Set Intersection on
Outsourced Datasets, in: H. Federrath, D. Gollmann (Eds.), ICT Systems
Security and Privacy Protection, IFIP Advances in Information and Com-
munication Technology, Springer International Publishing, Cham, 2015,
pp. 3–17. doi:10.1007/978-3-319-18467-8 1.

[164] A. A. Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, K. Rohloff,
Implementation and Performance Evaluation of RNS Variants of the BFV
Homomorphic Encryption Scheme, Tech. Rep. 589 (2018).

[165] A. Caudhari, R. Bansode, Securing IoT Devices Generated Data Using
Homomorphic Encryption, in: V. E. Balas, V. B. Semwal, A. Khan-
dare, M. Patil (Eds.), Intelligent Computing and Networking, Lecture
Notes in Networks and Systems, Springer, Singapore, 2021, pp. 219–226.
doi:10.1007/978-981-15-7421-4 20.

[166] W. Ren, X. Tong, J. Du, N. Wang, S. C. Li, G. Min, Z. Zhao,
A. K. Bashir, Privacy-preserving using homomorphic encryption in
Mobile IoT systems, Computer Communications 165 (2021) 105–111.
doi:10.1016/j.comcom.2020.10.022.

[167] F. Benhamouda, G. Couteau, D. Pointcheval, H. Wee, Implicit Zero-
Knowledge Arguments and Applications to the Malicious Setting, Tech.
Rep. 246 (2015).

[168] Y. Rouselakis, B. Waters, Efficient Statically-Secure Large-Universe
Multi-Authority Attribute-Based Encryption, Tech. Rep. 016 (2015).

[169] S. Pohlig, M. Hellman, An improved algorithm for computing
logarithms overGF(p)and its cryptographic significance (Corresp.),
IEEE Transactions on Information Theory 24 (1) (1978) 106–
110, conference Name: IEEE Transactions on Information Theory.
doi:10.1109/TIT.1978.1055817.

[170] V. Kolesnikov, R. Kumaresan, M. Rosulek, N. Trieu, Efficient Batched
Oblivious PRF with Applications to Private Set Intersection, Tech. Rep.
799 (2016).

[171] N. P. Smart, F. Vercauteren, Fully Homomorphic SIMD Operations, Tech.
Rep. 133 (2011).

[172] P. Martins, L. Sousa, On the Evaluation of Multi-core Systems with SIMD
Engines for Public-Key Cryptography, in: 2014 International Symposium
on Computer Architecture and High Performance Computing Workshop,
2014, pp. 48–53. doi:10.1109/SBAC-PADW.2014.10.

[173] D. Beaver, Efficient Multiparty Protocols Using Circuit Randomization,
in: J. Feigenbaum (Ed.), Advances in Cryptology — CRYPTO ’91, Vol.
576, Springer Berlin Heidelberg, Berlin, Heidelberg, 1992, pp. 420–432,

59

series Title: Lecture Notes in Computer Science. doi:10.1007/3-540-46766-
1 34.

[174] C. Hazay, Y. Lindell, Sigma Protocols and Efficient Zero-Knowledge,
in: Efficient Secure Two-Party Protocols: Techniques and Construc-
tions, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 147–175.
doi:10.1007/978-3-642-14303-8 6.

[175] S. Bayer, Practical Zero-Knowledge Protocols Based on the Discrete Log-
arithm Assumption 212.

[176] T. P. Pedersen, Non-Interactive and Information-Theoretic Secure Veri-
fiable Secret Sharing, in: J. Feigenbaum (Ed.), Advances in Cryptology
— CRYPTO ’91, Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 1992, pp. 129–140. doi:10.1007/3-540-46766-1 9.

[177] M. Naor, H. Road, S.-J. Ca, Bit Commitment Using Pseudo-Randomness
10.

[178] G. Asharov, Y. Lindell, T. Schneider, M. Zohner, More Efficient Oblivious
Transfer Extensions with Security for Malicious Adversaries, Tech. Rep.
061 (2015).

[179] M. Keller, E. Orsini, P. Scholl, Actively Secure OT Extension with Opti-
mal Overhead, Tech. Rep. 546 (2015).

[180] C. Dong, L. Chen, Z. Wen, When Private Set Intersection Meets Big Data:
An Efficient and Scalable Protocol, Tech. Rep. 515 (2013).

[181] Oded Goldreich, Foundations of Cryptography, Vol. 1, Cambridge Univer-
sity Press, 2007.

[182] W. Liu, H.-W. Yin, A novel quantum protocol for private set intersec-
tion, International Journal of Theoretical Physics 60 (6) (2021) 2074–2083.
doi:10.1007/s10773-021-04824-x.

[183] S. K. Debnath, K. Dey, N. Kundu, T. Choudhury, Feasible private set
intersection in quantum domain, Quantum Information Processing 20 (1)
(2021) 41. doi:10.1007/s11128-021-02987-4.

[184] B. Liu, O. Ruan, R. Shi, M. Zhang, Quantum private set intersection
cardinality based on bloom filter, Scientific Reports 11 (1) (2021) 17332.
doi:10.1038/s41598-021-96770-1.

[185] Y. Wang, P. Hu, Q. Xu, Quantum protocols for private set intersec-
tion cardinality and union cardinality based on entanglement swapping,
International Journal of Theoretical Physics 60 (9) (2021) 3514–3528.
doi:10.1007/s10773-021-04925-7.

[186] R.-H. Shi, Quantum bloom filter and its applications, IEEE Transactions
on Quantum Engineering 2 (2021) 1–11.

60

[187] W.-J. Liu, W.-B. Li, H.-B. Wang, An improved quantum private set in-
tersection protocol based on hadamard gates, International Journal of
Theoretical Physics 61 (3) (2022) 53. doi:10.1007/s10773-022-05048-3.

[188] R.-H. Shi, Y.-F. Li, Quantum private set intersection cardinality protocol
with application to privacy-preserving condition query, IEEE Transac-
tions on Circuits and Systems I: Regular Papers 69 (6) (2022) 2399–2411.
doi:10.1109/TCSI.2022.3152591.

[189] S. K. Debnath, V. Srivastava, T. Mohanty, N. Kundu, K. Sakurai, Quan-
tum secure privacy preserving technique to obtain the intersection of two
datasets for contact tracing, Journal of Information Security and Appli-
cations 66 (2022) 103127. doi:https://doi.org/10.1016/j.jisa.2022.103127.

61

Appendix A. Symbols

Table A.13: List of symbols used in the paper

Symbol Description

n Symmetric Set Size
c Client Set Size
s Server Set Size

n1, n2 Asymmetric Set Sizes
N Number of parties
B Number of bins
|B| Bins capacity
SS Stash Size
κ Computational Security Parameter
λ Statistical Security Parameter
l Length of elements
k Number of hash functions on BF
m Bloom Filter length
α Load factor in a filter
ϵ False error rate

nsub Number of elements in set subgroups
t Threshold
|U| Universe Set Cardinality
|I| Intersection Cardinality

Clen Ciphertext length
←R Randomly sampled
Enc Computation cost of one encryption
Dec Computation cost of one decryption
Exp Computation cost of one exponentiation
Mult Computation cost of one multiplication
Add Computation cost of one addition
Inv Computation cost of one inversion
Hash Computation cost of one hash function
Pair Computation cost of one pairing
Fact Computation cost of one factorization
OpG Computation cost of one group operation

62

