
A Model Specification for the Design of Trust Negotiations

Martin Kolara,∗, Carmen Fernandez-Gagoa, Javier Lopeza

aNetwork, Information and Computer Security (NICS) Lab,
University of Malaga, Spain

Abstract

Trust negotiation is a type of trust management model for establishing trust between entities by a mutual exchange
of credentials. This approach was designed for online environments, where the attributes of users, such as skills, habits,
behaviour and experience are unknown. Required criteria of trust negotiation must be supported by a trust negotia-
tion model in order to provide a functional, adequately robust and efficient application. Such criteria were identified
previously. In this paper we are presenting a model specification using a UML-based notation for the design of trust
negotiation. This specification will become a part of the Software Development Life Cycle, which will provide developers
a strong tool for incorporating trust and trust-related issues into the software they create. The specification defines
components and their layout for the provision of the essential functionality of trust negotiation on one side as well as
optional, additional features on the other side. The extra features make trust negotiation more robust, applicable for
more scenarios and may provide a privacy protection functionality.

Keywords: Trust Negotiation, Trust Model, Software Development Life Cycle, UML, Policy.

1. Introduction

Our modern world is full of entities, such as people,
organisations and web sites that form a complicated hier-
archy of relationships. They cooperate together and share
many resources, such as commodities, estates, jobs and
knowledge. In order to collaborate, entities may need
to establish a trust relationship between themselves. In
the physical world, trust relationships are evolving natu-
rally as the entities interact together and as they are get-
ting to know each other better and gain confidence about
the other’s expected qualities, such as honesty, reliability,
knowledge, etc. For online environments, a different ap-
proach is needed. Trust negotiation represents a suitable
solution, where a trust relationship is evolved by a mutual
exchange of credentials. It is useful for entities willing to
build trust that may not know each other well or are to-
tal strangers. Trust negotiation allows an entity to obtain
enough relevant information about the other one in or-
der to build trust (Winsborough et al., 2000). It is also
flexible and can be successfully applied for building trust
on demand for various scenarios in a decentralised net-
work. Although trust relationships are dynamic and can
change over time, trust negotiation is focused on build-
ing the initial trust needed for a given purpose. Once
the required trust is established, trust negotiation termi-
nates. It is a process that covers many important aspects,

∗Corresponding author
Email addresses: kolar@lcc.uma.es (Martin Kolar),

mcgago@lcc.uma.es (Carmen Fernandez-Gago), jlm@lcc.uma.es
(Javier Lopez)

such as security, protection and optionally privacy of ex-
changed credentials, definition of policies, initialisation,
termination and evaluation of trust values and results. Be-
cause of that, an entity performing trust negotiation has to
manage many actions, such as exchanging credentials with
the other side, evaluating trust based on received creden-
tials, comparing it against the required level for reaching a
common goal and making credentials disclosure decisions
(Winsborough and Li, 2002). However, there is a lack of
guidance for developers to include trust negotiation in the
service they are building. For this reason, the developers
that want to include trust in their software, may find prac-
tical to use a trust framework to handle all the needed ac-
tions for them. It is then this the main purpose of our pa-
per. In this work, we are suggesting a model specification
that will be applicable for trust negotiation. We will use
a UML-based notation to outline its concepts as the UML
is a widely accepted modelling language and its diagrams
are standardised and easy to follow for our purpose. The
use cases will be defined by developers according to their
needs. Our intention is to create a complete trust negotia-
tion framework that will guide developers to resolve trust
related issues in their design and to include trust negotia-
tion into their software. This framework will be applicable
for many trust environments and should be as general as
possible in the traditional ones as well as in the online
ones. We will include our proposed specification into the
Software Development Life Cycle (SDLC) as a part of its
design phase. SDLC serves developers as a manual for cre-
ating a high-quality software that guides them through its
particular phases, where each phase solves a different kind

Preprint submitted to Computers & Security February 12, 2019

M. Kolar, C. Fernandez-Gago, and J. Lopez, “A Model Specification for the Design of Trust Negotiations”, Computers & Security, vol. 84, pp.
288-300, 2019.
http://doi.org/10.1016/j.cose.2019.03.024
NICS Lab. Publications: https://www.nics.uma.es/publications



of problems of the development, but each one is important
for the result. Generally, the SDLC does not include trust
issues in its guidance. We want to extend the standard
SDLC with trust, so that each phase will guide the devel-
opers apart from handling the usual problems also through
the problems of including trust. It will help developers to
create a high-quality trust-aware software from scratch.
The specification defines the major trust negotiation com-
ponents, where each one takes a responsibility for its own
part and thus takes it away from the entity. However, the
entity, as the owner of resources, should have total control
over them. It should define its own policies and the other
related issues, such as the decision, whether its goal is only
to establish trust or to protect its privacy as well.

The rest of this paper is organized as follows. In Section
2, previous work on trust negotiation, policies and SDLC
is presented. Section 3 specifies the UML-based model
specification for trust negotiation and Section 4 demon-
strates an example application of this specification. The
model specification integration into the SDLC is shown
in Section 5 and its comparison against other methods is
presented in Section 6. Section 7 provides some hints and
guidelines for how the validation will be like and Section
8 concludes this paper and outlines the future work.

2. Related Work

Trust is essential for everyday life and it is also an
important concept in Computer Science. Entities usu-
ally require trust for their communication and cooperation.
Without it they may feel uncomfortable, as they cannot
rely on the obtained information or be sure about claims
and real intentions of the others. However, defining trust
is not a straightforward task and therefore there is not
a unique definition for it. Gambetta et al. (2000) define
trust as a subjective probability, by which an individual A
expects another individual B to perform a given action, on
which its welfare depends. It is supposed that the trustor
is dependent on the trustee, where the trustee is reliable.
Falcone and Castelfranchi (2001) claim that having high
trust in an entity might not be generally enough to decide
to become dependent on that entity. Jøsang et al. (2007)
classify trust into two categories, such as reliability trust
and decision trust. Reliability trust can be understood
as the reliability of something or somebody, while deci-
sion trust can be understood as the extent of willingness
of an entity to be dependent on another one. Wang and
Emurian (2005) claim that multiple definitions of trust ex-
ist mainly for two reasons. At first, sometimes it is difficult
to clearly distinguish trust from its other related concepts,
such as credibility, reliability and confidence. Then, trust
is influenced by many aspects, such as cognition, emotions
or behaviour. The authors also presents the characteris-
tics of trust and compare them with the ones of the online
trust that is used for the online environments. The online
trust concept is more specific than the traditional one as
it usually represents relationships between a customer and

an e-commerce web site. Corritore et al. (2003) present
a definition of online trust for an individual person to-
wards a specific website that is: “an attitude of confident
expectation in an online situation of risk that one’s vulner-
abilities will not be exploited”. Online trust relationships
evince a higher degree of vulnerability as the e-commerce
area is complex and anonymous. The participating en-
tities are strangers to each other and their manners can
be unpredictable. Therefore, it is important to establish
a secure and trusted environment as presented by Tsiakis
and Sthephanides (2005). The authors analyse the require-
ments for electronic payments, such as security and online
trust. They characterise a trusted environment by the fol-
lowing features: all entities are uniquely identifiable, they
have placed a firm trust onto the others and their trust is
not given by default.

Trust may be established one-way from an entity to
another one or two ways mutually between them. Wins-
borough et al. (2000) underline two main approaches of es-
tablishing trust, such as the identity-based and capability-
based approach. The former authenticates an entity based
on its public identity and the latter authorizes an entity
based on its required attributes. These mainstream ap-
proaches are traditional, but they are not suitable for open
systems, such as online environments. It is because the en-
tities may not be familiar and their attributes may be un-
known. The solution here is to build trust by the mutual
exchange of credentials, which is the case of trust negoti-
ation models.

A trust model is an abstraction of the trust relation
dynamics between entities, while it examines, defines and
evaluates the trust interactions. Trust models can be clas-
sified into decision models and evaluation models (Lara,
2015). Decision models facilitate access control decisions
by simplifying authentication and authorisation into a sin-
gle trust decision. They can be further divided into policy
models and negotiation models, which is the case of trust
negotiation. Evaluation models use a different approach,
where trust is evaluated by considering various factors that
may influence the trust relationship. They can be further
divided into propagation models and reputation models.
A trust management system is an abstract system that
processes symbolic representations of social trust, usually
to support the automated decision-making process. The
first trust-based negotiation-model was TrustBuilder and
its enhanced version TrustBuilder2 (Winslett et al., 2002;
Lee et al., 2009). Both simplify trust negotiation as they
allow entities to delegate the whole process of trust nego-
tiation onto negotiators called security agents. Winsbor-
ough et al. (2000) use also this concept in their framework.
PROTUNE is another trust negotiation model (Bonatti
et al., 2010). It is rule-based and makes use of agents too,
but in this case they are assigned to roles as the clients
and servers. The clients make requests of resources to the
servers and the servers respond to them. Trust negotiation
has significant benefits compared to the traditional ways
of building trust, such as its universality. The negotiat-

2



ing entities can be anonymous, they do not need to know
each other from the past. Trust is built by obtaining and
revealing information from the received credentials.

Cassandra (Becker and Sewell, 2004) protects a nego-
tiator by creating a protective layer around his resources
and allows the exchange of credentials only through a con-
trolled interface. Cassandra is a trust management system,
which is a unified approach for specifying and interpreting
security policies, credentials and relationships. Its pur-
pose is making authorizations of security-critical actions.
It consists of five basic components, such as a language
for describing actions, specifying policies and specifying
credentials, a mechanism for identifying principals and a
compliance checker. Principals are entities that can be au-
thorized to perform an action. PolicyMaker (Blaze et al.,
1996, 1998) and KeyNote (Blaze et al., 1999) are other
trust management systems. PolicyMaker acts quite like a
database query engine. An entity provides local policies,
credentials and a trusted action description, so that the
PolicyMaker can evaluate them in order to give a recom-
mendation, if and how the trusted action should be per-
formed. KeyNote is designed for various small and large
scale Internet-based applications, while aiming to be sim-
ple and flexible. It provides a single language for both poli-
cies and credentials and makes use of assertions that are
basically small programs describing trusted actions. Saied
et al. (2013) present a context-aware and multi-service
trust management system for the Internet of Things (IoT).
They focus on managing cooperation between heteroge-
neous nodes with diverse capabilities and establishing a
community of trusted elements that can collaborate to-
gether. Mármol and Pérez (2009) analyse various security
threat scenarios in trust and reputation models and for
each one suggest a suitable solution.

A set of rules must be established that would specify,
how credentials can be accessed and used. A combination
of these rules form a policy. For the security reasons poli-
cies should be defined the way that once they grant access
to a resource, no additional information should revoke it.
A new information should only lead to grant additional
privileges (Seamons et al., 2002). Policies define condi-
tions that must be satisfied in order to disclose creden-
tials to the other side. For our specification they can be
divided into groups, such as access control policies, pur-
pose policies and optionally privacy policies. Access con-
trol policies contain set of rules specifying whether access
rights can be granted to entities in the means of secu-
rity, e.g. which entities and how are authorised to access
credentials. Access control policies can use various ap-
proaches, for example as the attribute-based access control
(ABAC) (Winsborough and Li, 2002) or the role-based ac-
cess control (RBAC) (Herzberg et al., 2000; Becker and
Sewell, 2004). These can be easily implemented by the
general attribute exchange protocols, such as the Exten-
sible Application Markup Language (XAML) (MacVittie,
2006) or the Security Assertion Markup Language (SAML)
(Hughes and Maler, 2005). Once the access is granted, cre-

dentials are transferred through messages. The negotiators
must agree on the same protocol in order to communicate.
The protocol specifies, how the messages are exchanged,
which type of information they contain and their ordering
(Yu et al., 2001; Winslett et al., 2002). It also specifies the
formal way of the initialisation, process and termination of
trust negotiation. During building trust each entity gains
experience about the other one’s attributes, which leads
to trust or distrust and in increasing confidence about this
opinion after time (Theodorakopoulos and Baras, 2004).

An engineer needs to follow a certain process in or-
der to create a high-quality software that meets complex
requirements of a customer. The Software Development
Life Cycle represents a suitable approach to develop such
software as it contains various models defining the devel-
opment process, such as the waterfall model, incremental
model, b-model, v-model, spiral model, wheel-and-spoke
model and unified process model (Ruparelia, 2010). Re-
gardless the model, the SDLC generally divides the devel-
opment into particular phases, such as requirement anal-
ysis, design, implementation, testing and evolution. Rios
et al. (2017) present a framework that addresses trust ne-
gotiation issues during the early phases, such as the re-
quirement analysis. It is focused on finding the most suit-
able policies for a system by detecting conflicts between re-
quirements on trust and privacy. The authors define a set
of predicates and rules for specifying the trust and privacy
policies and for describing the system dynamics. Driver
et al. (2017) present a guide, how third-party components
can be integrated into a new software using digital trust in
the SDLC. Jones and Rastogi (2004) in their work present
a way of the security integration into the SDLC. Another
work dealing with security is the one from Noopur (2013)
that overviews information about developing a secure soft-
ware. Futcher and von Solms (2008) present a guidelines
for a secure software development. The work of Dawson
et al. (2010) proposes a methodology for the software as-
surance integration into the SDLC in order to secure the
application layer. Apart from following the SDLC, the
engineer should keep in mind the software security goals,
such as confidentiality, integrity and availability (Sodiya
et al., 2006). Confidentiality prevents an unauthorised
disclosure of software resources, integrity prevents their
unauthorised modification and availability prevents unau-
thorised denial of services of them. Generally they help
to protect software and its resources, reduce the software
design defects and improve its quality, which makes the
software more secure at the end.

3. The UML-based Trust Negotiation Specification

In this section we propose a UML-based model speci-
fication that will facilitate trust negotiation between two
entities. For scenarios, where more entities need to estab-
lish trust, this specification can be also helpful. In case
of several entities, the required trust relations may be de-
composed into a set of one to one relationships and trust

3



negotiation can be used for each of them. Another op-
tion would be to establish the relationships by a mixture
of trust negotiation with different methods, such as trust
transitivity or trust based on the reputation of an entity.
However, our specification is focused on building trust be-
tween two entities and the rest is out of scope of this work.
This specification includes all the needed resources to carry
out this process and will serve developers as a guidance to
implement trust negotiation into their software. To do
so, we will include this specification into the SDLC to be-
come a part of its design phase and as a result we will
obtain the Secure Software Development Life Cycle that
will be already trust-aware. Generally, the SDLC repre-
sents a traditional way of developing software in which
the final product requirements are analysed and defined
at the beginning. However, we believe that our proposed
specification could be also applicable for agile development
methodologies due to its modular, flexible and extensible
design. Developers can utilize that parts of the framework
that suit their actual needs for trust and later may change
their decision. In this work, we refer to the negotiating
entities as negotiators.

The model specification outlined with a UML-based
notation is depicted in Figure 1. We decided to illustrate
the figure as understandably as possible in a manner that
the proposed components and their relations were clear to
the reader. For this reason, we use a widely known Unified
Modelling Language. The figure reflects our intended sce-
nario with two negotiators, so some degree of redundancy
was introduced. Our specification consists of components
needed to carry out trust negotiation efficiently. The com-
ponent Negotiator represents an entity willing to establish
trust with the other one. There are two negotiators that
are connected to the Goal component. It defines the com-
mon purpose for building trust.

The Trust Relationship component represents the trust
relationship between the negotiators and it is connected
through the Trust Negotiation (TN) component that rep-
resents the negotiator’s part of trust negotiation. These
components are connected to the Negotiation Protocol com-
ponent that assures that both negotiators use the same
negotiating protocol. The Negotiator component is con-
nected to the Compliance Checker component. The com-
pliance checkers are also connected together in order to
provide feedback about the use of credentials.

Additionally, two other components are connected to
them: the Credentials / Declarations component and the
Policy component. They represent the credentials / dec-
larations and policies of their owning entity. The last one
is the Trusted Authority that is connected to Credentials
/ Declarations, as well as to the Negotiator that uses the
trusted authority to issue and verify credentials and dec-
larations.

3.1. Analysis of the Specification

We have illustrated the components of the specification
and the connections between them. Now we will analyse

its functionality.
Two identified and authorised negotiators are needed

to carry out trust negotiation. They exchange credentials
with each other and follow decisions given by a compliance
checker in order to establish the desired trust relationship.
It may be built one-way only or two-ways, depending on
the requirements of the defined goal and on the agreement
of both negotiators. Each negotiator has to specify the re-
quired trust level to be placed onto the other one. Also, it
has to bear in mind the intended goal and adapt its poli-
cies accordingly. Once the built trust is equal or higher to
the defined trust level, a trust relationship is established.
Depending on the goal, the purpose policies define trust
values that will be used for the evaluation of trust within
the defined goal-related context. This context is also used
for the evaluation of incoming credentials, whether they
are context-relevant and whether they will be included in
trust negotiation. A credential is assigned a purpose prop-
erty that defines for what purpose the credential should
be used. When a credential is received, the compliance
checker compares its purpose against the goal-related con-
text. When they match, the context-related trust value is
calculated from the credential’s weight and it is added to
the overall trust level defining the trust relationship. This
applies for both sides, each negotiator evaluates its own
trust level independently. Further, each negotiator has
to specify its access control policies that define conditions
for granting access to its own resources. When the other
negotiator requests a credential, it must have been pre-
viously identified and authorised and also has to provide
additional information, such as the purpose of his request.
The requester must agree that the received credential will
be used only for trust establishment. Then, the compliance
checker inputs all of these information from the requester,
checks its own state information from the past and match
them against the access control policies. As a result, a
disclosure decision is made, whether the request will be
satisfied and the credential will be disclosed. However,
when a negotiator discloses credentials, reveals its private
information that may compromise its privacy. For some
negotiating scenarios this may not be an issue, however,
our specification supports an optional privacy protection
as it can provide an additional security. A negotiator can
specify privacy policies that define its accepted maximal
exposure level and conditions, under which its privacy can
be exposed and to which extent.

The compliance checker helps the negotiators with dis-
closure decisions. In fact, it can proceed the whole trust
negotiation on behalf of the negotiator. It would act as
a trusted agent with delegated rights. This depends on
the concrete implementation and on the privileges given
to the compliance checker. During disclosure, it inputs
the demanded credentials and makes a decision based on
matching attributes against the defined policies, whilst it
may focus on minimisation of disclosures, preservation of
privacy or another defined behaviour. Compliance check-
ers can communicate to each other and exchange infor-

4



Figure 1: The UML-based model specification for trust negotiation

mation about the disclosed declarations and credentials,
which provides them feedback that can be used for future
disclosure decisions. Declarations are usually uncertified
claims and contain information useful for trust negotia-
tion. They can be certified by a certification authority
to add more confidence. The authority can issue, sign
and verify credentials, which can give the negotiators ad-
ditional trust. Credentials are similar as declarations, just
are signed. They are characterised by their sensitivity
level specifying the contained information confidentiality,
weight specifying their importance for building trust and
granularity specifying the desired magnitude of informa-
tion disclosure. For their exchange can be used one of
the infinite number of negotiating strategies that signif-
icantly influence trust negotiation and its results. The
strategy specifies the exact content of the exchanged mes-
sages and aims to establish a successful trust relationship.
It also defines which credentials will be used, which ones
will be prioritised and thus disclosed first, how trust val-
ues will be calculated from the incoming credentials and
how trust negotiation will be terminated and evaluated.
Each negotiator can define and use its own strategy as its
primary objective can be different, such as a protection of
his privacy or a quick trust establishment. However, the
strategies used by both negotiators should be compatible
to avoid misunderstanding, conflicts, failures or a privacy
abuse. A good approach is to agree on the same strategy
as well, but it is not inevitable. However, both negotiators
must agree on the same negotiating protocol in order to
be able to communicate.

3.2. Specification Matching against Trust Models
In this section we briefly outline the design and func-

tionality of the mentioned trust management systems and

trust negotiation models and make a suggestion how they
can be instantiated from our proposed specification. The
usual approach for trust negotiation models to establish
trust is the definition of policies and their evaluation by
a compliance checker. From the models we mentioned in
Section 2, TrustBuilder and its enhanced version seem to
be the most robust ones with a high degree of scalability
and reconfigurability for trust negotiation. TrustBuilder
and PROTUNE use security agents that carry out trust
negotiation on behalf of entities. We chose these models as
an example to be matched against our proposed specifica-
tion representing a general trust negotiation concept that
can be applied to the same or similar scenarios as these
models use. The Negotiator component may act as a se-
curity agent, if the entity is willing to delegate its access
rights and trust negotiation control to the system. Our
specification can be instantiated by applying more detailed
application-specific requirements on the intended scenario
and by following its concept, such as components topology.
The instantiation will make it usable for a concrete trust
negotiation application.

TrustBuilder allows the negotiators to define their own
negotiating strategy. They use so called local strategy that
specifies the resources to be disclosed next and the condi-
tions to continue or terminate the process. PROTUNE
does not allow a specification of own strategy and instead
provides a so called cooperative default strategy. All the
resources are disclosed at each step that can be released
and that seem to be valid to build trust. Winsborough et
al. in their framework define two other strategies, such as
the eager and the parsimonious one. The former is a sim-
ple strategy, where a negotiator discloses all his unlocked
credentials. When these are received, locked credentials

5



become unlocked and will be disclosed too. This strat-
egy is efficient as it does not restrict the exchange process,
however, it does not protect privacy. The latter is more
sophisticated and secure. It avoids redundant disclosures
by using requests and aims to disclose only a minimal set
of credentials that are really required. In our specification,
a developer can define the most convenient strategy that
suits his needs. He may also let the negotiators choose
the strategy they prefer or he may restrict them to use
only one given strategy. The strategy is defined by rules
that, depending on scenario, can be implemented as “strat-
egy policies” in a policy language. A combination of the
strategy policies and the negotiator’s policies, such as the
privacy and access control ones, determines the behaviour
of the negotiator.

4. The Model Specification Example

The UML-based model specification introduced in the
previous section is useful to specify all the trust negotiation
models. In this section we illustrate a suitable example of
possible applications that is depicted in Figure 2. Let us
assume a small company that outsources network services.
The company offers a quality work and various services for
a customer, such as a network planning and design. The
company wants to sell its services, so it has to find poten-
tial customers. In our example, a customer that wants to
make a network design for his offices, is considering the
company offer.

Figure 2: The example of our trust negotiation scenario

In our specification, the company will be represented by
one negotiator and the customer by the other one. Trust
must be established both ways in order to successfully ne-
gotiate. The company needs to make sure that the cus-
tomer will pay for the provided services and the customer
needs to make sure that the delivered solution will be of
high quality and working well. The common goal is to
make a successful business to satisfy both parties, which
means that the company will create a complete network

solution for the customer and will be paid for it. Each
party plays a different role in order to accomplish this
goal. The company plays a role as a networking expert
and the customer plays a role as an ordering party.

4.1. Definition of Policies

Before trust negotiation can be carried out, the com-
pany and the customer must define their policies. They
will specify goals and rules for accessing the negotiators’
data in order to preserve their security and privacy. The
company and the customer are recorded in the national
business register that manages various information about
its members for commercial purposes. When we are re-
ferring to the business register in this example, we mean
records containing sensitive information about its owner,
such as its trade name, business plan, identification num-
ber, legal form, etc. At first, the company has to define its
objectives in purpose policies, such as selling its services:

• The company carries out a design and implementa-
tion of a complete network solution for a customer.

• The company carries out a maintenance of a network
in the customer’s area.

• The company defines a restrictive policy that it will
offer its services only to a customer that has his own
offices and that is located in a range of 100 km at
most due to logistic issues.

Then, the company has to define policies that describe and
condition the selling process itself, such as a specification
of the price list:

• The network design costs 50e per one man-hour.

• The network implementation costs 30e per one man-
hour.

• The maintenance of the network costs 20e per each
network equipment a month.

• If the customer agrees with a long-term maintenance
contract and orders more than 200 hours in total, the
company provides a discount of 20% of the future
maintenance.

The company also requested the Cisco Systems, a trusted
authority to issue the CCDA1 certification stating its ex-
pertise in networks design, which should help the company
to be more attractive and reliable to a customer. The com-
pany defines also its access control policies combined with
privacy policies:

• The company business register as well as its CCDA
certification is publicly available to anyone.

1The CCDA stands for the Cisco Certified Design Associate and
certifies the knowledge and skills of a professional to design routed
and switched Cisco converged network infrastructures and services.

6



• The price list of services is available to potential cus-
tomers on demand.

• Payment information is protected and it will become
available to a customer that has been contracted.

The customer is in a disadvantaged position against the
company as he pays and may not be confident about the
company deliveries. The issued certification may convince
him, even when the customer does not require any cer-
tification to be possessed by the company. The customer
must also specify his policies. At first, the purpose policies
are defined:

• The customer’s main objective is to purchase a custom-
made network design and to implement it in his of-
fices.

• The customer is willing to sign a long-term con-
tract about maintenance of the new installed net-
work equipment.

• The customer wants to negotiate with networking
companies in order to obtain enough trust towards
a potential contractor.

• The customer is decided to accept a common market
price for the bought network services.

Just like the company, the customer needs to specify his
access control policies that will regulate access to his cre-
dentials during trust negotiation:

• The customer is more worried about his privacy, so
he does not disclose any information to public.

• The customer’s business register can be only dis-
closed to an entity that has provided its register in
return.

• The customer will disclose a brief information about
his office infrastructure that are needed for trust
negotiation, only to a potential contractor. Full-
detailed information can be provided only to the ap-
proved contractor.

All the defined policies are summarised in Table 1.

4.2. Trust Negotiation

When all the policies are defined, the customer and
the company may proceed with trust negotiation. We
suppose that they have already agreed to do so based on
their common goal of creating a network solution defined
in their purpose policies. The customer has found a po-
tential designer of his network and the company has found
a potential client. Now they need to build mutual trust
in order to sing a contract. They have to use the same
protocol for communication, but this is more a technical
issue and principally is not relevant for the result. More
importantly, each has to choose its negotiating strategy.

The company chooses an eager-like strategy as it wants to
disclose all releasable credentials. It does not care much
about its privacy since it wants to be as transparent to the
customer as possible in order to appear trustworthy and
reliable. The customer is more conservative, so he chooses
a parsimonious-like strategy that covers his needs for pri-
vacy too. A more detailed view on how trust negotiation
is carried out in this case is depicted in Figure 3, while a
simplified, but complete version is depicted in Figure 4.

Figure 3: Trust Negotiation Requests Sequence

Figure 4: Simplified Trust Negotiation

The company and the customer are represented by
two negotiators. Trust negotiation is initiated by the cus-
tomer’s request of business register to the company. The
company passes this request to its compliance checker for
checking the access control policies, whether the request
can be satisfied. As the policies do not restrict access for

7



Table 1: Defined Policies of the Company and the Customer

the business register, it is disclosed. The same action hap-
pens for the other side, when the company asks the cus-
tomer for his register. The customer’s compliance checker
inspects its access control policies and the register is dis-
closed, since a similar information has been provided in the
previous step from the company. At this point two creden-
tials have been exchanged and trust has been increased in
both negotiators. Then, the customer makes another re-
quest to the company and ask for the CCDA certification
as he wants to identify the company’s qualities. Policies as-
sure free access, so the request is satisfied and builds addi-
tional trust in the customer. The company needs to know
the customer’s office infrastructure in order to propose the
network solution and make a cost estimation, so requests
the customer for such information. However, the customer
has defined granularity restrictions for provisioning this
information in his policies, where the level of details de-
pends on the current relationship towards the company.
As a result, the customer partially satisfies the request
by provisioning a less-detailed infrastructure information
than demanded with a note that more details can be pro-
vided later. As a last step, the customer makes a request
to the company for obtaining a cost estimation. The com-
pany checks the provided information and matches them
against its policies. The customer’s offices are located in
the range of 30 km, which satisfies the maximum range
policy of 100 km. The company makes the following cost
estimation: 200 man-hours (10.000e) for design of the net-
work and 150 man-hours (4.500e) for the implementation.
Since the order is more than 200 man-hours, the company
offers a discount of 20% for a long-term maintenance. The
customer is satisfied with this estimation and his trust to
the company has increased sufficiently. He is ready to sign
a contract with the company as all provided information
are in compliant with his policy. The same applies for
the company. More importantly, a strong-enough trust re-
lationship was established between both parties, so trust
negotiation was successful and is terminated. However,

the exchange of information between both negotiators con-
tinue. This time not for building trust, but for reaching the
common goal. Once the contract is signed, the customer
can provide according to his policies all the necessary in-
formation about the infrastructure to the company.

5. Integration of the Trust Negotiation Specifica-
tion into the SDLC

The Software Development Life Cycle (SDLC) is an
overall name for various models covering the life cycle of
software. It helps developers to create and maintain a
complex high-quality software. By the life cycle is meant
a series of stages in form and functional activity through
which a software passes during its lifetime. Therefore, as
the name suggests, the SDLC is composed of clearly de-
fined phases, where a succeeding one follows the preceding
one. The exact number and interpretation of the phases
depends on the actual model used, however, generally we
can identify the following ones: requirement analysis, de-
sign, implementation, testing and evolution.

These phases describe the exact actions and the order
that developers have to follow, however, they lack support
for decision-based systems, in particular, for trust negotia-
tion. A common today’s problem is that software is being
developed the old-fashioned way and if trust-awareness is
needed, it is included additionally into the software. It is
an underestimation of the importance of the trust-related
issues. We find them very important as they determine
the software security and other factors. Putting trust sup-
port additionally is not a reliable way of doing it. We
will address the trust-related issues and integrate our trust
negotiation specification into the SDLC resulting in a cre-
ation of the Trust-Aware Software Development Life Cycle
(TASDLC) depicted in Figure 5. Once it is done for all
phases, developers will be guided to create a secure, reli-
able and trust-aware high-quality software. In this work

8



Figure 5: The Secure Software Development Life Cycle

we will focus on the integration of our proposed specifica-
tion into the design phase of the SDLC.

5.1. Integration of the Specification into the Design Phase

The requirement analysis phase is the first one. It con-
sists of tasks determining the needs and conditions that
must be accomplished. We do not focus on the first phase
now, however, it is also important for a secure and ef-
ficient software development (Rios et al., 2017). When
all requirements are clearly defined and validated during
the first phase, we can proceed to the design phase. It is
focused on problem solving and finding solutions. During
planning and designing, the layout is considered from more
points of view, such as classifications based on granular-
ity or diverse areas involved in design. For example, this
phase can be divided into a low-level design involving the
data structure, algorithm and low-level component design
and into a high-level design involving the architectural,
interface and high-level module design.

The software should be divided into modules that en-
capsulate a functional unit performing desired operations.
They will have specified trust relationships between them,
while they can be divided into the implicit and the estab-
lished relationships. The former are given by the architec-
tural design and are fixed. Actually, this trust was given
to the module by the designer. If the trusted module is not
behaving as expected, the impacts can affect the trustor.
To prevent an unexpected or unwanted behaviour, design-
ers have to consider possible module failures and design
a fail-safe and fail-secure recovery functionality. A safer
approach is to not trust the module unconditionally, but
rather to check its verifiable functionality, such as outputs
on a defined interface to verify their correctness. The es-
tablished relationships are not initially given and will have
to be built.

In this case, two different scenarios must be distin-
guished: The first one is establishing trust between mod-

ules themselves that may be strangers or they come from
different parties, so their attributes must be inspected and
confirmed first. Such module can represent a library com-
ing from an unverified source. If the source code is avail-
able, programmers can make a code audit to verify its
proper functionality and check for bugs or possible back-
doors. A positive audit outcome can increase the placed
trust onto the module. If the source code is proprietary
and not available, designers carry out trust negotiation
with the third party in order to establish trust to their
library.

The other scenario supposes that the software modules
are coherent, secure and reliable. There are no contradic-
tions within the software itself and the modules trust each
other. However, the purpose of the software will be build-
ing trust on demand between entities, where they will be
instantiated from given modules. This scenario requires a
direct application of a trust model into the designed trust-
aware software. This is the case we are proposing in this
section. Then, trust negotiation will be carried out during
the software deployment.

Software Conceptual Model

Figure 6: Integration of Trust Negotiation into a Software Concep-
tual Model

The concept of the integration of trust negotiation into
software during the design phase is illustrated in Figure
6. The usual way of designing a quality software is to di-
vide it into modules, where each one of them encapsulates
a specific functionality and communicates with the other
modules or users through a defined interface. For illus-
tration, we depicted three software modules in Figure 6,
namely the Software Module A, B and C that represent a
given functionality specified by the software designer. The
exact topology of the modules can be arbitrary and de-
pends on the software design and the concrete implemen-

9



tation. The developer should follow the standard software
development methodologies in order to design secure and
extensible modules. He can choose any suitable develop-
ment model from the SDLC. Apart from them, we include
another one named Trust Negotiation Module that inte-
grates trust negotiation into the software. It connects to
the other modules and it’s purpose is to establish trust
relationship with a desired party.

The trust negotiation module can remotely connect
through a defined interface to an external entity, such
as a user, system or another trust negotiation module in
order to exchange credentials needed for building trust.
This module encapsulates all the sub-components needed
to carry out trust negotiation, such as the negotiating pro-
tocol, the negotiating strategy and the compliance checker.
Credentials, Declarations and Policies represent a user and
application data that are stored separately from the mod-
ule in a data storage. Physically they can be maintained
in a database. The software modules access them through
secure interfaces, while their data structure and access re-
strictions are given by design. The trust negotiation mod-
ule will not modify any existing data as it will be accessed
only to read policies and send credentials to the other en-
tity. The received ones will be saved into the storage place
too. Depending on the trust negotiation scenario and the
use-case of credentials, some of them can be stored only
temporarily to build trust, while the others may be pre-
served for other purposes. The credentials, declarations
and policies are specified by their owning entity through
software modules that are entitled to do so, such as in our
case the Software Module B.

Software Component Layout

Figure 7: Integration of Trust Negotiation into a Software Compo-
nent Layout

Figure 7 depicts a more detailed view, how the modules
can be organised into particular components. The soft-
ware modules A, B and C are not decomposed, since their
design and inner structure are unknown. The trust nego-

tiation module consists of the Protocol, Strategy, Compli-
ance Checker and Negotiator components. The Negotia-
tor component carries out trust negotiation with the ex-
ternal entity through the defined interface. It can quickly
identify the entity by possessing some of its information.
The protocol component maintains the defined negotiat-
ing protocol and similarly, the strategy component main-
tains the chosen negotiating strategy. They will be used by
the negotiator to perform trust negotiation. The compli-
ance checker component demands credentials and policies
from the Data Storage module. Based on them and on the
chosen strategy this component makes disclosure decisions
and sends the result to the negotiator in order to control
the credentials disclosures. Also, the compliance checker
may query the Trusted Authority module, if present, to
verify incoming credentials or sign new ones.

The developer can design each component a class. These
classes will be connected to each other through the as-
sociation relationship and will communicate by sending
messages through the members function calls. However,
the trust negotiation module should be isolated, so its in-
terfaces can be designed as exported functions from the
classes. The module can be designed also as a standalone
library that is dynamically linked to the other modules and
that encapsulates and thus protects its inner functionality
well.

6. The Model Specification Comparison

To the best of our knowledge, our model specification
integration into the SDLC is unique as it was not pro-
posed before. The model specification represents a gen-
eral trust framework that serves for the inclusion of all
trust negotiation models into the SDLC. Apart from our
work, Lara (2015) presents an engineering framework deal-
ing with trust. The author deals with the secure system
engineering and trust management and combines them to-
gether. He proposes a general framework for the inclu-
sion of trust evaluation models. Additionally, Driver et al.
(2017) present a similar work dealing with trust in the
SDLC. The authors claim that the majority of code in new
software comes from external third-party channels. They
analyse these channels according to their trustworthiness
and a potential risk they may introduce to the new soft-
ware. They do not focus on creating a software that will
handle trust in its application, but rather on creating a
trustworthy software that will minimise risks by introduc-
ing a reliable third-party components.

Other works deal with security that is a topic closely
related to trust, since security can be considered as the
essential requirement for building trust. Jones and Ras-
togi (2004) present a work that deals with secure coding
practices and building security. They focus on the cre-
ation of the secure SDLC, which means that they analyse
each phase of the SDLC in order to recognize their secu-
rity issues and to propose a suitable solution. The secu-
rity context is added to each phase and is important in

10



order to create a trustworthy and reliable software. An-
other work dealing with security is the one from Noopur
(2013). He presented a survey that overviews methods
for the secure software development in existing processes,
standards, life-cycle models, frameworks, etc. This work is
suitable to acquire a basic knowledge about the topic and
the related terminology. Yet another work dealing with
the secure software development is the one from Futcher
and von Solms (2008). The authors describe security stan-
dards and practices that simplify the implementation of
security controls. They guide software engineers and de-
velopers in the process of including and solving security
issues in their software. Dawson et al. (2010) also analyse
in their work secure coding practices and their integration
into the SDLC. In addition, a methodology is proposed
for integrating software assurance into the Department of
Defence Information Assurance Certification & Accredita-
tion Process (DIACAP). The software assurance integra-
tion facilitates to secure the application layer, where the
majority of the system vulnerabilities are located, as the
authors claim. Sodiya et al. (2006) present a work that
focus on secure software development by avoiding secu-
rity breaches and design defects. They introduce a uni-
fied model, named Secure Software Development Model
(SSDM) that combines the security engineering and the
software engineering. It focuses on the effective develop-
ment of secure software products.

Our model specification seems to be the only one work
that deals with the problem of including trust negotiation
into the SDLC. The other works solve different trust or
security issues.

7. Validation of the Model Specification

Our proposed specification is intended as a guidance
for creating a customised model of trust negotiation, where
two entities aim to establish a trust relationship. We will
validate it by implementing a specific trust negotiation
scenario similar to the one presented in Section 4. Two
entities from a commercial area want to make a business
together and need to find out, whether they can trust each
other.

In order to do so, we will design a complete scenario
with defined goals, credentials and policies. We will de-
sign appropriate software modules as described in Section
5, their layout and interfaces between them. The core of
the software is represented by a trust negotiation mod-
ule. Each entity owns one its instance that will carry out
trust negotiation on behalf of the entity. Other modules
would be a control module for supervising trust negotia-
tion and an end-user interface module for communicating
with a user. Once this proposal is done, we will design
classes belonging to the modules and define their methods
and attributes. For example, the trust negotiation mod-
ule will contain the Negotiator and ComplianceChecker
classes, where the former includes methods for exchanging

credentials and the latter for their supervising and provid-
ing a feedback. Then, we will implement the classes and fill
data structures with the defined data, such as the creden-
tials and policies. We will also define several negotiating
strategies for each entity. Finally, we will launch a set of
trust negotiations, each with a different configuration in
terms of the defined policies and used strategy. This way,
we will confirm the validity of our proposed specification
and will be able to collect and evaluate results of the im-
plemented trust negotiation scenario.

8. Conclusion

In this work we presented a UML-based model specifi-
cation that facilitates the implementation of trust negoti-
ation for two entities willing to build a trust relationship.
The aim of it is to help developers to solve trust-related
issues and to guide them to include trust negotiation into
their software in each phase of development in order to
make it more secure and reliable. Then, we illustrated a
suitable example, how this specification can be applied in a
real scenario in order to build trust between unknown enti-
ties. The specification due to its generality can be further
extended in case of need. We also described how the spec-
ification could be integrated into the design phase of the
Software Development Life Cycle (SDLC). It was designed
with the consideration to represent the design phase of the
SDLC and later to continue with the others. We compared
our proposed model specification against the other existing
methods.

In the future work we will include our specification in
the implementation phase and we will validate it in the
manner described in Section 7. Later, we will cover all the
phases of the SDLC and our specification will become a
part of a trust negotiation framework. Then we will vali-
date the whole framework in a real software implementa-
tion. Additionally, the specification can be analysed and
evaluated for its use with agile methodologies that are cur-
rently more widely used for software development. They
emerge from the traditional approaches, such as the SDLC,
so a research in this area is very suitable.

Acknowledgements

This research has been supported by the European project
“European Network for Cyber-security (NECS)” - the Eu-
ropean Unions Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agree-
ment No. 675320 and by the Spanish Ministry of Economy
and Competitiveness through the SMOG (TIN2016-79095-
C2-1-R) project.

References

Becker, M.Y., Sewell, P., 2004. Cassandra: Distributed access con-
trol policies with tunable expressiveness, in: 5th IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks

11



(POLICY 2004), 7-9 June 2004, Yorktown Heights, NY, USA, pp.
159–168.

Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D., 1999. The
keynote trust-management system version 2. RFC 2704, 1–37.

Blaze, M., Feigenbaum, J., Lacy, J., 1996. Decentralized trust man-
agement, in: Proceedings of the 1996 IEEE Symposium on Secu-
rity and Privacy, IEEE Computer Society, Washington, DC, USA.
pp. 164–.

Blaze, M., Feigenbaum, J., Strauss, M., 1998. Compliance check-
ing in the policymaker trust management system, in: Financial
Cryptography, Second International Conference, FC’98, Anguilla,
British West Indies, February 23-25, 1998, Proceedings, pp. 254–
274.

Bonatti, P.A., Coi, J.L.D., Olmedilla, D., Sauro, L., 2010. A rule-
based trust negotiation system. IEEE Trans. Knowl. Data Eng.
22, 1507–1520.

Corritore, C.L., Kracher, B., Wiedenbeck, S., 2003. On-line trust:
Concepts, evolving themes, a model. International Journal of
Human-Computer Studies 58, 737 – 758. Trust and Technology.

Dawson, M., Burrell, D.N., Rahim, E., Brewster, S., 2010. Integrat-
ing software assurance into the software development life cycle
(sdlc). Journal of Information Systems Technology & Planning 3,
49–53.

Driver, M., Gaehtgens, F., O’Neill, M., 2017. Managing digital trust
in the software development life cycle ID G00326944.

Falcone, R., Castelfranchi, C., 2001. Social trust: A cognitive ap-
proach, in: Trust and Deception in Virtual Societies. Springer,
pp. 55–90.

Futcher, L., von Solms, R., 2008. Guidelines for secure software de-
velopment, in: Proceedings of the 2008 Annual Conference of the
South African Institute of Computer Scientists and Information
Technologists on IT Research in Developing Countries, SAICSIT
2008, Wilderness, South Africa, October 6-8, 2008, pp. 56–65.

Gambetta, D., et al., 2000. Can we trust trust. Trust: Making and
Breaking Cooperative Relations 13, 213–237.

Herzberg, A., Mass, Y., Mihaeli, J., Naor, D., Ravid, Y., 2000. Ac-
cess control meets public key infrastructure, or: Assigning roles
to strangers, in: 2000 IEEE Symposium on Security and Privacy,
Berkeley, California, USA, May 14-17, 2000, pp. 2–14.

Hughes, J., Maler, E., 2005. Security assertion markup language
(saml) v2.0 technical overview. OASIS SSTC Working Draft sstc-
saml-tech-overview-2.0-draft-08 , 29–38.

Jones, R.L., Rastogi, A., 2004. Secure coding: Building security into
the software development life cycle. Information Systems Security
13, 29–39.

Jøsang, A., Ismail, R., Boyd, C., 2007. A survey of trust and rep-
utation systems for online service provision. Decision Support
Systems 43, 618–644.

Lara, F.M., 2015. Trust Engineering Framework for Software Ser-
vices. Ph.D. thesis. Universidad de Málaga.

Lee, A.J., Winslett, M., Perano, K.J., 2009. Trustbuilder2: A recon-
figurable framework for trust negotiation, in: Trust Management
III, Third IFIP WG 11.11 International Conference, IFIPTM 2009
, West Lafayette, IN, USA, June 15-19, 2009. Proceedings, pp.
176–195.

MacVittie, L.A., 2006. XAML - in a Nutshell: A Desktop Quick
Reference. O’Reilly.

Mármol, F.G., Pérez, G.M., 2009. Security threats scenarios in trust
and reputation models for distributed systems. Computers & Se-
curity 28, 545–556.

Noopur, D., 2013. Secure software development life cycle pro-
cesses. Software Engineering Institute, Carnegie Mellon Univer-
sity, (2013). .

Rios, R., Fernandez-Gago, C., Lopez, J., 2017. Modelling privacy-
aware trust negotiations. Computers & Security .

Ruparelia, N.B., 2010. Software development lifecycle models. SIG-
SOFT Softw. Eng. Notes 35, 8–13.

Saied, Y.B., Olivereau, A., Zeghlache, D., Laurent, M., 2013. Trust
management system design for the internet of things: A context-
aware and multi-service approach. Computers & Security 39, 351–
365.

Seamons, K.E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson,
J., Mills, H., Yu, L., 2002. Requirements for policy languages
for trust negotiation, in: 3rd International Workshop on Policies
for Distributed Systems and Networks (POLICY 2002), 5-7 June
2002, Monterey, CA, USA, pp. 68–79.

Sodiya, A.S., Onashoga, S.A., Ajaỹı, O., 2006. Towards building se-
cure software systems. Issues in Informing Science & Information
Technology 3.

Theodorakopoulos, G., Baras, J.S., 2004. Trust evaluation in ad-hoc
networks, in: Proceedings of the 3rd ACM Workshop on Wireless
Security, ACM, New York, NY, USA. pp. 1–10.

Tsiakis, T., Sthephanides, G., 2005. The concept of security and
trust in electronic payments. Comput. Secur. 24, 10–15.

Wang, Y.D., Emurian, H.H., 2005. An overview of online trust: Con-
cepts, elements, and implications. Computers in Human Behavior
21, 105–125.

Winsborough, W.H., Li, N., 2002. Towards practical automated trust
negotiation, in: 3rd International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY 2002), 5-7 June 2002,
Monterey, CA, USA, pp. 92–103.

Winsborough, W.H., Seamons, K.E., Jones, V.E., 2000. Automated
trust negotiation, in: DARPA Information Survivability Confer-
ence and Exposition, 2000. DISCEX’00. Proceedings, IEEE. pp.
88–102.

Winslett, M., Yu, T., Seamons, K.E., Hess, A., Jacobson, J., Jarvis,
R., Smith, B., Yu, L., 2002. Negotiating trust in the web. IEEE
Internet Computing 6, 30–37.

Yu, T., Winslett, M., Seamons, K.E., 2001. Interoperable strategies
in automated trust negotiation, in: CCS 2001, Proceedings of the
8th ACM Conference on Computer and Communications Security,
Philadelphia, Pennsylvania, USA, November 6-8, 2001., pp. 146–
155.

12


	Introduction
	Related Work
	The UML-based Trust Negotiation Specification
	Analysis of the Specification
	Specification Matching against Trust Models

	The Model Specification Example
	Definition of Policies
	Trust Negotiation

	Integration of the Trust Negotiation Specification into the SDLC
	Integration of the Specification into the Design Phase

	The Model Specification Comparison
	Validation of the Model Specification
	Conclusion

