
How to specify security services: a practical approach

Javier Lopez1, Juan J. Ortega1, Jose Vivas2, Jose M. Troya1

1Computer Science Department, E.T.S. Ingeniería Informática
University of Malaga, SPAIN

{jlm, juanjose, troya}@lcc.uma.es
2Hewlett-Packard Labs.

Bristol, UK
jsv@hplb.hpl.hp.com

Abstract. Security services are essential for ensuring secure communications.
Typically no consideration is given to security requirements during the initial
stages of system development. Security is only added latter as an afterthought
in function of other factors such as the environment into which the system is to
be inserted, legal requirements, and other kinds of constraints. In this work we
introduce a methodology for the specification of security requirements intended
to assist developers in the design, analysis, and implementation phases of pro-
tocol development. The methodology consists of an extension of the ITU-T
standard requirements language MSC and HMSC, called SRSL, defined as a
high level language for the specification of security protocols. In order to illus-
trate it and evaluate its power, we apply the new methodology to a real world
example, the integration of an electronic notary system into a web-based multi-
users service platform.

1 Introduction

Many problems with security critical systems arise from the fact that developers sel-
dom have a strong background in computer security. However, nowadays it is widely
accepted that an adequate specification of a system is required in order to obtain a
robust implementation. There is currently an increased need to consider security as-
pects at the early stages of system development. This need is not always met by ade-
quate knowledge on the part of the developer. This is problematic since security is
most often compromised not by breaking the dedicated mechanisms, but by exploiting
weaknesses in the way those mechanisms are used. Therefore security mechanisms
cannot simply be inserted into the system as an afterthought. In consequence, security
aspects should be considered already at an early stage of the software development
life cycle.

Results obtained using formal specification techniques are not readily applicable in
the context of a real world development environment. First of all there is a require-
ments engineering problem: how to capture the intended security requirements. Then
we have an implementation problem. Thus, it is not obvious how to reconcile the
mathematical notion of a perfect public key with the fact of a stored file representing

J. Lopez, J. J. Ortega, J. M. Troya, and J. L. Vivas, “How to Specify Security Services: A Practical Approach”, 7th IFIP Conference on
Multimedia and Communications Security (CMS03), LNCS vol. 2828, pp. 158-171, 2003.
NICS Lab. Publications: https://www.nics.uma.es/publications

a couple of numbers n and e encoded according to the Basic Encoded Rules (BER).
Also, although we often talk about secure channels, in reality what we have are things
such as https connections.

Security requirements are commonly expressed as system constrains, but often
they are in fact a kind of service that must be provided by a variety of mechanisms. In
this sense, security requirements are not different from e.g. real-time requirements,
and should be treated in an analogous way. Accordingly, we refer to these services as
security services.

The rest of this paper is organized as follows. In Sect. 2 we present some common
security concepts. In Sect. 3 we give an overview of a couple of representative speci-
fication languages. Sect. 4 is dedicated to a brief introduction of the communication
requirements language Message Sequence Charts (MSC), and the High-Level MSC
(HMSC). In Sect. 5 we describe a new specification language, SRSL, which is an
extension of MSC and HMSC. Sect. 6 is dedicated to the description of an application
of SRSL to a real world example, and in Sect. 7 we present some conclusions.

2 Specification of security properties paradigm

A security protocol [7] is a general template describing a sequence of communica-
tions and making use of cryptographic techniques to meet one or more particular
security related goals. The basic security services [11] provided by security mecha-
nisms (cryptographic algorithms and secure protocols) are authentication, access
control, data confidentiality, data integrity, and non-repudiation.

The notion of authentication includes authentication of origin and entity authenti-
cation. Authentication of origin can be defined as the certainty that a message that is
claimed to proceed from a certain party actually originated from it. As an illustration,
if during the execution of a protocol Bob receives a message, supposed to come from
Anne, then the protocol is said to guarantee authentication of origin for Bob if it is
always the case that, if Bob's node accepts the message as being from Anne, then it
must indeed be the case that Anne sent exactly this message earlier. Thus, authentica-
tion of origin must be established for the whole message. Moreover, it is often the
case that certain time constraints concerning the freshness of the message received
must also be met. Entity authentication protocols, by its turn, guarantees that the
claimed identity of an agent participating in the protocol is identical to the real one.

Access control service ensures that only authorized principals can gain access to
protected resources. Usually the identity of the principal must be established; hence
entity authentication of origin is also required here.

Confidentiality may be defined as prevention of unauthorized disclosure of infor-
mation.

Data integrity means that data cannot be corrupted, or at least that corruption will
not remain undetected. If it were possible for a corrupted message to be accepted,
then this would show up as a violation of integrity and the protocol must be regarded
as flawed.

Non-repudiation provides evidence to the parties involved in a communication that
certain determined steps of the protocol have occurred. This property appears to be

very similar to authentication, but here the participants are given capabilities to fake
messages up to the usual cryptographic constrains. It uses signature mechanisms and a
trusted notary.

These services are enforced using cryptographic protocols or similar mechanisms,
and it is essential to determine which ones are needed. In order to specify a security
system it is not necessary to know how the analysis of the system will be carried;
however, it is absolutely indispensable to identify the security services required.

3 Overview of security specification languages

We focus here on two kinds of specification languages applied to security systems:
languages for software engineering and languages for the design and analysis of cryp-
tographic protocols [6].

A representative example of the first kind of language is UML - Unified Modeling
Language [10]. UML is a language for the specification, visualisation, development,
and maintenance of software systems. The notation consists basically of graphical
symbols, including a set of diagrams giving different views of a system.

J. Jurjens [3] has defined an extension of UML, UMLsec, to specify standard secu-
rity requirements on security-critical systems. The aim of this work is to use UML to
encapsulate knowledge on prudent security engineering and to make it available to
developers not specialised in security. It is based on the most important kinds of dia-
grams for describing object-oriented software, class diagrams, state-chart diagrams,
and interaction diagrams, and uses the basic elements offered by UML to extend the
language, i.e. stereotypes, tagged values, and constraints.

An example of the second kind of language is CAPSL [8]. This is a high-level
formal language intended to support security analysis of cryptographic authentication
and key distribution protocols. A protocol specification in CAPSL can be translated
into a multiset rewriting (MSR) rule intermediate language like CIL, and the result
can be used as input to different security analysis tools.

A CAPSL specification has tree sections: protocol specification, type specification,
and environment specification. The type and environment specifications are optional.
A protocol specification is a description of behaviour and consists of three parts:
declarations, messages, and goals. A type specification defines cryptographic opera-
tors, whereas an environment specification provides scenarios used by model-
checking tools to verify the protocol. A CAPSL extension called MuCAPSL is also
under development [9], intended to support the specification of protocols for secure
multicast.

We believe it is important to develop a specification language integrating both
kinds of languages. As a first approach to achieve this aim we propose here a new
language, the Security Requirements Specification Language (SRSL), based on Mes-
sage Sequence Charts. In the next section we give an overview of the latter, and in the
subsequent one we introduce the SRSL.

4 A Requirements Language for Communication Protocols: MSC

The ITU-T's Standardization Sector specifies Message Sequence Charts [2] (ITU-T
Z.120) as the requirements language for the visualization of system runs or traces
within communication systems. MSCs can be defined as a trace language for describ-
ing message interchanges among communicating entities. It is endowed with a graph-
ical layout that gives a description of system behaviour in terms of message flow
diagrams that is both clear and perspicuous. MSCs focus on the communication be-
haviour of system components and their environments, and are widely used as fol-
lows: for requirements definition; for specification of process communication and
interface; as a basis for automatic generation of Specification Description Language
(SDL) [1] skeletons; for selection and specification of test cases; and for documenta-
tion. It is used most frequently together with SDL.

The basic language constructs of MSCs are instances and messages. Instances are
graphically represented by an axis, i.e. a vertical line or a column. An entity name and
an instance name can be specified within an instance heading in the graph. A total
ordering of the communication events is specified along each instance axis. Actions
describing an internal activity of an instance, in addition to message exchange, may
also be specified. The system environment is also represented by a frame symbol
forming the boundary of the diagram.

Instances may also be created from a parent instance. Instance creation is described
by a special symbol in the shape of a dashed arrow that can be associated with textual
parameters. Termination of instances is also possible, and is represented by a stop
symbol in form of a cross at the end of an instance axis.

It is also possible to specify conditions describing a state associated with a non-
empty set of instances. Conditions can be also used for sequential composition of
MSCs. MSCs can be used to describe the behavior of a subsystem or component
intended to be combined in different ways into a more complex system.

In addition, MSCs may also be combined with the help of expressions consisting of
composition operators and references to the MSCs. MSC references can be used ei-
ther to reference a single MSC or a number of MSCs using a textual MSC expression.
The MSC expressions are constructed from the operators alt, par, loop, opt and exc,
described below.

The keyword alt denotes alternative executions of several MSCs. Only one of the
alternatives is applicable in an instantiation of the actual sequence.

The par operator denotes parallel executions of several MSCs. All events within
the MSCs involved are executed, with the sole restriction that the event order within
each MSC is preserved.

An MSC reference with a loop construct is used for iterations and can have several
forms. The most general construct, loop<n,m>, where “n” and “m” are natural num-
bers, denotes iteration at least n and most m times.

The opt construct denotes a unary operator. It is interpreted in the same way as an
alt operation where the second operand is an empty MSC.

An MSC reference where the text starts with exc followed by the name of an MSC
indicates that the MSC can be aborted at the position of the MSC reference symbol

and instead continued with the referenced MSC. MSC references with exceptions are
used frequently.

High-level MSCs [2] provide a means to graphically define how a set of MSCs can
be combined. An HMSC is a directed graph where each node is a start symbol, an end
symbol, an MSC reference, a condition, a connection point, or a parallel frame. The
flow lines are used to connect the nodes in the HMSC and indicate the sequencing
that is possible among the nodes. The incoming flow lines are always connected to the
top edge of the node symbols, whereas the outgoing flow lines are connected to the
bottom edge. If there is more than one outgoing flow line from a node this indicates
an alternative. The conditions in HMSCs can be used to indicate global system states
or guards and impose restrictions on the MSCs that are referenced in the HMSC. The
parallel frames contain one or more small HMSCs and indicate that the small HMSCs
are the operands of a parallel operator, i.e. the events in the different small HMSCs
can be interleaved.

The connection points are introduced to simplify the layout of the HMSCs and
have no semantic meaning. High-level MSCs can be constrained and measured with
time intervals for MSC expressions. In addition, the execution time of a parallel frame
of an HMSC can be constrained or measured. The interpretation is similar to the in-
terpretation of Timed MSC expressions.

5 The SRSL language

The specification language proposed here is an extension of ITU standard require-
ments language MSC and HMSC. SRSL [4] is a high level language intended to spec-
ify cryptographic protocols and secure systems. Such a language must be modular,
easy to learn, and able to express security notions.

The main design criteria we have used during development of the SRSL language
are the following:
• The language should provide visualization capabilities. A graphic representa-

tion offers perspicuous views of a system and clarifies the communication
among customers, users and developers.

• It should be possible to produce specifications of a system at several levels of
abstraction. Different stakeholders may have different views, and accordingly
so we require that it be possible to describe a system at several levels of ab-
straction.

• The language should make available mechanisms for modularisation. Standard
implementations of a part of the system are often used as components of the
whole system. Standard modules may be defined, implemented and reused.
For instance, it is common to implement a new system using well-defined
standards protocols. Thus, if we need a server authenticated and encrypted
connection, we can make use of a standard TSL protocol. In this way it be-
comes also easier to use a formerly implemented library in any program lan-
guage.

• Standard languages should be reused as much as possible. Using standard lan-
guages have a lot of benefits. Usually it is difficult to learn a new language or

methodology. In the beginning there may be not enough tools to support it, or
they may be too inefficient. Standard languages typically have tools that sup-
port them, and many users may have previous experience with them.

• The language should be suitable for validation purposes. When specifying a
system we usually describe what the system is supposed to do. However, we
need also be able to validate the system, i.e. to show that it is defined accord-
ing to the specification.

• It should be possible to express security requirements in the language. Unfor-
tunately, there is currently no standard notation to represent those require-
ments.

The SRSL has two levels of representation: multi-layer module scheme and securi-

ty scenario description.
The multi-layer module scheme describes security systems in terms of a multi-

layered structure. The first layer is the communication medium, also used to study
attack strategies in the security analysis phase, i.e. the intruders’ behaviour. The other
layers depend on the security mechanisms defined during system development. This
description is translated into a security scenario representation using standard package
definitions.

As an example, we consider a system that uses SSL security mechanisms in order
to achieve server authentication and confidential communication. Its design must
ensure that an application server (the responder) is given evidence of the fact that a
sender (the initiator) has previously sent some message, i.e. the protocol must be able
to ensure non-repudiation of the origin of messages sent to the server. The module
specification is depicted in figure 1.

Fig. 1. SRSL Module Specification

The SSL layer is described in a standard security communications package. There-

fore, part of medium layer is generated automatically. Consequently, we only have to
specify the Initiator-Responder protocol. It is composed of simple scenarios described
in MSC. The SRSL security scenario description is divided into three parts; the speci-
fication of protocol elements, the message exchange flow, and the security services
requirements.

INITIATOR

SSL layer
(client)

MEDIUM LAYER

RESPONDER

SSL layer
(server)

User Protocol

SSL Protocol

The extensions proposed concern the definition of entities, the definition of data
types related to security aspects, and the security services that are going to be used or
analysed. These are described in comment text boxes, and are intended to be exam-
ined during the security analysis phase. These elements required to define a security
protocol can be divided into several categories. These are explained as follows (key-
words are in cursive):
• Entities: Agent (Initiator/Responder), the principal’s identification; Key_Server,

which provides cryptographic keys; Time_Server, which provides time tokens; No-
tary, which registers the transaction; Server Certification Authority (SCA), which
validates a certificate.

• Messages: Text, of type clear text; Random_Number, an integer; Timestamp, giving
the actual time; Sequence, the count number.

• Keys: Public_key, e.g. in PKCS#12 format (aprostrophe symbol (‘) reference to
private key); Certificate, a public key signed by CA; Private_key, used to sign
documents; Shared_key, a secret key shared by more than one entity; Session_key,
a secret key used to encrypt transmitted data.
In addition, SRSL may operate with previously defined data types. These

operations are: Concatenate, composition of complex data (operator ’,’); Cipher
(operator “{“ ”}”), which provides cipher data resp. cleartext data (e.g.
RSAcipher/RSADecipher PKCS#1 format); Hash, the result of a one-way algorithm;
Sign (operator “[“ “]”), a message hash encrypted with signer’s private key (e.g.
RSAsign PKCS#7). Furthermore, user-defined functions are also considerated.

The message exchange is defined in MSC, the requirements language most widely
utilized in telecommunications, and its extension HMSC, explained in section 4. The
is known for its high degree of flexibility and is universally accepted in protocol en-
gineering.

The security services requirements section are also described in comment text box-
es. We use three different security statements: Authenticated(A,B), stating that B is
certain of the identity of A; conf(X), stating that the data X cannot be deduced (also
called confidentiality); NRO(A,X) (non-repudiation of origin), stating that that data X
(the evidence) must have originated in A. These statements have been formally de-
fined in [5].

Furthermore, an automatic translator program [7] is used to produce the SDL ver-
sion of the system from SRSL. The SDL system produced is subsequently used to
analyse security requirements of the system during the analysis phase.

In the specification stage we must consider two different kinds of tasks. The first
one concerns the specification of a system yet to be developed, in which case we have
more freedom to choose what security mechanisms to use. The second one concerns
the specification of an already implemented system.

In order to specify a system, we have to identify different functional parts. These
are represented as composition of MSCs using HMSC. Each part is considered sepa-
rately. Next, we specify possible scenarios without regard to security requirements,
i.e. taking into consideration only the purely functional aspects. As an example, if we
want to specify the access to a data bank account via the internet, we only describe the
data request and the bank reply.

Figure 2 depicts a scenario consisting of a sequence of message exchanges, de-
scribed in MSC. As we can see, we have two entities: the User_browser and the

Bank_portal. The user, by way of a browser, asks for access to the bank’s portal in
order to request his data bank.

We obtain two alternative scenarios according to whether the access request is ac-
cepted or rejected. First the user sends its account number and data request. If the
request is accepted, the Bank_portal sends the User_data_bank. Otherwise, if the
request is rejected, a rejection data is sent instead. The transmitted data is finally dis-
played in the User’s browser.

Bank_Portal User_Browser

1

1 alt

1

MSC bank_access

show_req_rejected
reject
ed

 (data_rejected)

show_user_data

data

(User_data)

data_request

 (acc_number,data_req)

Web_access

Fig. 2. MSC scenario of user’s access to data bank

We can now analyse the specification in order to verify and validate the functional
requirements, whereupon we may proceed to analyse the security requirements. These
are defined in a comment text box. If a new system is being designed, we include here
the security mechanisms needed to meet these requirements. Otherwise, we include
the existing security mechanisms instead.

In Figure 3, we describe the process of integration of the security requirements into
the specification. The security requirements are the following:

1- Authenticated(Bank_Portal,User_Browser);
2- Authenticated(User,Bank_Portal);
3- conf(account_number);
4- conf(data_req);
5- conf(user_data);

The first requirement means that user's browser must authenticate itself to bank's

portal. This is achieved with the help of an HTTPS-connection.

The second requirement means that the user must authenticate itself to the bank's
portal. This is accomplished by a mechanism that asks for the user's identification and
password, and subsequently validates it.

The three last requirements mean that the data transmitted is confidential. This goal
is accomplished by making use of the session key established during the https connec-
tion.

definitions
User_Browser, Bank_Portal: Agent;
account_number, data_req: Text;
data_user_bank: Text;
web_form_login: Text;
login,password: Text;
wellcome_page: Text;
session_ID: Text;
data_rejected: Text;
httpskey: session_key;

Security Service
Authenticated(Bank_Portal,User_Browser);
Authenticated(User,Bank_Portal);
conf(account_number);
conf(data_req);
conf(data_user_bank);

User_Browser Bank_Portal

1

1

1

1alt

1

1alt

https_connection_server_authen

init_state

init_state

init_state

MSC bank_security_access

gainned_access

({wellcome_page,session_ID}httpskey)

data_request

({account_number,data_req,session_ID})

login_password

({login,password}httpskey)

login_password

({web_form_login}httpskey)

rejected

({data_rejected,session_ID}httpskey)

data_bank

({user_data_bank,session_ID}httpskey)

invalid_login_password

Web_access

show_web_login_page

fill_web_login_page

show_invalid_authentication

show_wellcome_page

select_data_request

show_user_data_bank

show_request_rejected

Fig. 3. SRSL security scenario of user’s access to data bank

We might as well have considered alternative security mechanisms to meet the five
requirements. The important point to note here is that we have chosen a form of speci-
fication that does not bind the developer to any particular security mechanisms, thus
enhancing separation of concerns and modularity. This is accomplished by allowing

the security requirements to be defined at a high level of abstraction and independent-
ly of the definition of the functional requirements.

In the case that we have a system that is already implemented, i.e. a legacy system,
and we want to analyse or document it, we describe instead the security mechanisms
that have been implemented.

6 A case study: on-line contracting processes

We have applied our methodology to a system currently being developed by an IT
company that plays the role of user partner in the EU-project where this work has
been performed. This is working on a virtual enterprise business scenario implement-
ing on-line contracting processes by integration of Trusted Third Party services
(TTPs) such as electronic notary systems into a web-based multi-users services plat-
form. The current on-line contracting process is rather complex and supports several
activities such as contract creation, negotiation, signing and final archiving.

To start with, we focus on the contract signing process (managing the contract
signing and notarisation process control). This procedure is part of the business-to-
business scenario for setting up a virtual enterprise platform integrating technology
components such as e-contracting, e-notary and role based authorization engines.

This section describes the existing electronic notary process within an e-business
scenario. The central core of this set-up is the MESA platform, developed by the IT
company. MESA provides web-based user interfaces and role based control mecha-
nisms for accessing functions made available by the TTPs.

Fig. 4 Contract signing process

The following diagram (depicted in figure 5) describes the contract signing process
implemented by an e-Notary reference application and used within the IT company
scenario. A user intending to access a web-based user interface provided by the
MESA platform triggers manually the contract signing process within the following
business scenario:

In the sequel we describe the contract signing process, including the security re-
quirements and the relationships among the users, the MESA platform, and the e-
notary service.

Our methodology has been used to examine this process in terms of communica-
tion security issues. The intended goals have been to validate the model and evaluate
both the current reference implementation and a proposed extension to an agent-based
scenario for the reference implementation.

MESA

Fig. 5. Application structure in SRSL module description

This implementation is being used within the current business scenario. However,
the current client/server implementation, based on traditional PKC technology, has
inherent problems in terms of flexibility and scalability. While the reference scenario
requires a certain infrastructure, compliance to the European directives concerning
digital signatures, to alternative PKC technologies and to certificate infrastructures
might be more suitable when adopting the e-notary process within other business
scenarios (with different context of actors, contents, legal requirements and liability
issues). In fact, changing the context of a recent e-Notary deployment scenario and
identification of implications in terms of security are the most interesting challenges
we face.

We have to pay attention to the fact that what we have specified here is a newly
implemented system. Therefore the task has been to describe the behavior of current
application in order analyze and improve the current implementation. We started by
emphasizing for the developers the usefulness of elaborating a system specification
intended to clarify the different scenarios in order to increase our understanding of
them and to avoid certain ambiguities. We show now the definition of the system
module description representing the different layers structured according to the secu-
rity services.

The protocols described in each layer are specified in terms of MSC/HMSC dia-
grams. Many are standard protocols and so they are instances of generic specifica-
tions.

The system (see Figure 6) is divided into three parts: the contract creation process,
the signing process, and the notarization process. A diagram in a lower abstraction
level describes each MSC reference.

MSC Netunion

signing_process

notarisation_control

contract_creation

Fig. 6. HMSC application description

A representative part of the specification is the create_contract scenario (Figure 7).

CL MESA

Definition

CL,MESA: Agent;
contract, teplate_ID: Text;
session_ID: Text;
list_of_signers: Text;
httpskey : SESSION_KEY;
Security service
conf(contract);
conf(session_ID);
conf(template_ID);
conf(template);
conf(list_of_signers);

negotiation

1

1

1

1

1

1 alt

created_contract

Created_contract

client_authenticated

MSC create_contract

choose_signers

store_template_localy

choose_template
show_list_of_templates

confirm Confirm_data

list_of_signers
({session_ID,list_of_signers}httpskey)

show_list_of_signers list_of_signers
({list_of_signers]httpskey)

contract
({sesion_ID,contract}httpskey)

upload_contract

template
({template}httpskey)

template_ID
({session_ID,template_ID}httpskey)

create_contract_from_template

list_of_templates
({listtemplates}httpskey)

ask_for_list_of_templates
({session_ID}httpskey)

{confirm_data}httpskey

confirm_data: Text;

Fig. 7. SRSL create_contract security scenario

The contract leader (CL) triggers the contract creation process. Previously, the

contract leader and the MESA platform had to be authenticated, and a HTTPS session
key exchanged. This is represented by the initial state client_authenticated. The sce-
nario is divided into four independent alternatives (alt-operator). In the third sub-

scenario we use the task MSC operator to specify the possibility of an external nego-
tiation agreement that is not part of our system. The fourth sub-scenario ends the
process by accepting the uploaded contract and starting the next scenario in the state
created_contract.

Developers considered this methodology very useful for their purposes, especially
with regard to the specification of the contract signing process (Figure 8). The notifi-
cation was initially implemented by letting the E-notary service send an e-mail to
each signer. However, this procedure is unreliable since it lacks any kind of security
guarantees. When this fact was drawn to attention of the developers, they decided to
modify the system in order to provide for security services, such as the signing of the
e-mail by the e-notary service to ensure non-repudiation of origin (NRO). This has
been appended to security services section, and a signing mechanism has been includ-
ed in the definition of the e-notary. This mechanism is checked later in analysis phase.

Fig. 8. SRSL contract_signing security scenario & non-repudiation improvement

The developers deemed this methodology easy to learn and to apply in real envi-
ronments. They believed that it has been of great help for understanding the imple-
mentation and that it provided a method to improve the application with regard to the
required security services and mechanisms. Furthermore, the methodology made
available a formal method of analysis that increased the developers and users reliance
on the system.

7 Conclusions

We have studied different methods for designing and analyzing a system containing
communication protocols. We observed that in order to define a secure system, the
developers need a unified framework that allows them to integrate the security aspects
into both the software system itself, or at least relevant parts of it, and the communi-

e_notary Signer

Definitions

 contract_ID: text;
Security service

1

1 loop

wait_for_contract_signing

signing

MSC contract_signing

request_for_contract_signing
contract_ID

 Signer : Agent;
 e_notary : Agent;

e_notary Signer

Definitions
 Signer,e_notary : Agent;
 contract_ID: text;

Security service

1

1 loop

wait_for_contract_signing

signing

MSC contract_sign_NRO

contract_ID_signed
contract_ID

NRO(e-notary,contract_ID)

({contract_ID}Pken)

 PKen: Public_key;;

Integrity(contract_ID)

cation protocols that constitute a part of the total system. The methodology consisted
of an extension of the ITU standard requirements language MCS, called SRSL, a high
level language for the specification of cryptographic protocols.

In order to illustrate the methodology, we have shown an application consisting of
an electronic notary process scenario that the developers wanted to validate and im-
prove. Moreover, we have described how this electronic Notary process can be insert-
ed into a different scenario, given different input parameters. In this way, we were
able to offer a framework within which it became possible to define and to evaluate
different deployment options for rolling out the security services. We concluded by
noting that the solutions proposed were very well received by the developers, who
considered them easy to learn and to apply.

Acknowledgements. The work described in this paper has been supported by the

European Commission through the IST Programme under Contract IST-2001-32446
(CASENET).

References

1. ITU-T Recommendation Z.100 (11/99), Specification and Description Language (SDL),
Geneva, 1999.

2. ITU-T Recommendation Z.120 (11/99), Message Sequence Charts (MSC-2000), Gene-
va,1999.

3. Jurjëns, J., Towards development of secure systems using UMLsec, Lecture notes in Com-
puter Science 2029, 2001.

4. Lopez, J., Ortega, J.J. and Troya, J.M., Protocol Engineering Applied to Formal Analysis of
Security Systems, Infrasec'02, LNCS 2437, Bristol, UK, October 2002.

5. Lopez ,J., Ortega, J.J. and Troya, J.M., Verification of authentication protocols using SDL-
Method, Workshop of Information Security, Ciudad-Real- SPAIN, April 2002.

6. Meadows, C., Open issues in formal methods for cryptographic protocol analysis, Proceed-
ings of DISCEX 2000,pages 237-250. IEEE Comp. Society Press, 2000.

7. Menezes, A., Van Oorschot, P.C., Vanstone, S., Handbook of Applied Cryptography, CRC
Press, 1996.

8. Millen, J. and Denker, G., CAPSL integrated protocol environment, In DARPA Infor-
mation Survivability Conference (DISCEX 2000), IEEE Computer Society, 2000.

9. Millen. J. Denker, G. CAPSL and MuCAPSL, J. Telecommunications and Information
Technology, 2002

10. Object Management Group. http://www.omg.org/
11. Ryan, P. and Schneider, S., The Modelling and Analysis of Security Protocols: the CSP

Approach, Addison-Wesley, 2001.

